
The 2006 Federated Logic Conference

The Seattle Sheraton Hotel and Towers

Seattle, Washington

August 10 - 22, 2006

 ��

LICS’06 and IJCAR’06 Workshop

LFMTP’06
Logical Frameworks and Meta-Languages:

Theory and Practice
August 16th, 2006

Proceedings

Editors:
Alberto Momigliano & Brigitte Pientka

ii

Contents

Preface iv

Alwen Tiu
A Logic for Reasoning about Generic Judgments . 1

Ulrich Schöpp
Modelling Generic Judgements . 16

Murdoch Gabbay
Hierarchical Nominal Rewriting . 32

Stefan Berghofer, Christian Urban
A Head-to-Head Comparison of de Bruijn Indices and Names 46

Brian Aydemir, Aaron Bohannon, and Stephanie Weirich
Nominal Reasoning Techniques in Coq . 60

Jason Hickey, Aleksey Nogin, Xin Yu, and Alexei Kopylov
Practical Reflection for Sequent Logics . 69

Gordon Plotkin (Invited Speaker)
An Algebraic Framework for Logics and Type Theories 84

Andrew Appel, Xavier Leroy
A List-machine Benchmark for Mechanized Metatheory 85

Kevin Donnelly, Hongwei Xi
A Formalization of Strong Normalization for Simply-Typed Lambda-
Calculus and System F . 98

Chad E. Brown
Encoding Functional Relations in Scunak . 114

Mircea Dan Hernest
Synthesis of Moduli of Uniform Continuity by the Monotone Dialectica
Interpretation in the Proof-System MINLOG . 127

iii

Preface

This volume contains the papers presented at LFMTP’06, the First Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice. LFMTP’06 merges two previous workshop series: LFM (workshop on
Logical Frameworks and Meta-languages) and MERλIN (workshop on MEcha-
nized Reasoning about Languages with variable BIndingIN). It was organized
by the editors of this volume.

There were 20 submissions of which the committee decided to accept 10. The
programme also includes one invited talk by Professor Gordon Plotkin, LFCS,
University of Edinburgh. An abstract of this talk is included in the Proceedings
as well.

Logical frameworks and meta-languages form a common substrate for represent-
ing, implementing, and reasoning about a wide variety of deductive systems of
interest in logic and computer science. Their design and implementation and
their applications, for example, to proof-carrying code have been the focus of
considerable research over the last decade.

The broad subject areas of LFMTP’06 are:

• The automation and implementation of the meta-theory of programming
languages and related calculi, particularly work which involves variable
binding and fresh name generation.

• The theoretical and practical issues concerning the encoding of variable
binding and fresh name generation, especially the representation of, and
reasoning about, datatypes defined from binding signatures.

• Case studies of meta-programming, and the mechanization of the meta-
theory of programming languages and calculi, in particular focusing on
experiences with encoding programming languages theory and instances
of proof-carrying code or proof-carrying authorization.

The program committee of LFMTP’06 consisted of

• Andrew Appel, Princeton University

• Thierry Coquand, Goteborg University

• Martin Hofmann, LMU Munich

• Furio Honsell, University of Udine

• Dale Miller, Inria Futurs

• Alberto Momigliano, University of Edinburgh

• Brigitte Pientka, McGill University

• Andrew Pitts, Cambridge University.

iv

The editors would like to thank the other committee members for their input
into all stages of the organization of LFMTP’06. The papers were refereed by
the program committee and by the following outside referees, whose help is also
gratefully acknowledged. Special thanks are also due to Marino Miculan, he
knows why.

Jeremy Avigad
James Brotherston
Chad Brown
Alberto Ciaffaglione
Roy Crole
Jamie Gabbay
Fabio Gadducci
Matthew Lakin
Marino Miculan
Ivan Scagnetto
Ulrich Schöpp
Carsten Schürmann
Alwen Tiu
Christian Urban

LFMTP’06 is held on August 16th, 2006 in association with FLOC’06, the
2006 Federated Logic Conference, Seattle, August 10 - 22, 2006. In particular,
LFMTP’06 is co-sponsored by LICS and IJCAR. We are very grateful to the
FLOC organizers, especially to Tom Ball, FLOC Co-chair, Gopal Gupta, FLOC
Workshop Chair, Maria Paola Bonacina and Phil Scott, IJCAR and LICS Work-
shop Chairs respectively, who all worked very hard to make our life as workshop
organizers easier.

July 21st, 2006 Alberto Momigliano
Brigitte Pientka

v

LFMTP 2006

A Logic for Reasoning about Generic
Judgments

Alwen Tiu

Australian National University and National ICT Australia

Abstract

This paper presents an extension of a proof system for encoding generic judgments, the logic FOλ∆∇ of
Miller and Tiu, with an induction principle. The logic FOλ∆∇ is itself an extension of intuitionistic logic
with fixed points and a “generic quantifier”, ∇, which is used to reason about the dynamics of bindings in
object systems encoded in the logic. A previous attempt to extend FOλ∆∇ with an induction principle
has been unsuccessful in modeling some behaviours of bindings in inductive specifications. It turns out
that this problem can be solved by relaxing some restrictions on ∇, in particular by adding the axiom
B ≡ ∇x.B, where x is not free in B. We show that by adopting the equivariance principle, the presentation
of the extended logic can be much simplified. Cut-elimination for the extended logic is stated, and some
applications in reasoning about an object logic and a simply typed λ-calculus are illustrated.

Keywords: Proof theory, higher-order abstract syntax, logical frameworks.

1 Introduction

This paper aims at providing a framework for reasoning about specifications of
deductive systems using higher-order abstract syntax [20]. Higher-order abstract
syntax is a declarative approach to encoding syntax with bindings using Church’s
simply typed λ-calculus. The main idea is to support the notions of α-equivalence
and substitutions in the object syntax by operations in λ-calculus, in particular
α-conversion and β-reduction. There are at least two approaches to higher-order
abstract syntax. The functional programming approach encodes the object syntax
as a data type, where the binding constructs in the object language are mapped to
functions in the functional language. In this approach, terms in the object language
become values of their corresponding types in the functional language. The proof
search approach encodes object syntax as expressions in a logic whose terms are
simply typed, and functions that act on the object terms are defined via relations,
i.e., logic programs. There is a subtle difference between this approach and the
former; in the proof search approach, the simple types are inhabited by well-formed
expressions, instead of values as in the functional approach (i.e., the abstraction
type is inhabited by functions). The proof search approach is often referred to as λ-
tree syntax [16], to distinguish it from the functional approach. This paper concerns

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Tiu

the λ-tree syntax approach.
Specifications which use λ-tree syntax are often formalized using hypothetical

and generic judgments in intuitionistic logic. It is enough to restrict to the fragment
of first-order intuitionistic logic whose only formulas are those of hereditary Harrop
formulas, which we will refer to as the HH logic. Consider for instance the problem
of defining the data type for untyped λ-terms. One first introduces the following
constants:

app : tm → tm → tm abs : (tm → tm) → tm

where the type tm denotes the syntactic category of λ-terms and app and abs encode
application and abstraction, respectively. The property of being a λ-term is then
defined via the following theory:

∧
M

∧
N(lam M ∧ lam N ⇒ lam (app M N)) &∧

M((
∧

x.lam x ⇒ lam (M x)) ⇒ lam (abs M))

where
∧

is the universal quantifier and ⇒ is implication.
Reasoning about object systems encoded in HH is reduced to reasoning about

the structure of proofs in HH. McDowell and Miller formalize this kind of reasoning
in the logic FOλ∆IN [10], which is an extension of first-order intuitionistic logic with
fixed points and natural numbers induction. This is done by encoding the sequent
calculus of HH inside FOλ∆IN and prove properties about it. We refer to HH as
object logic and FOλ∆IN as meta logic. McDowell and Miller considered different
styles of encodings and concluded that explicit representations of hypotheses and,
more importantly, eigenvariables of the object logic are required in order to capture
some statements about object logic provability in the meta logic [11]. One typical
example involves the use of hypothetical and generic reasoning as follows: Suppose
that the following formula is provable in HH.∧

x.p x s ⇒
∧

y.p y t ⇒ p x t.

By inspection on the inference rules of HH, one observes that this is only possible if
s and t are syntactically equal. This observation comes from the fact that the right
introduction rule for universal quantifier, reading the rule bottom-up, introduces
new constants, or eigenvariables. The quantified variables x and y will be replaced
by distinct eigenvariables and hence the only matching hypothesis for p x t would
be p x s, and therefore s and t has to be equal. Let `HH F denote the provability of
the formula F in HH. Then in the meta logic, we would want to be able to prove
the statement:

∀s∀t.(`HH

∧
x.p x s ⇒

∧
y.p y t ⇒ p x t) ⊃ s = t.

The question is then how we would interpret the object logic eigenvariables in the
meta logic. It is argued in [11] that the existing quantifiers in FOλ∆IN cannot be
used to capture the behaviours of object logic eigenvariables directly. McDowell and
Miller then resort to a non-logical encoding technique (in the sense that no logical
connectives are used) which has some similar flavor to the use of deBruijn indices.

2

Tiu

The use of this encoding technique, however, has a consequence that substitutions
in the object logic has to be formalized explicitly.

Motivated by the above mentioned limitation of FOλ∆IN, Miller and Tiu later
introduced a new quantifier ∇ to FOλ∆IN which allows one to move the binders
from the object logic to the meta logic. A generic judgment in the object logic,
for instance `HH

∧
x.G x is reflected in the meta logic as ∇x. `HH G x. More

generally, object logic eigenvariables are ∇-quantified at the meta level. This meta
logic, called FOλ∆∇ [17], allows one to perform case analyses on the provability
of the object logic. Tiu later extended FOλ∆∇ with induction and co-induction
rules, resulting in the logic Linc [24]. However, some inductive properties about the
object logic are not provable in Linc, e.g, the implication

`HH

∧
x.G x ⊃ ∀t. `HH G t(1)

which states the extensional property of object logic universal quantification.
The inductive proof of the formula (1) would require an induction hypothesis

that quantifies over object logic signatures, i.e., it is a statement of the sort

“for all” ~z, ∀H∇~z(`HH

∧
x.H ~z x ⊃ ∀t. `HH H ~z t)

where ~z is a list of object logic eigenvariables occurring in the object sequents. An
obvious extension to Linc to formalize this statement would be to allow for quantifi-
cation over arbitrary lists of variables which act like variable contexts to the object
logic. However this is technically non-trivial and may require complicated proof
theory. In this paper we follow an easier but weaker approach, which is expressive
enough to allow for inductive reasoning over object specifications involving bind-
ings. Instead of having explicit quantification over variable contexts, we require
every proposition to hold in any variable context. This effectively translates to
admitting the following axiom in FOλ∆∇:

B ⊃ ∇x.B, x is not free in B,(2)

which is not provable in FOλ∆∇. Extensions to FOλ∆∇ have been previously pro-
posed in a couple of previous works [5,3]. In both works, it is suggested that adding
the following axioms

∇x∇y.B x y ⊃ ∇y∇x.B x y and B ≡ ∇x.B,(3)

where x is not free in B in the second scheme, to FOλ∆∇ would result in a natural
semantics for the extended logic. As it turns out, admitting these axioms would
give a simpler proof theory too, compared to just having (2). We therefore adopt
the axioms (3) in the extension of FOλ∆∇ discussed in the paper. This extended
logic, called LGω, is obtained by extending FOλ∆∇ with natural number induction
and with the axiom schemes (3). We show that inductive properties of λ-tree syntax
specifications can be stated directly and in a purely logical fashion, and proved in
LGω.

Relation to nominal logic
To guarantee good proof search behavior and syntactic consistency of the logic

LGω (i.e., cut-elimination), the axiom schemes (3) need to be absorbed into the

3

Tiu

rules of the proof system of LGω. There are at least a couple of ways of achieving
this. One way is to extend the proof system of FOλ∆∇ with some structural rules
corresponding to the axioms (3). The other is to adopt the notion of equivariant
predicates as in nominal logic [21], that is, provability of a predicate is invariant
under permutations of names. We show here the second approach, which is simpler.
The equivalent of the two formulations can be found in an extended version of
the paper [25]. The equivariant principle is technically enforced by introducing a
countably infinite set of name constants into the logic, and change the identity rule
of the logic to allow equivalence under permutations of name constants:

π.B = π′.B′

Γ, B − B′ id

where π and π′ are permutations on names. LGω is in fact very close to nominal
logic, when we consider only the behaviours of logical connectives. In particular, the
quantifier ∇ in LGω shares the same properties, in relation to other connectives of
the logic, with the Nquantifier in nominal logic. However, there are two important
differences in our approach. First, we do not attempt to redefine α-conversion and
substitutions in LGω in terms of permutations (or swapping) and the notion of
freshness as in nominal logic. Name swapping and freshness constraints are not
part of the syntax of LGω. These notions are present only in the meta theory of
the logic. In LGω, for example, variables are always considered to have empty
support, that is, π.x = x for every permutation π. This is because we restrict
substitutions to the “closed” ones, in the sense that no name constants can appear in
the substitutions. A restricted form of open substitutions can be recovered indirectly
at the meta theory of LGω. The fact that variables have empty support allows
one to work with permutation free formulas and terms. So in LGω, we can prove
that p x a ⊃ p x b, where a and b are names, without using explicit axioms of
permutations and freshness. In nominal logic, one would prove this by using the
swapping axiom p x a ⊃ p ((a b).x) ((a b).b), where (a b) denotes a swapping of
a and b, and then show that (a b).x = x. The latter might not be valid if x is
substituted by a, for example. The validity of this formula in nominal logic would
therefore depend on the assumption on the support of x.

The second difference between LGω and nominal logic is that LGω allows closed
terms (again, in the sense that no name constants appear in them) of type name,
while in nominal logic, allowing such terms would lead to inconsistency [21]. As
an example, the type tm in the encoding of λ-terms mentioned previously can be
treated as a nominal type in LGω. This has an important consequence that we do
not need to redefine the notion of substitutions for the encoded λ-terms, which is
instead mapped to β-reduction in the meta language of LGω.

The rest of this paper is organized as follows. In Section 2 we introduce a
proof system for LGω. Section 3 states some meta theories of LGω, in particular
cut-elimination and a translation from LGω without fixed points and induction to
FOλ∇ with the axioms (3). Section 4 shows an encoding of HH logic in LGω

and how some properties of the object logic can be formalized in LGω. Section 5
illustrates the use of HH to specify the typing judgments of λ-calculus and the
evaluation relation on λ-terms. It also shows an example of reasoning about the

4

Tiu

encoded λ-calculus, by induction on the provability of the typing judgments in the
object logic HH. Section 6 discusses some related and future work. The proofs of
the main results in this paper can be in an extended version of the paper [25].

2 A logic for generic judgments

We first define the core fragment of the logic LGω which does not have fixed point
rules or induction. The starting point is the logic FOλ∇ introduced in [17]. FOλ∇

is an extension of a subset of Church’s Simple Theory of Types in which formulas
are given the type o. The core fragment of LGω, which we refer to as LG, shares the
same set of connectives as FOλ∇, namely, ⊥, >, ∧, ∨, ⊃, ∀τ , ∃τ and ∇τ . The type
τ in the quantifiers is restricted to that which does not contain the type o. Hence
the logic is essentially first-order. We abbreviate (B ⊃ C) ∧ (C ⊃ B) as B ≡ C.

To enforce equivariant reasoning, we introduce a distinguished set of base types,
called nominal types, which is denoted with N . Nominal types are ranged over by
ι. We restrict the ∇ quantifier to nominal types. For each nominal type ι ∈ N ,
we assume an infinite number of constants of that type. These constants are called
nominal constants. We denote the family of nominal constants by CN . The role
of the nominal constants is to enforce the notion of equivariance: provability of
formulas is invariant under permutations of nominal constants. Depending on the
application, we might also assume a set of non-nominal constants, which is denoted
by K.

We assume the usual notion of capture-avoiding substitutions. Substitutions are
ranged over by θ and ρ. Application of substitutions is written in a postfix notation,
e.g., tθ is an application of θ to the term t. Given two substitutions θ and θ′, we
denote their composition by θ ◦ θ′ which is defined as t(θ ◦ θ′) = (tθ)θ′. A typing
context is a set of typed variables or constants. The judgment ∆ ` t : τ denotes
the fact that the term t has type the simple type τ , given the typing context ∆.
Its operational semantics is the usual type system for Church’s simple type theory.
A signature is a set of variables. A substitution θ respects a given signature Σ if
there exists a set of typed variables Σ′ such that for every x : τ ∈ Σ which is in the
domain of θ, it holds that K ∪ Σ′ ` θ(x) : τ. We denote by Σθ the minimal set of
variables satisfying the above condition. The substitution θ in this case is called a
Σ-substitution. We assume that variables, free or bound, are of a different syntactic
category from constants.

Definition 2.1 A permutation on CN is a bijection from CN to CN . The permu-
tations on CN are ranged over by π. Application of a permutation π to a nominal
constant a is denoted with π(a). We shall be concerned only with permutations
which respect types, i.e., for every a : ι, π(a) : ι. Further, we shall also restrict to
permutations which are finite, that is, the set {a | π(a) 6= a} is finite. Application of
a permutation to an arbitrary term (or formula), written π.t, is defined as follows:

π.a = π(a), if a ∈ CN . π.c = c, if c 6∈ CN . π.x = x

π.(M N) = (π.M) (π.N) π.(λx.M) = λx.(π.M)

5

Tiu

A permutation involving only two nominal constants is called swapping. We use
(a b), where a and b are constants of the same type, to denote the swapping {a 7→
b, b 7→ a}.

The support of a term (or formula) t, written supp(t), is the set of nominal
constants appearing in it. It is clear from the above definition that if supp(t) is
empty, then π.t = t for all π. The definition of Σ-substitution implies that for every
θ and for every x ∈ Σ, θ(x) has empty support. Therefore Σ-substitutions and
permutations commute, that is, (π.t)θ = π.(tθ).

A sequent in LGω is an expression of the form Σ; Γ − C where Σ is a signature
and the formulas in Γ ∪ {C} are in βη-normal form. The free variables of Γ and
C are among the variables in Σ. The inference rules for the core fragment of LGω,
i.e., the logic LG, are given in Figure 1.

In the ∇L and ∇R rules, a denotes a nominal constant. In the ∃L and ∀R
rules, we use raising [14] to encode the dependency of the quantified variable on
the support of B, since we do not allow Σ-substitutions to mention any nominal
constants. In the rules, the variable h has its type raised in the following way:
suppose ~c is the list c1 : ι1, . . . , cn : ιn and the quantified variable x is of type τ .
Then the variable h is of type: ι1 → ι2 → . . . → ιn → τ. This raising technique is
similar to that of FOλ∆∇, and is used to encode explicitly the minimal support of
the quantified variable. Its use prevents one from mixing the scopes of ∀ (dually, ∃)
and ∇. That is, it prevents the formula ∀x∇y.p x y ≡ ∇y∀x.p x y, and its dual, to
be proved.

Looking at the introduction rules for ∀ and ∃, one might notice the asymmetry
between the left and the right introduction rules. The left rule for ∀ allows instanti-
ations with terms containing any nominal constants while the raised variable in the
right introduction rule of ∀ takes into account only those which are in the support
of the quantified formula. However, we will see that we can extend the dependency
of the raised variable to an arbitrary number of fresh nominal constants not in
the support without affecting the provability of the sequent (see Lemma 3.5 and
Lemma 3.6).

We now extend the logic LG with a proof theoretic notion of equality and fixed
points, following on works by Hallnas and Schroeder-Heister [7,22], Girard [6] and
McDowell and Miller [10]. The equality rules are as follows:

{Σθ; Γθ − Cθ | (λ~c.t)θ =βη (λ~c.s)θ}
Σ; Γ, s = t − C

eqL
Σ; Γ − t = t

eqR

where supp(s = t) = {~c} and θ is a Σ-substitution in the eqL rule. In the eqL rule,
the substitution θ is a unifier of λ~c.s and λ~c.t. Note that the λ-abstraction on ~c

in eqL is quite redundant, since Σ-substitutions cannot mention nominal constants
and it will be equally valid to say that θ is a unifier of t and s. The use of λ’s in the
rule is just to make it clear that the unification problem that arises in the rule is
the usual higher-order unification and to conform with the formulations of equality
rules in Linc [18,24].

We specify the premise of the rule as a set to mean that every element of the set
is a premise. Since the terms s and t can be arbitrary higher-order terms, in general

6

Tiu

π.B = π′.B′

Σ; Γ, B − B′
idπ

Σ; Γ − B Σ; B, ∆ − C

Σ; Γ, ∆ − C
cut

Σ; Γ, B, B − C

Σ; Γ, B − C
cL

Σ; Γ,⊥ − C
⊥L

Σ; Γ − > >R

Σ; Γ, Bi − C

Σ; Γ, B1 ∧B2 − C
∧L, i ∈ {1, 2}

Σ; Γ − B Σ; Γ − C

Σ; Γ − B ∧ C
∧R

Σ; Γ, B − C Σ; Γ, D − C

Σ; Γ, B ∨D − C
∨L

Σ; Γ − Bi

Σ; Γ − B1 ∨B2
∨R, i ∈ {1, 2}

Σ; Γ − B Σ; Γ, D − C

Σ; Γ, B ⊃ D − C
⊃ L

Σ; Γ, B − C

Σ; Γ − B ⊃ C
⊃ R

Σ,K, CN ` t : τ Σ; Γ, B[t/x] − C

Σ; Γ, ∀τ x.B − C
∀L

Σ, h; Γ − B[h~c/x]

Σ; Γ − ∀x.B
∀R, h 6∈ Σ, supp(B) = {~c}

Σ; Γ, B[a/x] − C

Σ; Γ,∇x.B − C
∇L, a 6∈ supp(B)

Σ; Γ − B[a/x]

Σ; Γ − ∇x.B
∇R, a 6∈ supp(B)

Σ, h; Γ, B[h~c/x] − C

Σ; Γ, ∃x.B − C
∃L, h 6∈ Σ, supp(B) = {~c}

Σ,K, CN ` t : τ Σ; Γ − B[t/x]

Σ; Γ − ∃τ x.B
∃R

Fig. 1. The inference rules of LG

the set of their unifiers can be infinite. However, in some restricted cases, e.g., when
λ~c.s and λ~c.t are higher-order pattern terms [13,19], if both terms are unifiable, then
there exists a most general unifier. The applications we are considering are those
which satisfy the higher-order pattern restrictions.

Definition 2.2 To each atomic formula, we associate a fixed point equation, or
a definition clause, following the terminology of FOλ∆∇. A definition clause is
written ∀~x.p ~x

4
= B where the free variables of B are among ~x. The predicate p ~x

is called the head of the definition clause, and B is called the body. A definition is
a set of definition clauses. We often omit the outer quantifiers when referring to a
definition clause.

The introduction rules for defined atoms are as follows:

Σ; Γ, B[~t/~x] − C

Σ; Γ, p~t − C
defL, p ~x

4
= B

Σ; Γ − B[~t/~x]

Σ; Γ − p~t
defR, p ~x

4
= B

In order to prove the cut-elimination theorem and the consistency of LGω, we
allow only definition clauses which satisfy an equivariance preserving condition and
a certain positivity condition, so as to guarantee the existence of fixed points.

Definition 2.3 We associate with each predicate symbol p a natural number, the
level of p. Given a formula B, its level lvl(B) is defined as follows:

(i) lvl(p t̄) = lvl(p)

(ii) lvl(⊥) = lvl(>) = 0

(iii) lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

(iv) lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

(v) lvl(∀x.B) = lvl(∇x.B) = lvl(∃x.B) = lvl(B).

7

Tiu

A definition clause p ~x
4
= B is stratified if lvl(B) ≤ lvl(p) and supp(B) = ∅. We

consider only definition clauses which are stratified.

An example that violates the first restriction in Definition 2.3 is the definition
p
4
= p ⊃ ⊥. In [22], Schroeder-Heister shows that admitting this definition in a logic

with contraction leads to inconsistency. To see why we need the second restriction
on name constants, consider the definition q x

4
= (x = a), where a is a nominal

constant. Let b be a nominal constant different from a. Then q b is both true, since
it is equivariant to q a and false, by the definition of fixed point.

In examples and applications, we often express definition clauses with patterns
in the heads. Let us consider, for example, a definition clause for lists. We first
introduce a type lst to denote lists of elements of type α, and the constants

nil : lst :: : α → lst → lst

which denote the empty list and a constructor to build a list from an element of type
α and another list. The latter will be written in the infix notation. The definition
clause for lists is as follows.

list L
4
= L = nil ∨ ∃αA∃lstL

′.L = (A :: L′) ∧ list L′.

Using patterns, the above definition of lists can be rewritten as

list nil
4
= >. list (A :: L)

4
= list L.

We shall often work directly with this patterned notation for definition clauses.
For this purpose, we introduce the notion of patterned definitions. A patterned
definition clause is written ∀~x.H

4
= B where the free variables of H and B are

among ~x. The stratification of definitions in Definition 2.3 applies to patterned
definitions as well. Since the patterned definition clauses are not allowed to have
free occurrences of nominal constants, in matching the heads of the clauses with an
atomic formula in a sequent, we need to raise the variables of the clauses to account
for nominal constants that are in the support of the introduced formula. Given a
patterned definition clause ∀x1 . . .∀xn.H

4
= B its raised clause with respect to the

list of constants c1 : ι1 . . . cn : ιn is

∀h1 . . .∀hn.H[h1 ~c/x1, . . . , hn ~c/xn]
4
= B[h1 ~c/x1, . . . , hn ~c/xn].

The introduction rules for patterned definitions are

{Σθ;Bθ,Γθ − Cθ}θ

Σ; A,Γ − C
defL

Σ; Γ − Bθ

Σ; Γ − A
defR

In the defL rule, B is the body of the raised patterned clause ∀x1 . . .∀xn.H
4
= B

and (λ~c.H)θ = (λ~c.A)θ where {~c} is the support of A. In the defR rule, we match
A with the head of the clause, i.e., λ~c.A = (λ~c.H)θ. These patterned rules can be
derived using the non-patterned definition rules and the equality rules, as shown
in [24].

8

Tiu

Natural number induction.
We introduce a type nt to denote natural numbers, with the usual constants

z : nt (zero) and s : nt → nt (the successor function), and a special predicate
nat : nt → o. The rules for natural number induction are the same as those in
FOλ∆IN [10], which are the introduction rules for the predicate nat.

− D z j;D j − D (s j) Σ; Γ, D I − C

Σ; Γ, nat I − C
natL

Σ; Γ − nat z
natR

Σ; Γ − nat I

Σ; Γ − nat (s I) natR

The logic LG extended with the equality, definitions and induction rules is re-
ferred to as LGω.

3 The meta theory of LGω

In this section we investigate some properties of the logic LGω. We first look at
the properties of the ∇ quantifier in relation to other connectives. The proof of the
following proposition is straightforward by inspection on the rules of LG.

Proposition 3.1 The following formulas are provable in LG:

(i) ∇x.(Bx ∧ Cx) ≡ ∇x.Bx ∧∇x.Cx.

(ii) ∇x.(Bx ⊃ Cx) ≡ ∇x.Bx ⊃ ∇x.Cx.

(iii) ∇x.(Bx ∨ Cx) ≡ ∇x.Bx ∨∇x.Cx.

(iv) ∇x.B ≡ B, provided that x is not free in B.

(v) ∇x∇y.Bxy ≡ ∇y∇x.Bxy.

(vi) ∀x.Bx ⊃ ∇x.Bx.

(vii) ∇x.Bx ⊃ ∃x.Bx.

The formulas (i) – (iii) are provable in FOλ∇. The proposition is true also in
nominal logic with ∇ replaced by N.

The following properties concern the transformation of derivations. Provability
is preserved under Σ-substitutions, permutations and a restricted form of name
substitutions.

Lemma 3.2 Substitutions. Let Π be a proof of Σ; Γ − C and let θ be a Σ-
substitution. Then there exists a proof Π′ of Σθ; Γθ − Cθ.

Lemma 3.3 Permutations. Let Π be a proof of Σ; B1, . . . , Bn − B0. Then there
exists a proof Π′ of Σ; π1.B1, . . . , πn.Bn − π0.B0.

Lemma 3.4 Restricted name substitutions. Let Π be a proof of

Σ, x : ι;B1, . . . , Bn − B0.

Then there exists a proof of Π′ of Σ; B1[a1/x], . . . , Bn[an/x] − B0[a0/x], where
ai 6∈ supp(Bi) for each i ∈ {0, . . . , n}.

9

Tiu

The next two lemmas are crucial to the cut-elimination proof: they allow one
to reintroduce the symmetry between ∀L and ∀R, and dually, between ∃L and ∃R
rules.

Lemma 3.5 Support extension. Let Π be a proof of Σ, h; Γ − B[h ~a/x] where
{~a} = supp(B), h 6∈ Σ and h is not free in Γ and B. Let ~c be a finite list of
nominal constants not in the support of B. Then there exists a proof Π′ of Σ, h′; Γ −
B[h′ ~a~c/x].

Lemma 3.6 Support extension. Let Π be a proof of Σ, h;B[h ~a/x],Γ − C where
{~a} = supp(B), h 6∈ Σ and h is not free in Γ, B and C. Let ~c be a finite list
of nominal constants not in the support of B. Then there exists a proof Π′ of
Σ, h′;B[h′ ~a~c/x],Γ − C where h′ 6∈ Σ.

The main result on the meta theory of LGω is the cut-elimination theorem, from
which the consistency of the logic follows.

Theorem 3.7 The cut rule is admissible in LGω.

Corollary 3.8 The logic LGω is consistent, i.e., it is not the case that both A and
A ⊃ ⊥ are provable.

Finally, we show that the formulation of LG is equivalent to FOλ∇ extended
with the axiom schemes of name permutations and weakening.

Theorem 3.9 Let F be a formula which contains no occurrences of nominal con-
stants. Then F is provable in FOλ∇ extended with the axiom schemes B ≡ ∇x.B

and ∇x∇y.B x y ⊃ ∇y∇x.B x y if and only if F is provable in LG.

4 Encoding an object logic

We now consider an encoding of the logic HH mentioned in the introduction in
LGω. The encoding of this object logic has been done in FOλ∆IN by McDowell and
Miller [11]. The formalization of the object logic properties in this section follows
closely the FOλ∆IN encoding. The only major difference is that we do not need an
explicit encoding of eigenvariables; eigenvariables are mapped to nominal constants
in the meta logic LGω.

The object logic formulas are generated by the following grammar.

D ::= A | G ⇒ A |
∧

τ x.D

G ::= A | tt | G & G | A ⇒ G |
∧

ι x.G |
∨

τ .G

where A ranges over atomic (object-level) formula, ⇒, &,
∧

and
∨

denote impli-
cation, conjunction, universal quantifier and existential quantifier, respectively. D

and G represent definite clauses and goal formulas, respectively. Notice that in goal
formulas, universal quantification is restricted to nominal types. The sequent rules
for HH are the standard right introduction rules for the logical connectives plus

10

Tiu

seqI L tt
4
= >. seqI L 〈A〉 4= elem A L.

seq(s I) L (A & B)
4
= seqI L A ∧ seqI L B.

seq(s I) L (A ⇒ B)
4
= seqI (A :: L) B.

seq(s I) L (
V

x.Gx)
4
= ∇x.seqI L Gx.

seq(s I) L
W

x.Gx
4
= ∃x.seqI L Gx.

seq(s I) L 〈A〉 4
= ∃B.prog A B ∧ seqI L B.

Fig. 2. Definition of an object logic.

the backchaining rule:

Γ,
∧

~x.G ⊃ A −→ Gθ

Γ,
∧

~x.G ⊃ A −→ A′ bc, Aθ = A′

This sequent system is complete for the HH fragment of intuitionistic logic, as a
consequence of uniform provability of intuitionistic logic [15].

In order to encode the object-logic formulas into LGω, we first introduce some
types and constants. The object logic formulas are given the type prp, while atomic
formulas are given the type atm. The formulas of HH are encoded using the
following constants:

〈 〉 : atm → prp & : prp → prp → prp
∧

τ : (ι → prp) → prp

tt : prp ⇒: atm → prp → prp
∨

τ : (τ → prp) → prp

We denote the encoding of an object level formula A in LGω with [[A]].
Since the set of definite clauses in the sequents does not change in the proofs in

HH, we will not put them explicitly in the HH sequents in their encoding in LGω.
Hence hypotheses of HH sequents are lists of atomic formulas. The object logic
sequent is represented using the predicate seq : nt → atmlist → prp → o where
atmlist is the type for lists of atomic formulas, with the usual constructors nil and
:: . The natural number in the encoding of sequents will be used as a measure of
the length of object logic proofs. Inductive properties about the provability in HH

will be proved using this measure. An object sequent Γ −→ A is represented as the
atomic formula (seqI [[Γ]] [[A]]) in LGω. We encode definite clauses using a predicate
called prog : atm → prp → o. A definite clause

∧
~x.G ⇒ A is encoded as the

definition clause ∀~x.prog A G
4
= >. The patterned definition of the sequent rules of

HH is given in Figure 2. It uses the following definition clauses.

listi nil
4
= >. list(s i) (A :: L)

4
= listi L.

list L
4
= ∃i.nat i ∧ listi L.

elem A (A :: L)
4
= >. elem A (B :: L)

4
= elem A L.

We refer to this definition together with the definition in Figure 2 as D(HH) and
any additional definite clauses with D(prog).

11

Tiu

X, I2; seqI2 [p X] 〈p a〉 − ⊥
X, I2;∇y.seqI2 [p X] 〈p y〉 − ⊥ ∇L

X, I1; seqI1 [p X] (
V

y.〈p y〉) − ⊥ defL

X, I; seqI nil (p X ⇒
V

y.〈p y〉) − ⊥ defL

− ∀X∀I.(seqI nil (p X ⇒
V

y.〈p y〉) ⊃ ⊥)
∀R;⊃ R

Fig. 3. A derivation in LGω .

Example:
The formula p X ⇒

∧
y.p y is not provable in the empty theory, whatever the

value of X is. This fact is formalized in LGω as the formula

∀X∀I.(seqI nil (p X ⇒
∧

y.〈p y〉) ⊃ ⊥).

A partial derivation of this formula in LGω is shown in Figure 3. In the figure
the notation [p X] stands for the list (p X :: nil). The derivation is completed by
applying defL to the topmost sequent, resulting in two matching cases: the identity
rule and the backchaining rule. Since we assume no definite clauses, this leaves us
with proving the sequent: X, I2; elem (p X) (p a :: nil) − ⊥. Applying defL to this
sequent results in the sequent X, I2; elem (p X) nil − ⊥, since λa.p X and λa.p a

are not unifiable. Another application of defL gives us empty premise and hence
the sequent is provable. 2

It is straightforward to see that the structure of the HH proofs corresponds to
the structure of proofs of its encoding in LGω; in particular, the backchaining rule
in HH corresponds to the defR rule (for the patterned definition) in LGω. We now
state some properties of the encoding of HH in LGω.

Theorem 4.1 Let D(prog) be a definition corresponding to a set of definite clauses
P. Then the sequent P,Γ −→ G is derivable in HH if and only if seqi [[Γ]] [[G]] is
derivable in LGω with the definition D(prog) ∪D(HH) for some natural number i.

Theorem 4.2 The following formulas are provable in LGω with the definition of
the object logic HH:

(i) Structural rules: ∀L∀L′∀G∀i. nat i ⊃ list L ⊃ list L′

(∀A.elem A L ⊃ elem A L′) ⊃ seqi L G ⊃ seqi L′ G.

(ii) Atomic cut: ∀L∀G∀A.list L ⊃ ∃i.(nat i ∧ seqi L (A ⇒ G)) ⊃

∃i.(nat i ∧ seqi L 〈A〉) ⊃ ∃i.nat i ∧ seqi L G.

(iii) Specialization: ∀L∀G∀i.nat i ⊃ list L ⊃ seq(s i) L (
∧

G) ⊃ ∀x.seqi L (G x).

We conclude this section by a remark that ∇ is strictly speaking not necessary
for capturing object logic provability, as Theorem 4.2 (3) shows, rather it is the
use of nominal constants to model eigenvariables that allows that. The use of ∇,
however, results in a more natural correspondence between the encoding of HH

and its actual sequent proofs.

12

Tiu

5 Reasoning about operational semantics

Following McDowell and Miller [11], we use the encoding of HH in LGω to specify
and reason about the operational semantics of simply typed λ-calculus. Reasoning
about more complicated languages like PCF can be done as well using a similar
approach (see [11]).

We introduce a type ty to denote object-level types. The type tm denotes the
object-level λ-terms and is considered a nominal type. The language of the (object-
level) λ-terms is encoded using the following constants:

app : tm → tm → tm abs : ty → (tm → tm) → tm

which denote application and abstraction, respectively. The object-level type con-
structor, i.e., the ‘arrow’, is encoded via the constant ar : ty → ty → ty. Object-level
base types are ranged over by α.

The evaluation relation and the typing judgments of the simply typed calculus
are given as definite clauses below.

eval (abs T M) (abs T M) ⇐ tt.

eval (app M N) V ⇐
∨

P
∨

T.eval M (abs P T) & eval (P N) V.

typeof (abs T M) (ar T T ′) ⇐
∧

x.typeof x T ⇒ typeof (Mx) T ′.

typeof (app M N) T ⇐
∨

T ′.typeof M (ar T ′ T) & typeof N T ′.

It is straightforward to translate these clauses to prog clauses.
We state a couple of properties here as formulas in LGω. In the following

theorems, we use the notation L . G to denote the formula ∃i.nat i∧ seqi L G. If L

is nil we simply write .G.

Theorem 5.1 Subject reduction. The following formula is provable

∀M∀V ∀T. . 〈eval M V 〉 ∧ .〈typeof M T 〉 ⊃ .〈typeof V T 〉.

A proof of a similar theorem is given in [11] for the untyped λ-term in the
logic FOλ∆IN. This proof can be adapted straightforwardly to give a proof for the
above theorem. A more interesting property is the determinacy of type assignments,
provided that the typing context is well-formed, that is, each variable in the context
is assigned a unique type. The well-formedness of a typing context L is specified as
the formula:

∀X∀T1∀T2.elem (typeof X T1) L ⊃ elem (typeof X T2) L ⊃ T1 = T2.

The above formula will be denoted by ctx L.

Theorem 5.2 The following formula is provable:

∀L∀X∀T1∀T2. list L ⊃ ctx L ⊃ L . 〈typeof X T1〉 ⊃ L . 〈typeof X T2〉 ⊃ T1 = T2.

13

Tiu

6 Related and future work

There have been many previous related works in providing frameworks for higher-
order abstract syntax, or more generally abstract syntax with bindings. A non-
exhaustive list includes encodings in proof assistants like Coq [4], HOL [26], Is-
abelle [27], and Twelf [23], categorical frameworks [8], the theory of contexts [9],
nominal logic [21], and proof search frameworks [11,24]. The approach taken here is
similar to the latter; the novelty of our work lies in the use of equivariance principle
within the usual style of higher-order abstract syntax specifications. An immediate
future work will be to implement the logic LGω, possibly on top of an existing proof
assistant, and to perform large case studies, in particular, the problem sets put out
in the POPLmark Challenge [1].

In the current work we show only the treatment of natural number induction.
Extensions to iterated (co-)inductive definitions can be done in a similar way as
in [18,24].

Semantics of LG. There have been a couple of attempts at giving a semantics for
the logic FOλ∇: Cheney and Gabbay proposed an encoding into nominal logic [5,3],
and Miculan and Yemane give a categorical semantics [12]. In both works, it is
suggested that extending FOλ∇ with the axiom schemes (3) would result in a
natural semantics for ∇. The work by Miculan and Yemane seems closer to the
logic LG and could very well serve as a basis for finding a categorical model for
LG. There are some similarities between LG and Nominal Logic, but the treatment
of substitutions and the addition of closed terms of type name in LG make it not
obvious whether the support models of Nominal Logic can be used for LG. We leave
the investigation of support models for LG (or a classical version of LG), such as
the ones in [21,2], as a future work.

Acknowledgement

The author would like to thank James Cheney for his many helpful remarks and
suggestions, in particular those related to Nominal Logic, the anonymous referees
for their useful and detailed comments, and also David Baelde, Alberto Momigliano,
Michael Norrish for their comments on earlier drafts of the paper.

References

[1] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: the poplmark
challenge. In J. Hurd and T. Melham, editors, Theorem Proving in Higher Order Logics, 18th
International Conference, Lecture Notes in Computer Science, pages 50–65. Springer, 2005.

[2] J. Cheney. Completeness and Herbrand theorems for nominal logic. Preprint. Accepted for publication
at the Journal of Symbolic Logic, July 2005.

[3] J. Cheney. A simpler proof theory for nominal logic. In Proc. FOSSACS’05, volume 3441 of Lecture
Notes in Computer Science. Springer, 2005.

[4] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq. In Second
International Conference on Typed Lambda Calculi and Applications, pages 124–138, April 1995.

[5] M. J. Gabbay and J. Cheney. A sequent calculus for nominal logic. In Proc. 19th IEEE Symposium
on Logic in Computer Science (LICS 2004), pages 139–148, 2004.

14

Tiu

[6] J.-Y. Girard. A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu mailing list,
February 1992.

[7] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic programming. II. Programs
as definitions. Journal of Logic and Computation, 1(5):635–660, October 1991.

[8] M. Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual Symposium on
Logic in Computer Science, pages 204–213. IEEE Computer Society Press, 1999.

[9] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on systems in
higher-order abstract syntax. In Proc. ICALP’01, number 2076 in LNCS, pages 963–978. Springer-
Verlag, 2001.

[10] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction. Theoretical
Computer Science, 232:91–119, 2000.

[11] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a logical framework. ACM
Transactions on Computational Logic, 3(1):80–136, January 2002.

[12] M. Miculan and K. Yemane. A unifying model of variables and names. In Proc. FOSSACS’05, volume
3441 of Lecture Notes in Computer Science, pages 170 – 186. Springer, 2005.

[13] D. Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[14] D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14(4):321–358, 1992.

[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

[16] D. Miller and C. Palamidessi. Foundational aspects of syntax. In P. Degano, R. Gorrieri, A. Marchetti-
Spaccamela, and P. Wegner, editors, ACM Computing Surveys Symposium on Theoretical Computer
Science: A Perspective, volume 31. ACM, September 1999.

[17] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. Comput. Logic, 6(4):749–783,
2005.

[18] A. Momigliano and A. Tiu. Induction and co-induction in sequent calculus. In M. C. Stefano Berardi
and F. Damiani, editors, Post-proceedings of TYPES 2003, number 3085 in LNCS, pages 293 – 308,
January 2003.

[19] T. Nipkow. Functional unification of higher-order patterns. In M. Vardi, editor, Proc. 8th IEEE
Symposium on Logic in Computer Science (LICS 1993), pages 64–74. IEEE, June 1993.

[20] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM-SIGPLAN
Conference on Programming Language Design and Implementation, pages 199–208. ACM Press, June
1988.

[21] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186(2):165–193, 2003.

[22] P. Schroeder-Heister. Cut-elimination in logics with definitional reflection. In D. Pearce and
H. Wansing, editors, Nonclassical Logics and Information Processing, volume 619 of LNCS, pages
146–171. Springer, 1992.

[23] C. Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis, Carnegie Mellon
University, October 2000.

[24] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Pennsylvania
State University, May 2004.

[25] A. Tiu. A logic for reasoning about generic judgments. Extended version, http://users.anu.edu.edu.
au/~tiu/lgext.pdf, 2006.

[26] C. Urban and M. Norrish. A formal treatment of the Barendregt Variable Convention in rule inductions.
In MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN workshop on Mechanized reasoning about
languages with variable binding, pages 25–32, New York, NY, USA, 2005. ACM Press.

[27] C. Urban and C. Tasson. Nominal techniques in Isabelle/HOL. In R. Nieuwenhuis, editor, Proceedings
of the 20th International Conference on Automated Deduction (CADE), volume 3632 of LNCS, pages
38–53. Springer, 2005.

15

LFMTP 2006

Modelling Generic Judgements

Ulrich Schöpp1

TCS, Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstraße 67, D-80538 München, Germany

Abstract

We propose a semantics for the ∇-quantifier of Miller and Tiu. First we consider the case for classical
first-order logic. In this case, the interpretation is close to standard Tarski-semantics and completeness
can be shown using a standard argument. Then we put our semantics into a broader context by giving a
general interpretation of ∇ in categories with binding structure. Since categories with binding structure
also encompass nominal logic, we thus show that both ∇-logic and nominal logic can be modelled using the
same definition of binding. As a special case of the general semantics in categories with binding structure,
we recover Gabbay & Cheney’s translation of FOλ∇ into nominal logic.

Keywords: Higher-Order Abstract Syntax, First-Order Logic, Model Theory, Categorical Logic

Introduction

Miller & Tiu [18] have introduced the logic FOλ∇ for reasoning about specifications
in λ-tree syntax (a version of higher-order abstract syntax). The main new feature
of FOλ∇ is the ∇-quantifier for the treatment of object-level eigenvariables. The
design of FOλ∇ is based on a study of the proof-theory of first-order logic and the
result is an elegant and simple calculus.

In addition to the proof theory for FOλ∇, one may be interested in a model-
theoretic semantics, e.g. [6,17,25]. A simple semantics is useful for explaining the
logic and for understanding the meaning of formulae. It may also help in trans-
ferring technology from other, semantics-based, approaches. Nominal Logic [19],
for example, solves a problem similar to that solved by FOλ∇, but is based on a
semantic approach. A clarification of the semantics of FOλ∇ should help in study-
ing the connection of FOλ∇ to Nominal Logic, in order to answer questions such
as whether the elegant proof theory of FOλ∇ can be used for Nominal Logic, or
whether programming in the style of Fresh O’Caml [23,22] is possible with ∇. In
general, a model-theoretic explanation of the ∇-quantifier should make it amenable

1 Email: schoepp@tcs.ifi.lmu.de

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Schöpp

for inclusion in solutions that are based on the model-theory of first-order logic, an
example being Brotherston’s very general approach to cyclic proofs [2].

In this paper we give a simple and direct semantic interpretation of FOλ∇. We
focus on classical logic with its easy-to-describe Tarski semantics and show that
well-known theory can be adapted to classical FOλ∇. We focus on the classical
case, as it is particularly simple to describe. In the second part of this paper we
give a general framework for modelling FOλ∇, which we hope will help in studying
the relationships of models for FOλ∇, such as those of Gabbay & Cheney [6] and
Miculan & Yemane [17].

To explain the interpretation informally, recall from [18] that FOλ∇ is a first-
order logic over simply-typed λ-calculus. Object-level syntax is represented by
λ-tree types (HOAS). For instance, the type of λ-terms can be represented by a
type Tm with two constants app : Tm ×Tm → Tm and lam : (Tm → Tm) → Tm.
In addition to the usual existential and universal quantification, ∃x : τ. ϕ(x) and
∀x : τ. ϕ(x), FOλ∇ also features the quantification ∇x : Tm. ϕ(x). In this paper
we restrict the ∇-quantifier to range only over a subclass of types such as Tm,
which we call λ-tree types. A similar restriction is imposed in [25]. Our restriction
on ∇ is in line with restrictions imposed on the new-quantifier Nof Gabbay &
Pitts, which typically ranges over names only. For the semantics, we use a standard
interpretation for the quantifiers ∃ and ∀. Our interpretation of ∇x : Tm. ϕ(x)
may be expressed as: ‘for all new variables x : Tm the formula ϕ(x) holds.’ The
quantification ranges only over variables, but not over terms of the form app〈x, y〉 or
lam(f). The meaning of the formula ∇x : Tm. ϕ(x) may equivalently be expressed
as: ‘for some new variable x : Tm the formula ϕ(x) holds.’

To formalise this informal description of the semantics, we have to deal with
a number of issues. First, object-level terms are represented using higher-order
abstract syntax. To model the type Tm, and in particular the constant lam of type
(Tm → Tm) → Tm, adequately, we must find a model in which the interpretation
of the function space (Tm → Tm) contains just α-equivalence classes of object-level
terms. We address this issue using an approach of Hofmann [12], who has shown
that certain presheaves provide a canonical model in which such an interpretation of
Tm is available. A second issue is that to model ∇ we want to explain quantification
over variables only. The internal logic of the presheaf-category, in which the terms
are interpreted, is not suitable for this purpose, since it can express only propositions
that are closed under all substitutions. We address this issue by modelling the terms
in a presheaf category, but taking the logic from a so-called category with binding
structure. This approach of modelling terms in one place and using the logic from
another place is also used by Hofmann [12]. We consider a number of different logics
including Nominal Logic, in which case we recover the interpretation of FOλ∇ in
Nominal Logic proposed by Gabbay & Cheney [6].

In Part I of this paper we spell out directly an interpretation of classical FOλ∇.
The aim of this part is to present the interpretation as simple as possible, without
assuming knowledge of FOλ∇. We show that the semantics is close to the standard
Tarski semantics for classical logic and that the well-known completeness argument
goes through almost unchanged. The point of Part I is to stress that just a little
change to the standard Tarski-semantics is enough for modelling the ∇-quantifier.

17

Schöpp

In Part II, we generalise the development from the first part by giving models
of ∇ in categories with binding structure [20, Chapter 10], which capture a general
definition of binding. Since Nominal Logic also fits into the framework of categories
with binding structure, the development in Part II will therefore show that both ∇
and nominal logic can be modelled using the very same definition of binding.

1 Part I
Classical First-Order Logic with ∇

1.1 Simply typed λ-calculus

We fix the notation for a simply typed λ-calculus.

Types: τ := base types | λ-tree types | 1 | τ × τ | τ → τ

Terms: M := x | c | ∗ | 〈M,M〉 | π1(M) | π2(M) | λx:τ.M | M M

Contexts: Σ := · | Σ, x : τ

Terms are identified up to renaming of bound variables. We assume constants c to
be defined in a signature S, and we assume the choice of S and the primitive types
to be such that the types and terms are countable.

In addition to the normal base types, there is a second kind of base types, which
we call λ-tree types. The intended use of λ-tree types is for higher-order abstract
syntax encodings. We use ι to range over λ-tree types.

Contexts are subject to the usual convention that no variable may be declared
more than once. A context that contains only declarations x : ι of λ-tree types is
called a λ-tree context. We use σ to range over λ-tree contexts.

The typing judgement is defined by the following rules.
(x : τ) ∈ Σ
Σ ` x : τ

(c : τ) ∈ S
Σ ` c : τ Σ ` ∗ : 1

Σ ` M : τ Σ ` N : τ ′

Σ ` 〈M,N〉 : τ × τ ′
Σ ` M : τ × τ ′

Σ ` π1(M) : τ
Σ ` M : τ × τ ′

Σ ` π2(M) : τ ′

Σ, x : τ ` M : τ ′

Σ ` λx:τ.M : τ → τ ′
Σ ` M : τ → τ ′ Σ ` N : τ

Σ ` M N : τ ′

A substitution ρ : Σ → Σ′ is a function that assigns to each variable (x : τ) in Σ′ a
term Σ ` M : τ . We use the following notation for substitutions:

[M1/x1] . . . [Mn/xn] : Σ → (x1 : τ1, . . . , xn : τn)

We use the letters ρ and θ to range over substitutions. An order-preserving renaming
is a substitution of the following form (note the order):

[y1/x1] . . . [yn/xn] : (y1 : τ1, . . . , yn : τn) → (x1 : τ1, . . . , xn : τn)

We use the letters α and β to range over order-preserving renaming.
We write T for the category having contexts as objects and substitutions as

morphisms, and we write L for the sub-category of T consisting of λ-tree contexts
and substitutions between them.

18

Schöpp

The semantic structure corresponding to simply-typed λ-calculus is that of a
Cartesian closed category with finite products. An interpretation of the syntax in
such a category C is given by a functor ‖−‖ : T → C that preserves finite products
and exponents.

In order to model higher-order syntax adequately, we will interpret the types as
presheaves on L, i.e. as functors Lop → Sets. This means that the interpretation ‖τ‖
of a type τ is a mapping that assigns to each λ-tree context σ a set ‖τ‖σ and that
assigns to each substitution θ : σ → σ′ and each element x ∈ ‖τ‖σ′ an element x[θ] ∈
‖τ‖σ in such a way that the equations x[id] = x and x[θ ◦ ρ] = x[θ][ρ] hold. A term
Σ ` M : τ is interpreted as a natural transformation ‖M‖ : ‖Σ‖ → ‖τ‖. This means
that the interpretation of a term is given by, for each σ, a function ‖M‖σ : ‖Σ‖σ →
‖τ‖σ, such that these functions behave well with respect to substitution, that is
(‖M‖σ′(x))[θ] = ‖M‖σ(x[θ]) holds for all θ : σ → σ′ and all x ∈ ‖Σ‖σ′.

For a small category C, we write Ĉ for the category of functors Cop → Sets.
The point of using presheaves is that λ-tree syntax can be modelled adequately,

as has been shown in [12]. Consider for example the λ-tree type Tm with con-
stants app and lam, as described in the introduction. For the interpretation ‖Tm‖
we choose the presheaf ‖Tm‖(σ) = {M | σ ` M : Tm} with the canonical substitu-
tion action. Now, the Cartesian closed structure on L̂ is such that there are isomor-
phisms ‖Tm × Tm‖σ ∼= ‖Tm‖σ × ‖Tm‖σ and ‖Tm → Tm‖σ ∼= ‖Tm‖(σ, x : Tm).
In particular, the interpretation of the function type Tm → Tm at stage σ consists
just of terms with an additional variable x. Therefore, we can interpret the terms
app and lam by the maps ‖Tm‖ × ‖Tm‖ → ‖Tm‖ and ‖Tm → Tm‖ → ‖Tm‖
given by 〈M,N〉 7→ app〈M,N〉 and M 7→ lam(λx:Tm.M) respectively.

The reader unfamiliar with the presheaf semantics may find it instructive to
think of the term model (up to α-equivalence), in which all types are interpreted
by ‖τ‖σ = {M | σ ` M : τ}.

1.2 Classical First-order Logic with ∇

Logical formulae in context Σ can be defined using a base type o and, for each
relation symbol R, a constant R : τ1 → · · · → τn → o, as well as constants for
the logical connectives ¬ : o → o and ∨,∧ : o × o → o and ∀,∃ : (τ → o) → o
and ∇ : (ι → o) → o etc. Although these constants can be interpreted in our
semantics, it is simpler to consider logical formulae as a separate entity with the
evident inductive definition, which is the view we adopt in this section.

We define a sequent calculus for a classical logic with ∇. The sequents have the
form Σ | Γ −→ ∆, in which Σ is a context and Γ and ∆ are (possibly infinite) sets
of formulae in a local signature σ � A. A local signature σ is a λ-tree context and
σ�A in context Σ presupposes that A is a well-formed formula in context Σ, σ. We
identify statements σ � A up to bound renaming of variables in σ. One may think
of σ � A as the formula ∇σ.A. For ·� A we write just A.

The rules of the sequent calculus, which are given in Fig. 1, are a straightforward
extension to classical logic of the rules in [18].

Just as in FOλ∇, the ∇-quantifier commutes with all other logical connectives,
i.e. one can prove equivalences of the form (∇x : ι. A∧B) ⊃⊂ (∇x : ι. A)∧ (∇x : ι. B)

19

Schöpp

General Rules

(Axiom) Γ ∩∆ 6= ∅
Σ | Γ −→ ∆

Σ | Γ −→ B Σ | B, ∆ −→ Φ
(Cut)

Σ | Γ, ∆ −→ Φ

Logical Rules

(⊥-L)
Σ | Γ, σ �⊥ −→ ∆

(>-R)
Σ | Γ −→ ∆, σ �>

Σ | Γ −→ ∆, σ � A
(¬-L)

Σ | Γ, σ � ¬A −→ ∆

Σ | Γ −→ ∆, σ � A
(¬-R)

Σ | Γ, σ � ¬A −→ ∆

Σ | Γ, σ � A, σ � B −→ ∆
(∧-L)

Σ | Γ, σ � A ∧B −→ ∆

Σ | Γ −→ ∆, σ � A Σ | Γ −→ ∆, σ � B
(∧-R)

Σ | Γ −→ ∆, σ � A ∧B

Σ | Γ, σ � A −→ ∆ Σ | Γ, σ � B −→ ∆
(∨-L)

Σ | Γ, σ � A ∨B −→ ∆

Σ | Γ −→ ∆, σ � A, σ � B
(∨-R)

Σ | Γ −→ ∆, σ � A ∨B

Σ | Γ −→ ∆, σ � A Σ | Γ, σ � B −→ ∆
(⊃-L)

Σ | Γ, σ � A ⊃ B −→ ∆

Σ | Γ, σ � A −→ ∆, σ � B
(⊃-R)

Σ | Γ −→ ∆, σ � A ⊃ B

Σ, σ ` M : τ Σ | Γ, σ � A[M/x] −→ ∆
(∀-L)

Σ | Γ, σ � ∀x : τ. A −→ ∆

Σ, h | Γ −→ ∆, σ � A[h σ/x]
(∀-R)

Σ | Γ −→ ∆, σ � ∀x : τ. A

Σ, h | Γ, σ � A[h σ/x] −→ ∆
(∃-L)

Σ | Γ, σ � ∃x : τ. A −→ ∆

Σ, σ ` M : τ Σ | Γ −→ ∆, σ � A[M/x]
(∃-R)

Σ | Γ −→ ∆, σ � ∃x : τ. A

Σ | Γ, (σ, x : ι) � A −→ ∆
(∇-R)

Σ | Γ, σ �∇x : ι. A −→ ∆

Σ | Γ −→ ∆, (σ, x : ι) � A
(∇-R)

Σ | Γ −→ ∆, σ �∇x : ι. A

Fig. 1. Sequent calculus

and (∇x : ι.∃y : τ.A(x, y)) ⊃⊂ (∃h : ι → τ.∇x : ι. A(x, h x)) and likewise for all
the other connectives. This property of ∇ makes it very similar to the new-
quantifier Nof Gabbay & Pitts [7]. The quantifier ∇ differs from N, however,
in the fact that the following equivalences are not provable: ∇x : ι.∇y : ι.A(x, y) ⊃⊂
∇y : ι.∇x : ι.A(x, y) and ∀x : ι. A(x) ⊃ ∇x : ι. A(x) and ∇x : ι. A(x) ⊃ ∃x : ι. A(x).
In Part II we will show that both ∇ and Nare nevertheless instances of the same
structure (Prop. 2.2).

We omit sequent rules for equality and definitions. Although these rules are
important for practical reasoning and are non-trivial from a proof-theoretic per-
spective, for semantic purposes it is simpler to replace them by axiom-schemes.

1.3 Semantic Interpretation

To give a meaning to the logic, we must first interpret the underlying λ-calculus.
To do this, we assume, for each base type τ , an object ‖τ‖ of L̂. We extend this
assignment to an interpretation of the λ-calculus by the following clauses.

‖ι‖σ = y(x : ι) ∼= {M | σ ` M : ι}, where ι is a λ-tree type
‖1‖σ = 1

‖τ × τ ′‖σ = ‖τ‖σ × ‖τ ′‖σ
‖τ → τ ′‖σ = L̂(y(σ)× ‖τ‖, ‖τ ′‖)

Here, y(σ) = L(−, σ) is the Yoneda-embedding. We note that, as a consequence of
the Yoneda Lemma, there is an isomorphism ‖ι → τ‖(σ) ∼= ‖τ‖(σ, x : ι) for all λ-tree
types ι. We extend the interpretation to contexts by use of Cartesian products.

20

Schöpp

Propositions are interpreted as subsets closed under order-preserving renaming
of variables. That is, a proposition A in context Σ is interpreted by, for each σ,
a subset A(σ) ⊆ ‖Σ‖σ, such that, for each σ, each x ∈ A(σ) and each bijective
variable renaming α : σ′ → σ, we have x[α] ∈ A(σ′). Note that propositions must
be closed only under variable-renaming, not under all substitutions.

The interpretation of base-types, constants and relations is recorded in a struc-
ture A. It assigns to each base type τ an object ‖τ‖ in L̂ and to each constant c : τ a
morphism ‖1‖ → ‖τ‖ in L̂. It assigns to each relation symbol R : τ1 → · · · → τn → o
a proposition on x1 : τ1, . . . , xn : τn, as described just above.

The interpretation of formulae is defined by the satisfaction relation σ ρ,Σ A,
in which the stage σ is a λ-tree context, A is a formula in context Σ and ρ is a
Σ-valuation at stage σ defined as follows: a Σ-valuation at stage σ is a function ρ

mapping each variable x : τ in Σ to an element of ‖τ‖(σ). For a term Σ ` t : τ , we
write ρ(t) for the evident element of ‖τ‖(σ).

σ ρ,Σ R(t1, . . . , tn) iff 〈ρ(t1), . . . , ρ(tn)〉 ∈ ‖R‖(σ)
σ ρ,Σ ⊥ never
σ ρ,Σ > always
σ ρ,Σ ¬A iff not σ ρ,Σ A

σ ρ,Σ A ∧B iff σ ρ,Σ A and σ ρ,Σ B

σ ρ,Σ A ∨B iff σ ρ,Σ A or σ ρ,Σ B

σ ρ,Σ A ⊃ B iff σ ρ,Σ A implies σ ρ,Σ B

σ ρ,Σ ∃x : τ.A iff there exists e ∈ ‖τ‖(σ) such that σ ρ[e/x],(Σ, x : τ) A

σ ρ,Σ ∀x : τ.A iff σ ρ[e/x],(Σ, x : τ) A for all e ∈ ‖τ‖(σ)

σ ρ,Σ ∇x : ι. A iff σ, x : ι ρ[x/x], (Σ, x : ι) A

The interpretation of formulae is extended to local signatures by:

σ ρ,Σ (x1 : ι1, . . . , xn : ιn) � A
def⇐⇒ σ ρ,Σ ∇x1 : ι1. . . .∇xn : ιn. A

For a set of formulae Γ, we define σ ρ,Σ Γ as an abbreviation for
∧

G∈Γ(σ ρ,Σ G).
A formula A is valid in A if, for all Σ-valuations ρ at the empty stage, · ρ,Σ A

holds. A sequent Σ | Γ −→ ∆ is valid in A if, for all Σ-valuations ρ at the empty
stage, · ρ,Σ Γ implies the existence of a D ∈ ∆ such that · ρ,Σ D holds. A
structure A is a model of a set of closed formulae Γ, if all G ∈ Γ are valid in the
interpretation relative to A. A formula (respectively sequent) is valid if it is valid
in all structures A.

1.4 Examples

Lambda calculus and its induction principle. As an example of an induction
principle that can be justified in the semantics, we consider the induction principle
for the untyped λ-calculus Tm. The following induction schema is valid for all

21

Schöpp

formulae P .

Σ |
∀t, t′ : Tm. P (t) ∧ P (t′) ⊃ P (app 〈t, t′〉),

∀f : (Tm → Tm). (∀t : Tm. P (t) ⊃ P (f t)) ⊃ P (lam f)
−→ ∀t : Tm. P (t)

That this induction schema is indeed valid follows because the definition of validity
uses valuations at the empty stage, so that the quantification in this schema is over
closed terms only. It is also possible to quantify over terms with free variables in σ

by introducing a local signature σ.

Σ |

σ � ∀t : Tm. isVar(t) ⊃ P (t),

σ � ∀t, t′ : Tm. P (t) ∧ P (t′) ⊃ P (app t t′),

σ � ∀f : (Tm → Tm). (∀t : Tm. P (t) ⊃ P (f t)) ⊃ P (lam f)

−→ σ�∀t : Tm. P (t)

Here, isVar is the predicate expressing that t is a variable. It is interpreted by
‖isVar‖σ = {x | σ ` x : Tm, x is a variable}. Note that the interpretation of isVar
is closed under order-preserving renaming but not under all substitutions.

Finally, if we let

Γσ =

σ � ∀t : Tm. isVar(t) ⊃ P (t),

σ � ∀t, t′ : Tm. P (t) ∧ P (t′) ⊃ P (app t t′),

σ � ∀f : (Tm → Tm). (∇x : Tm. P (f x)) ⊃ P (lam f)

and let Γ be the union of all Γσ for all σ, then the sequent Σ | Γ −→ σ′�∀t : Tm. P (t)
is valid for all σ′.
Standard classical logic. The well-known Tarski-style semantics for classical
logic is a special case of the above definition. Consider the case where there are
no λ-tree types. By the syntactic restrictions, no ∇-quantification is allowed in
this case. Furthermore, L̂ is just the category of sets. Hence, in this case, the
above definition of the satisfaction relation coincides with the well-known standard
interpretation of classical logic.

1.5 Soundness

For soundness, we first show that the ∇-quantifier commutes with all the other
logical connectives. With this property, the proof of soundness is a straightforward
induction on derivations. The soundness proof of Miculan & Yemane [17] is similar.

Lemma 1.1 For any θ : Σ → Σ′, we have σ (θ◦ρ),Σ′ A ⇐⇒ σ ρ,Σ A[θ].

Proof. By induction on the structure of the formula A. The only interesting case
is the base case, which follows because we have (θ ◦ ρ)(t) = ρ(t[θ]). 2

We show that ∇ commutes with the quantifiers, omitting the similar cases for the
other connectives for space-reasons.

22

Schöpp

Lemma 1.2 The following equivalences hold.

σ ρ,Σ ∇x : ι.∃y : τ.A ⇐⇒ σ ρ,Σ ∃h : ι → τ.∇x : ι. A[h x/y]
σ ρ,Σ ∇x : ι.∀y : τ.A ⇐⇒ σ ρ,Σ ∀h : ι → τ.∇x : ι. A[h x/y]

Proof. We consider the case for the existential quantifier. The other case is dual.

σ ρ,Σ ∇x : ι.∃y : τ.A ⇐⇒ σ, x : ι ρ[x/x],Σ, x : ι ∃y : τ.A

⇐⇒ exists e ∈ ‖τ‖(σ, x : ι) with σ, x : ι ρ[x/x,e/y],Σ, x : ι, y : τ A

Consider the substitution [h x/y] : (Σ, h : (ι → τ), x : ι) → (Σ, x : ι, y : τ). By use
of the isomorphism i : ‖τ‖(σ, x : ι) ∼= ‖ι → τ‖σ, we obtain from e the element i(e)
of ‖ι → τ‖σ. The interpretation of application in L̂ is such that we have [h x/y] ◦
ρ[i(e)/h, x/x] = ρ[x/x, e/y]. Using the above lemma, we can continue as follows.

exists e ∈ ‖τ‖(σ, x : ι) with σ, x : ι ρ[x/x,e/y],Σ, x : ι, y : τ A

⇐⇒ exists e ∈ ‖τ‖(σ, x : ι) with σ, x : ι ρ[i(e)/h,x/x],Σ, h : (ι→τ), x : ι A[h x/y]

⇐⇒ exists e′ ∈ ‖ι → τ‖σ with σ, x : ι ρ[e′/h,x/x],Σ, h : (ι→τ), x : ι A[h x/y]

⇐⇒ exists e′ ∈ ‖ι → τ‖σ with σ ρ[e′/h],Σ, h : (ι→τ) ∇x : ι. A[h x/y]

⇐⇒ σ ρ,Σ ∃h : (ι → τ).∇x : ι. A[h x/y]

2

Using this lemma, we obtain by induction on derivations:

Proposition 1.3 (Soundness) Any derivable sequent is valid.

1.6 Completeness

In this section we show that the well-known completeness argument for first-order
logic, see e.g. [5,11], goes through almost unchanged.

Definition 1.4

(i) A theory T is a set of closed formulae such that (· | T −→ A) implies A ∈ T

(ii) A theory T is syntactically consistent if · | T −→ ⊥ is not derivable.

(iii) A theory T is a Henkin Theory if, for each closed formula ∃x : τ.A(x), there
exists a constant · ` c : τ such that (∃x : τ.A(x) ⊃ A(c)) ∈ T holds.

Lemma 1.5 Let T be a syntactically consistent theory for the signature S. There
exists a signature S∗ extending S with countably many new constants and a the-
ory T ∗ for the signature S∗, such that the following hold:

(i) T ∗ is conservative over T ;

(ii) T ∗ is a Henkin theory.

Notice that even though we are extending the signature with closed witnesses only,
by ‖τ‖(σ) ∼= ‖σ → τ‖(·) we can reach all stages of the presheaves. Moreover,

23

Schöpp

suppose we have ∇σ.∃x : τ.A(x). This is equivalent to ∃h : ι → τ.∇σ.A(h σ), so
that we have a witness c making ∇σ.A(c σ) true.

Lemma 1.6 For any syntactically consistent theory T , there exists a maximally
consistent extension T ∗ ⊇ T for which the following hold:

(i) A 6∈ T ∗ iff ¬A ∈ T ∗;

(ii) A ∧B ∈ T ∗ iff A ∈ T ∗ and B ∈ T ∗;

(iii) A ∨B ∈ T ∗ iff A ∈ T ∗ or B ∈ T ∗;

(iv) A ⊃ B ∈ T ∗ iff {¬A,B} ∩ T ∗ 6= ∅;

Lemma 1.7 If T ∗ is a maximally consistent extension of T and T is a Henkin
theory then T ∗ is also a Henkin theory.

Lemma 1.8 Any syntactically consistent set Γ has a model.

Proof. Let T be the theory axiomatised by Γ and extend it to a maximally con-
sistent Henkin theory T ∗. We define a model from T ∗. Base types are interpreted
by ‖τ‖(σ) = {M | σ ` M : τ} and the presheaf action is given by substitution. A
relation R : τ1 → · · · → τn → o is interpreted by

‖R‖(σ) = {〈t1, . . . , tn〉 | ∇σ.R(t1, . . . , tn) ∈ T ∗} (1)

Notice that this presheaf ‖R‖ only has to be closed under variable renaming, not
under all substitutions. That it is indeed closed follows because ∇σ.R(t1, . . . , tn) is
closed under α-conversion.

It remains to show that this definition does indeed define a model of T ∗. It
suffices to show the equivalence · ρ,Σ A ⇐⇒ A[ρ] ∈ T ∗ for all stages σ, all
contexts Σ, all formulae A in context Σ and all Σ-valuations ρ at stage σ. The
assertion follows from this, since, by letting Σ be the empty context, it can be seen
that each formula A ∈ T ∗ is valid in the above model.

The proof of the equivalence goes by induction on the number of logical connec-
tives other than ∇ in a formula A. Since we have the well-known equivalences of
classical logic, we can restrict our attention to the connectives ¬, ∨ and ∃. We pro-
ceed by case-distinction on the outermost connective in A. We show the base-case
and the case for the existential quantifier. The other cases are similar.

• A is ∇σ.R(t1, . . . , tn). Let ρ′ = ρ[σ/σ]. Then we have:

· ρ,Σ ∇σ.R(t1, . . . , tn) ⇐⇒ σ ρ′,(Σ, σ) R(t1, . . . , tn)

⇐⇒ 〈ρ′(t1), . . . , ρ′(tn)〉 ∈ ‖R‖(σ)
⇐⇒ ∇σ.R(t1[ρ′], . . . , tn[ρ′]) ∈ T ∗

⇐⇒ (∇σ.R(t1, . . . , tn))[ρ] ∈ T ∗

• A is ∇σ.B, where B is neither of the form ∇x : ι. C nor R(t1, . . . , tn). We consider
the representative case where B is ∃x : τ.B′. Since the formula A is provably
equivalent to ∃h.∇σ.B[h σ/x], this case is handled by that for ∃ below.

• A is ∃x : τ.B. From left to right, · ρ,Σ ∃x : τ.B gives e ∈ ‖τ‖· with · ρ[e/x],(Σ, x : τ) B.
By induction hypothesis this implies B[ρ[e/x]] ∈ T ∗. Using rule ∃-R, we de-

24

Schöpp

rive · | T ∗ −→ (B[ρ][e/x]) ⊃ ((∃x : τ.B)[ρ]). By maximality of T ∗, we get
(∃x : τ.B)[ρ] ∈ T ∗.

From right to left, suppose (∃x : τ.B)[ρ] ∈ T ∗. Since T ∗ is a Henkin theory,
there exists c ∈ ‖τ‖· such that ((∃x : τ.B)[ρ] ⊃ B[ρ][e/x]) ∈ T ∗. By modus po-
nens and maximality, B[ρ][e/x] ∈ T ∗. By induction hypothesis, · ρ[e/x],(Σ, x : τ) B.
By definition of , we get the required · ρ,Σ ∃x : τ.B.

2

Using this lemma, completeness now follows by a standard argument [5,11].

Proposition 1.9 (Completeness) Any valid sequent · | Γ −→ A is derivable.

2 Part II
Models in Categories with Binding Structure

In Part I of this paper we have given a simple model of classical first-order logic
with ∇ that is very close to classical Tarski-semantics. In the second part we
generalise this result by giving a general notion of model in categories with binding
structure. We describe these models in the language of categorical logic, which we
assume the reader to be familiar with, see e.g. [14] for an introduction.

To simplify the presentation, we assume from now on that there is only a single
λ-tree type Tm. In this case, the objects of L may be identified with finite sets.
We write Tm also for the presheaf in L that interprets the type Tm.

2.1 Categories with Binding Structure

Categories with binding structure [20, Chapter 10] axiomatise binding in a general
way. The definition of binding structure can be seen as a direct formalisation of
the statement: ‘Working with an α-equivalence class is the same as working with a
freshly named instance’. This statement, expressing that two modes of working are
equivalent, is being formalised directly as an equivalence of two categories (Def. 2.1).

Let B be a category with finite limits and consider its internal language, i.e. the
codomain fibration on B. The aim is to explain that constructions with ordinary
judgements in the internal language of B are essentially the same as constructions
with judgements that may make use of a fresh name. To formalise ‘judgements with
a fresh name’ we use the glueing construction, see e.g. [24]. Given an endofunctor U

on B, consider the pullback as in the left diagram below. In this diagram, B→ has as
objects the morphisms of B, and a morphism in B→ from f : A → B to g : C → D

is a pair 〈u : A → C, v : B → D〉 of B-morphisms for which v ◦ f = g ◦ u holds. The
functor cod maps objects to their codomain and morphisms 〈u, v〉 to v. The category
B/U has as objects the B-morphisms of the form f : A → UB. Its morphisms from
f : A → UB to g : C → UD are pairs 〈u : A → C, v : B → D〉 of B-morphisms for
which Uv◦f = g◦u holds. The functor Gl(U) maps f : A → UB to B and 〈u, v〉 to v.
Both cod and Gl(U) are fibrations. There is an canonical functor WU : B→ → B/U

making the triangle on the right below commute. Specifically, WU maps an object

25

Schöpp

f : A → B to Uf : UA → UB.

B/U
_� //

Gl(U)

��

B→

cod

��
B U

// B

B→ WU //

cod !!B
BB

BB
BB

B B/U

Gl(U)}}zz
zz

zz
zz

B

We use the glued fibration Gl(− ⊗ V) for talking about judgements with a fresh
name, where ⊗ is a monoidal structure and V is an object of B. The intuition is
that A ⊗ B consists of pairs whose components do not share names, and V is an
object of names. Then, the functor W(−⊗V) adds a fresh name to a judgement. We
write short WV for it.

With this notation, the definition of a category with binding structure is simple:

Definition 2.1 A category with binding structure is a triple (B,⊗, V) consisting of
a category B with finite limits, a monoidal structure ⊗ on B and an object V of B,
such that the functor W(−⊗V) is an equivalence of fibrations.

Instances of categories with binding structure are given in [20, Chapter 10]. A
prime example is the category of nominal sets (also known as the Schanuel topos,
or FM-Sets) [7], where A⊗B = {〈a, b〉 : A×B | a#b} and V is the set of atoms.

To understand the motivation for Def. 2.1, recall that in categorical logic existen-
tial quantification is modelled by a left adjoint to weakening and, dually, universal
quantification is modelled by a right adjoint to weakening. The functor WV can be
thought of as a non-standard ‘weakening’ functor. Since it is an equivalence, there is
a functor H that is both left and right adjoint to WV . By the view of quantifiers as
adjoints to weakening, H can be viewed as a non-standard quantifier that is both an
existential and a universal quantifier at the same time. It can be shown that H di-
rectly generalises the new-quantifier Nof Gabbay & Pitts. The defining feature of H
is that it preserves all categorical constructions, e.g. H(A ⇒ B) ∼= (HA) ⇒ (HB),
which follows because H is part of an equivalence. This suggests a relation to ∇,
which has the same defining feature, e.g. ∇x. (A ⊃ B) ∼= (∇x.A) ⊃ (∇x.B).

In [21] and [20], the structure of categories with binding structure used as the
basis of a dependent type theory.

Categories with binding structure have rich structure, see [20, Chapter 10]. The
properties we use in this paper are given by the next three propositions from [20].

Proposition 2.2 For each category with binding structure (B,⊗, V), there exists a
functor N: Sub(Γ⊗ V) → Sub(Γ) that is left and right adjoint to WV : Sub(Γ) →
Sub(Γ⊗ V).

In the statement of this proposition we have used the fact that WV , being a right
adjoint, preserves monomorphisms and so restricts to a functor on subobjects.

Proposition 2.3 In each category with binding structure (B,⊗, V), the functor
(−)⊗ V has a right adjoint V ((−), which itself has a further right adjoint. We
write ε⊗ for the co-unit of the adjunction (−)⊗ V a V ((−).

If B is the category of nominal sets then (V (X) is (isomorphic to) the abstraction

26

Schöpp

set [A]X of Gabbay & Pitts. The application map (V (X)⊗ V → X amounts to
the concretion operation x@a. The binding operation, mapping a ∈ A and x ∈ X

to a.x ∈ [A]X with a#(a.x) and (a.x)@a = x, is given by β in the next proposition.

Proposition 2.4 In each category with binding structure (B,⊗, V), there is a nat-
ural transformation β : ((−)⊗V)×A → ((−)× (V (A))⊗V making the following
diagram commute for all objects Γ.

(Γ⊗ V)×A
π2

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX
π1

vvmmmmmmmmmmmmm
βΓ

��
Γ⊗ V (Γ× (V (A))⊗ V

π2⊗id
//

π1⊗id
oo (V (A)⊗ V

ε⊗
// A

This proposition has its origin in the work of Menni [16].

2.2 Modelling ∇ in a Category with Binding Structure

As in Part I, we interpret the λ-calculus in L̂. As outlined in the introduction,
the internal logic of this category is not appropriate for modelling a logic with
the ∇-quantifier. Instead, we use the internal logic of a category with binding
structure B, which we transfer to L̂ by re-indexing along a functor F : L̂ → B, as
in the following change-of-base situation. This idea has been used with different
categories by Hofmann [12] to model the Theory of Contexts [13], see also [3].

E //

p

��

_� Sub(B)

sub
��

L̂
F // B

(2)

We need the subobject logic on B to be strong enough to provide a model for at
least first-order logic. Hence, we assume sub to be a first-order fibration:

Definition 2.5 A fibration q : E → B is a first-order fibration if the following hold.

(i) Each fibre EΓ is a preorder with finite products (>,∧), coproducts (⊥,∨) and
exponents (⊃).

(ii) For each map u : Γ → ∆, the re-indexing functor u∗ has a left adjoint ∃u that
satisfies the Beck-Chevalley and Frobenius conditions.

(iii) For each map u : Γ → ∆, the re-indexing functor u∗ has a right adjoint ∀u that
satisfies the Beck-Chevalley condition.

We refer to e.g. [14] for a definition of the Beck-Chevalley and Frobenius conditions.
To model ∇-logic in the fibration p defined in (2), we use the following structure.

Definition 2.6 A ∇-model consists of a category with binding structure (B,⊗, V)
and a functor F : L̂ → B with the following additional structure.

(i) The subobject fibration on B is a first-order fibration.

27

Schöpp

(ii) The functor F preserves finite limits and has a right-adjoint. We use the
notation δA,B : FA×FB → F (A×B) for the natural isomorphism witnessing
product-preservation of F .

(iii) There are a distinguished morphism η : V → FTm and natural transformations
ı : FA ⊗ FB → FA × FB and θ : (V (FA) → F (Tm ⇒ A) in B for which
the following diagram commutes.

(V (FA)⊗ V
θ⊗id //

Fε⊗

��

F (Tm ⇒ A)⊗ V
fTm⇒A // F ((Tm ⇒ A)× Tm)

Fε
��

FA FA

Here, fTm⇒A is part of the natural transformation f : F (−)⊗V → F ((−)×Tm)

defined by FΓ⊗ V ı // FΓ× V
id×η // FΓ× FTm δ // F (Γ× Tm).

Using η we can map abstract variables in V into the object FTm, which encodes
the object-level syntax. The morphism θ and the diagram relate binding in the
category with binding structure to higher-order abstract syntax.

Next we study the structure of the fibration p in (2). We may assume that
the pullback (2) is constructed such that the fibre EA over an object A in L̂ is
the partial order Sub(FA) of subobjects on FA in B. Given u : Γ → ∆ in L̂, the
re-indexing functor u∗ : E∆ → EΓ for p is given by (Fu)∗ : Sub(F∆) → Sub(FΓ)
for sub. It is well-known that the structure of a first-order fibration is preserved
under re-indexing along a functor F that preserves finite limits and has a right
adjoint [12].

Proposition 2.7 The functor p : E → L̂ is a first-order fibration.

We remark that this proposition can be extended to higher-order logic [12], and
all the concrete models that we consider in this paper are indeed models of higher-
order logic. This means that it is straightforward to extend our results to defining
an interpretation of the type o and to validating higher-order logic.

Definition 2.8 For each object Γ of L̂, define the functor ∇Γ : EΓ×Tm → EΓ to be
the functor Nf∗Γ : Sub(F (Γ× Tm)) → Sub(FΓ).

This definition captures the quantification over some/any fresh variable of type Tm.
Since u∗∇∆ = ∇Γ(u×id)∗ holds for all u : Γ → ∆ in L̂, it is justified to write just ∇.

Now we come to the central property of ∇: it commutes with existential and
universal quantification. This is given by the following generalisation of Lemma 1.2.

Lemma 2.9 For each Γ in L̂, we have ∇∃A = ∃Tm⇒A∇s∗ and ∇∀A = ∀Tm⇒A∇s∗,
where s is the map 〈π1× id , ε ◦ (π2× id)〉 : (Γ× (Tm ⇒ A))×Tm → (Γ×Tm)×A.

We remark that to prove this lemma, we make essential use of the binding map β,
for moving from a quantification over A to one over (Tm ⇒ A).

With the evident translation of formulae in the structure of the first-order fibra-
tion p, we now have the following soundness result for the intuitionistic version of
the sequent calculus. With Lemma 2.9, the proof is a straightforward induction.

28

Schöpp

Proposition 2.10 For any sequent Σ | Γ −→ A provable in the intuitionistic se-
quent calculus, there is a morphism ‖Γ‖ → ‖A‖ in E‖Σ‖.

In the next section we give concrete examples of ∇-models. These examples do, in
fact, all validate classical logic.

2.3 Instances of the Interpretation

Linear Species. The semantics in Part I is an explication of the interpretation in a
∇-model of linear species. The category of linear species [1] is the presheaf category
Ĉop, where C is the category of finite totally ordered sets with order-preserving
bijections. Along the lines of [20, Prop. 10.3.13], Ĉop can be seen to be a category
with binding structure. The object V is the presheaf with V {x} = {x} and V σ = ∅
if |σ| 6= 1. The set (A ⊗ B)σ consists of pairs 〈x ∈ Aσ1, y ∈ Bσ2〉 with σ = σ1, σ2.
Then, the set (V (A)σ is isomorphic to A(σ, x).

To obtain a ∇-model in Ĉop, we take F : L̂ → Ĉop to be the canonical inclusion,
arising because each presheaf in L̂ is all the more a presheaf in Ĉop. For the map
η : V → FTm, we take the inclusion function that maps the variable x ∈ V {x} to
the term x : Tm in (FTm){x} = {t | x : Tm ` t : Tm}. Finally, we define the map
θ : (V (FA) → F (Tm → A) to be the isomorphism arising from (V (FA)σ ∼=
FA(σ, x) in Ĉop and (Tm → A)σ ∼= A(σ, x) in L̂. Because the functor F is so
simple, the conditions of Def. 2.6 are straightforward to verify.

A convenient way of working with the internal language of a topos is the Kripke-
Joyal semantics, see e.g. [15]. When spelled out for the linear species model,
the Kripke-Joyal semantics specialises exactly to the satisfaction relation from
Sect. 1.3 (Theorem VI.7.1 of [15]). We should say, however, that the notion of va-
lidity in Sect. 1.3 differs from the standard notion of validity from categorical logic.
Although Part I can be adapted for the standard notion of validity, we have opted
for the non-standard definition, since it matches better with existing work on FOλ∇.
Species. Very similar to the model in linear species is that of ordinary species of
structures. In this case, B is the presheaf category D̂op, where D is the category of
finite sets and all bijections. This model differs from the model in linear species in
that the local λ-tree contexts are unordered. As a consequence, this model validates
the equivalence ∇x.∇y. B(x, y) ⊃⊂ ∇y.∇x.B(x, y). Just as for linear species, the
interpretation in D̂op can be described in the style of Part I. We expect that the
completeness argument can be adapted to this case.
Nominal Sets. The prototypical instance of a category with binding structure is
the category of nominal sets S, also known as the Schanuel topos, see [20, Chapter
10]. The category S provides an instance of Def. 2.6 if we take F : L̂ → S to be the
composite of the inclusion functor I : L̂ → Îop, where I is the category of finite sets
and injections, with the sheafification functor a : Îop → S with respect to the atomic
topology on Iop. We refer to e.g. [10,15] for more information on this situation.

We use the notation of Gabbay & Pitts [7] to describe the structure of S. Specif-
ically, we take V to be the object of atoms A, and we use the freshness monoidal
structure A⊗B = {〈a ∈ A, b ∈ B〉 | a#b}. In S, the functor L(X) = A+(X×X)+
[A]X has an initial algebra [var , app, lam] : L(T) → T that

29

Schöpp

can be used to represent untyped λ-terms. It can be shown that FTm is iso-
morphic to T , by observing that ITm is already a sheaf. We take η : V → FTm
to be the map V = A var→ T ∼= FTm. We have to omit the definition of θ for space
reasons.

The interpretation of ∇ in S provides a translation of ∇-logic to Nominal Logic,
since the internal logic of S is (a version of) Nominal Logic. The translation is similar
to that described by Gabbay & Cheney in [6]. In particular, the definition of the
functor ∇ in Def. 2.8 is such that ∇x. ϕ(x, y) is interpreted as Nn. ‖ϕ‖(η(n), y),
which agrees with the interpretation in [6]. As observed by Gabbay & Cheney, the
interpretation in S is not complete: it validates ∀x. ϕ ⊃ ∇x. ϕ and ∇x. ϕ ⊃ ∃x. ϕ.

3 Conclusion and Further Work

We have explained a simple sound and complete model for classical FOλ∇, and we
have worked towards identifying the essential structure of ∇ by giving an abstract
model in categories with binding structure. We have shown that ∇ and Ncan be
modelled by the same concept of binding.

In further work, the semantics of intuitionistic FOλ∇ should be studied. A
starting point in this direction is Cheney’s sound and complete translation from
FOλ∇ into intuitionistic nominal logic [4] together with Gabbay’s complete model
for intuitionistic nominal logic [8]. Perhaps the semantics from Part I can also be
generalised directly to a Kripke-style model.

Regarding other related work, we conjecture that the model for FOλ∇ of Micu-
lan & Yemane [17] fits in the general construction of Part II, but the details remain
to be worked out. Finally, a-logic, proposed by Gabbay & Gabbay [9], has an infor-
mal explanation that appears to be quite similar to our explanation of FOλ∇, and
it would be interesting to make precise the relationship.

Acknowledgement

I thank Ian Stark, Marino Miculan, James Cheney and Lennart Beringer for dis-
cussions and the referees for their comments. In particular, Ian suggested to use
presheaves over finite sets with bijections.

References

[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Structures. Cambridge
University Press, 1997.

[2] J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In TABLEAUX’05, volume
3702 of LNCS, pages 78–92. Springer-Verlag, 2005.

[3] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, I. Scagnetto. Consistency of the Theory of Contexts.
In Journal of Functional Programming, 16(3):327–395, 2006

[4] J.R. Cheney. A simpler proof theory for nominal logic. In FOSSACS 2005, number 3441 in LNCS,
pages 379–394. Springer-Verlag, 2005.

[5] D. van Dalen. Logic and Structure. Springer Verlag, Berlin, 1983.

[6] M.J. Gabbay and J.R. Cheney. A sequent calculus for nominal logic. In LICS 2004, pages 139–148.
IEEE Computer Society Press, 2004.

30

Schöpp

[7] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2002.

[8] Murdoch J. Gabbay. Fresh Logic. Pending publication, July 2003.

[9] Murdoch J. Gabbay and Michael J. Gabbay. a-logic. In We Will Show Them: Essays in Honour of
Dov Gabbay, volume 1. College Publications, 2005.

[10] F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and named
sets. In Higher Order and Symbolic Computation, 2006.

[11] H. Herre. Logik. Lecture Notes, University of Leipzig, 1999.

[12] M. Hofmann. Semantical analysis of higher-order abstract syntax. In LICS’99, 1999.

[13] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning about nominal
algebras in HOAS. In ICALP01, 2001.

[14] B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, 1999.

[15] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.
Springer-Verlag, 1992.

[16] M. Menni. About N-quantifiers. Applied Categorical Structures, 11(5):421–445, 2003.

[17] M. Miculan and K. Yemane. A unifying model of variables and names. In FOSSACS’05, volume 3441
of LNCS, pages 170–186. Springer-Verlag, 2005.

[18] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Transactions on Computational
Logic, 6(4):749–783, 2005.

[19] A.M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186:165–193, 2003.

[20] U. Schöpp. Names and Binding in Type Theory. PhD thesis, University of Edinburgh, 2006.

[21] U. Schöpp and I. Stark. A dependent type theory with names and binding. In CSL’04, volume LNCS
of 3210, pages 235–249. Springer-Verlag, 2004.

[22] M.R. Shinwell. The Fresh Approach: functional programming with names and binders. PhD thesis,
University of Cambridge, 2005.

[23] M.R. Shinwell and A.M. Pitts. On a monadic semantics for freshness. Theoretical Computer Science,
342:28–55, 2005.

[24] P. Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.

[25] A. Tiu. A logic for reasoning about generic judgements. In LFMTP’06, 2006.

31

LFMTP 2006

Hierarchical nominal terms and their theory
of rewriting

Murdoch J. Gabbay1

Computer Science Department
Heriot-Watt University, Riccarton

EDINBURGH EH14 4AS
GREAT BRITAIN

murdoch.gabbay@gmail.com

Abstract

Nominal rewriting introduced a novel method of specifying rewriting on syntax-with-binding. We extend
this treatment of rewriting with hierarchy of variables representing increasingly ‘meta-level’ variables, e.g.
in hierarchical nominal term rewriting the meta-level unknowns in a rewrite rule, which represent unknown
terms, can be ‘folded into’ the syntax itself (and rewritten). To the extent that rewriting is a mathematical
meta-framework for logic and computation, and nominal rewriting is a framework with native support for
binders, hierarchical nominal term rewriting is a meta-to-the-omega level framework for logic and compu-
tation with binders.

Keywords: Nominal rewriting, meta-theory of logic and programming, nominal techniques.

1 Introduction

Fix a, b, c, . . . ∈ A a set of atoms (or object-level variable symbols) for the rest
of this paper. The syntax of the λ-calculus is inductively generated by the grammar

s ::= a | ss | λa.s.

Consider the λ-term ‘λa.s’. Here s is a meta-level variable ranging over terms; s is
not itself a λ-term.

Mathematical writing is full of this kind of language. Nominal terms model it
closely. A relevant subset of nominal terms is inductively generated by the following
grammar:

u ::= a | [a]u | f(u, . . . , u) | X
Here X is one of a countably infinite collection of unknowns symbols X, Y, Z,
a represents object-level variable symbols, [a]t represents abstraction, f is a term-
former, for example λ.

1 Thanks to Aad Mathijssen and anonymous referees for help and suggestions. We acknowledge the support
of EPSRC grant number EP/C013573/1.

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Gabbay

X here corresponds to s above. λ[a]X (the term-former λ syntactically acting
on the abstraction of X with a) represents λa.s.

Instantiation of X is direct textual replacement and does not avoid capture by
abstractors, so (λ[a]X)[a/X] is equal to λ[a]a (here [a/X] means ‘instantiate X to
a’). This is exactly what happens when we say ‘take s to be a in λa.s’; we expect
to obtain λa.a and not λa′.a, as a capture-avoiding notion of substitution delivers.

Nominal terms have a well-developed meta-theory [19,5,4]. A table presents the
encoding of mathematical discourse into nominal terms:

Meta-variable φ or s 7−→ Unknown X Binding 7−→ Abstraction

But we used t and u as meta-variables to range over nominal terms!
So we have not eliminated the meta-level, though we have internalised it. Does

a language exist which is a fixed point of this process, in some sense? What if we
iterate by allowing abstraction by unknowns [X]t, then internalise t as a ‘stronger’
unknown, and repeat this again, and again, and infinitely often? Taking the limit
we obtain hierarchical nominal terms, in which infinitely many levels of meta-level
discourse can be represented. What is the mathematics of this new language?

We give a theory of rewriting and a critical pairs result; there turn out to be
unexpected differences with respect to nominal terms, which only have one level
of atoms. We give example rewriting theories of substitution, scope and scope-
extrusion, a λ-calculus, and a treatment of α-equivalence. This is arguably a com-
prehensive range of applications with which we lay groundwork for more advanced
investigations.

2 Hierarchical nominal terms

Fix a set of term-formers f.
For each number i ≥ 1 fix disjoint countably infinite sets of atoms ai, bi, ci,

Say that ai has level i.
The syntax of hierarchical nominal terms is inductively defined by

t ::= ai | X | [ai]t | f(t1, . . . , tn).

We may call ai an ‘atom of level i’. The intuition here is of a ‘hole’ which behaves
like a variable towards weaker atoms, and like a constant symbol towards stronger
atoms. Intuitively, weaker atoms have no access to stronger atoms; they must wait
for those stronger atoms to ‘become’ terms; stronger atoms on the other hand have
full access to weaker atoms, including to their names.

As for the rest of the syntax, [ai]t is an abstraction and f(t1, . . . , tn) is a term-
former applied to some terms. We shall see examples later; for now it suffices to
mention that λ and ∀ are example term-formers, but also + and 2, and λ[a2]c1,
λ[a2]b3, 2 + 2, and a1 + 2, are valid hierarchical nominal terms.

Unknowns X are variable symbols representing unknown terms. They behave
like atoms of level ω. We still need unknowns because something has to represent
unknown terms so that we can define rewrite rules and do rewriting!

33

Gabbay

For the rest of this paper we adhere to a convention that i, j, k vary over nonzero
natural numbers and ai, bi, ci range permutatively over atoms of level i (ai 6= bj

necessarily). That is, ai and bi represent two distinct atoms of the same level. If
we write ai and ck and i = k then by our convention we still assume that ai and
ck are distinct. Typically it will be the case that k ≤ i < j, though not always; we
shall always be clear about what we assume, when we assume it.

Call a pair of an atom and a term ai#t a freshness assertion. The intuition
is ‘ai does not occur in t’. For example we expect a2#a1 to hold, because a1 is ‘far
too weak and puny’ to ever have a hole as big as a2. We do not expect a1#a2 to
hold, necessarily.

Inductively define a notion of entailment on freshness assertions as follows:

k ≤ i
(#diff)

ai#ck

ai#t1 . . . ai#tn
(#f)

ai#f(t1, . . . , tn)

(#abs=)
ai#[ai]t

[ai#bj]
···

ai#t
(#abs<)

ai#[bj]t

(i < j)
ai#t

(#abs≥)
ai#[ck]t

(i ≥ k)

• (#diff): This implements our intuition that a strong atom ‘looks like’ an un-
known to weaker atoms but not conversely (since it may contain them, but not
conversely). Between atoms of the same level, # encodes distinctness.

• (#abs=), (#abs<), and (#abs≥): ai is abstracted in [ai]t. ai is abstracted in
[bj]t when it is abstracted in t — almost! In (#abs<) [ai#bj] denotes discharge
in the natural deduction sense [2]; in sequent style (#abs<) would be

Φ, ai#bj ` ai#t

Φ ` ai#[bj]t

This is a surprising twist not present in normal nominal terms and their fresh-
ness [19,5]. We want to be able to derive ai#[bj]bj always but if j > i this is
not derivable using (#abs<) without the extra freshness assumption, because if
j > i it is not the case in general that ai#bj is derivable using the other rules.
This issue does not arise when proving ai#[ck]u for k ≤ i, because then we can
deduce ai#ck with (#diff). In particular this issue cannot arise if there is only
one level, as is the case for nominal terms. 2

• (#f): An atom is fresh for f(t1, . . . , tn) when it is fresh for all the t1 up to tn.
• There is no rule for deriving ai#X; the only way to know this, is to assume it

beforehand. In this sense X is like an atom of level ω.

Call ai#bj for j > i or ai#X primitive freshness assertions. Call a possibly
infinite set ∆ of freshness assertions a freshness context. Call ∆ primitive when
all the assertions it contains are primitive.

2 This insight derives partly from work with Giulio Manzonetto during his visit to Université Paris VII in

2004, while I supported by LIX and the École Polytechnique.

34

Gabbay

We say a#t is entailed by ∆ and write ∆ ` a#t, when a#t can be derived from
∆ using these rules. If ∆ is empty write ∆ ` a#t just as ` a#t. If ∆′ is another
freshness context write ∆ ` ∆′ when ∆ ` a#t for every a#t ∈ ∆′.

We now develop the primitive notion of substitution for unknowns, and in the
next section we treat unification and finally rewriting.

A substitution σ is a map from unknowns to hierarchical nominal terms. We
extend the action of substitutions to all hierarchical nominal terms by

aiσ = ai Xσ = σ(X) ([ai]t)σ = [ai](tσ) f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Extend the substitution action point-wise to things mentioning terms, such as sets
of terms and freshness assertions, and sets thereof. For example, if ∆ is a freshness
context then ∆σ = {ai#(tσ) | ai#t ∈ ∆}.

The rules above are highly syntax-directed and have a computational content
by which we can calculate for each a#t a minimal (in a suitable sense) set of
assumptions necessary to entail it:

bj#ai,∆ =⇒ ∆ (j > i) ai#bi,∆ =⇒ ∆

ai#f(t1, . . . , tn),∆ =⇒ ai#t1, . . . , ai#tn,∆ ai#[ai]t, ∆ =⇒ ∆

ai#t, ∆ =⇒ ∆′ ∪ S

ai#[bj]t, ∆ =⇒ ∆′ (i<j, S⊆{ai#bj}) ai#[ck]t, ∆ =⇒ ai#t, ∆ (k≤i)

Here we omit singleton set brackets, e.g. writing ai#bj for {ai#bj}. On the left
of the arrow =⇒ comma indicates disjoint set union. On the right of the arrow
comma indicates possibly non-disjoint set union. If S and T are sets then S \ T is
the set of elements in S and not in T .

The following results are easy to prove:

Lemma 2.1 • If ∆ is finite and ∆ =⇒ ∆′ then ∆′ is finite.
• =⇒ is terminating as a rewrite relation on finite freshness contexts.
• =⇒ is confluent on finite freshness contexts (and infinite ones too).

Proof. The first part is easy.
For the second part assign a numerical measure |t| to terms by: |ai| = 1,

f(t1, . . . , tn) = Σ1≤i≤n|ti| + 1, |[ai]t| = |t| + 1. Extend the measure to ∆ by |∆|
is a function on numbers n > 0 given by |∆|(n) is the number of freshness asser-
tions a#t such that |t| = n. For a suitable ordering on such functions (essentially a
lexicographic ordering) it is very easy to show that =⇒ makes the measure strictly
decrease.

For the third part, we must show that if ∆ =⇒ ∆1 and ∆ =⇒ ∆2, then there is
some ∆′ such that ∆1 =⇒ ∆′ and ∆2 =⇒ ∆′. We can prove this by considering all
possible cases for both reductions; this is long but absolutely routine. 2

Write 〈∆〉nf for the unique =⇒ normal form of ∆. It is not hard to check
that 〈∆〉nf is of the form ∆′ ∪ ∆′′ where ∆′ is a primitive freshness context and

35

Gabbay

∆′′ contains only problems of the form ai#ai. If ∆′′ is empty call ∆ consistent,
otherwise call ∆ inconsistent. Intuitively, ∆ is ‘satisfiable’ if and only if it is
consistent. Obviously, ∆ is consistent if and only if 〈∆〉nf is consistent.

Lemma 2.2 Suppose that ∆ is a primitive freshness context and suppose that
{ai#t} is consistent. Then ∆ ` ai#t if and only if ∆ ` 〈ai#t〉nf .

Proof. By an easy induction on the derivation of ∆′ ` ai#t. 2

Lemma 2.3 If ∆ and ∆σ are consistent and ∆`ai#t then 〈∆σ〉nf ` ai#(tσ).

Proof. By induction on the derivation of ∆ ` ai#t. We consider two cases:

• Suppose our derivation of ∆ ` ai#[bj]u concludes with (#abs<). Then we have
a derivation of ∆, ai#bj ` ai#u. Note that ai#(bjσ) equals ai#bj . By inductive
hypothesis 〈∆σ〉nf , ai#bj ` ai#uσ is derivable. The result follows.

• Suppose ∆ ` ai#X holds because ai#X ∈ ∆. By Lemma 2.2 we can deduce that
〈ai#σ(X)〉nf ` ai#σ(X) and by some easy calculations the result follows.

2

3 Unification

An equality assertion is a pair of terms t = u. We say that ‘t = u holds’ when
t and u are syntactically identical, we may abbreviate this just to ‘t = u’, and we
may shorten ‘t = u does not hold’ to t 6= u.

A unification problem is a set of freshness or equality assertions Φ. We define
a noninstantiating reduction relation on these unification problems as follows:

ai#t =⇒ 〈ai#t〉nf ai = ai,Φ =⇒ Φ X = X, Φ =⇒ Φ
[ai]t = [ai]u, Φ =⇒ t = u, Φ

f(t1, . . . , tn) = f(u1, . . . , un),Φ =⇒ t1 = u1, . . . , tn = un,Φ

Here we omit singleton set brackets, e.g. writing t = u for {t = u}. On the left
of the arrow =⇒, comma indicates disjoint set union. On the right of the arrow
comma indicates possibly non-disjoint set union.

Lemma 3.1 The noninstantiating reductions on unification problems are terminat-
ing and confluent.

We may extend the reduction relation with instantiating rules as follows:

X = u, Φ X 7→u=⇒ Φ[X 7→u] t = X, Φ X 7→t=⇒ Φ[X 7→t]

Here we extend the substitution action point-wise to the terms in the freshness or
equality assertions in Φ.

Call the following equality assertions reduced:

• ai = bj .
• X = t and X occurs in t.
• f(t1, . . . , tm) = g(u1, . . . , un) (where f and g are different term-formers).

36

Gabbay

• ai = g(u1, . . . , un), or ai = [bj]u, or ai = [ai]u, or f(t1, . . . , tn) = [bj]u, or sym-
metric versions such as [ai]t = ai.

We may call reduced equality assertions inconsistent.
A solution to a unification problem Φ is a pair (Γ, σ) of a consistent hierarchical

nominal freshness context Γ and a substitution σ such that

• For every t = u ∈ Φ it is the case that tσ = uσ.
• For every ai#t ∈ Φ it is the case that Γ ` ai#tσ.
• For every X it is the case that X does not occur in Xσ (or equivalently, Xσσ =

Xσ).

Lemma 3.2 If Φ =⇒ Φ′ then (Γ, σ) solves Φ if and only if (Γ, σ) solves Φ′.

Lemma 3.3 If Φ X 7→t=⇒ Φ′ then (Γ, σ) solves Φ if and only if (Γ, σ) solves Φ′.

Define a partial ordering on solutions to a hierarchical nominal unification prob-
lem by: (Γ′, σ′) < (Γ, σ) when for some σ′′ it is the case that Γ′ ` Γσ′′ and
Xσ′ = Xσσ′′ for all X.

Say a solution to a problem is principal when it is a least element in the
instantiation ordering amongst solutions to the problem.

Theorem 3.4 〈Φ〉nf solves Φ and is principal.

Proof. By a standard proof-method similar to that used to prove Lemma 36 in [5];
the hierarchy causes no difficulties since we are only acting on unknowns. 2

4 Hierarchical nominal rewrite rules

To ‘do’ rewriting we need to be able to address some position within a term (at
which to do the rewrite!).

4.1 Positions and rewriting
Say a term has a position when it mentions a distinguished unknown, we usually
write it -, precisely once (which identifies the position in the term at which that
unknown occurs). Let L,C, P vary over terms with a position. Write C[s] for
C[- 7→s] and write [-] when the term is its (unique) unknown. Since C is only of
interest inasmuch as - may be substituted for a term, we tend to silently assume
- is fresh, and we may say ‘C is a position’ when we mean ‘C is a term with a
distinguished position’.

For example, [a1](a1, -) is position and (-, -) is not.
We can now get down to defining rewriting and proving some of its properties.

A hierarchical nominal rewrite rule is a triple

∇ ` l −→ r

where ∇ is a primitive freshness context (primitive freshness contexts are necessarily
consistent) and l and r are terms, such that r and ∇ mention only unknowns in l.

If (R) = ∇ ` l −→ r and ∆ ` t is a hierarchical nominal term-in-context, write

∆ ` t
(R)−→ u and say ‘∆ ` t rewrites with (R) to u’ when

37

Gabbay

• There is a position C and substitution σ such that
• ∆ ` ∇σ and
• C[lσ] = t, and C[rσ] = u.

Write −→∗ for the reflexive transitive closure of −→. So ∆ ` t −→∗ u holds when
t = u or when there is some sequence of −→-reductions from t to u. If ∆ is irrelevant
or known we may write ∆ ` t −→∗ u as just t −→∗ u.

Call a possibly infinite set of hierarchical nominal rewrite rules a hierarchical
nominal (term) rewrite system.

Call a hierarchical nominal rewrite system confluent when if ∆ ` t −→∗ u and
∆ ` t −→∗ u′, then v exists such that ∆ ` u −→∗ v and ∆ ` u′ −→∗ v.

Confluence is an important property because it ensures uniqueness of normal
forms, a form of determinism. Local confluence is a weaker property, it is defined
as ‘joinability of peaks’. More precisely:

Call a pair of rewrites of the form ∆ ` t −→ u1 and ∆ ` t −→ u2 a peak. Call
a hierarchical nominal rewrite system locally confluent when if ∆ ` t −→ u1 and
∆ ` t −→ u2, then a v exists such that ∆ ` u1 −→∗ v and ∆ ` u2 −→∗ v. We may
call such a peak joinable.

Suppose:

(i) Ri = ∇i ` li → ri for i = 1, 2 are two rules mentioning disjoint unknowns,

(ii) l1 = L[l′1] such that ∇1,∇2, l
′
1 = l2 has a principal solution (Γ, θ), so that

l′1θ = l2θ and Γ ` ∇iθ for i = 1, 2.

Then call the pair of terms-in-context

Γ ` (r1θ, Lθ[r2θ])

a critical pair. If L = [-] and R1, R2 are copies of the same rule, or if l′1 is an
unknown, then we call the critical pair trivial 3 .

Call a rewrite rule R = ∇ ` l −→ r uniform when if ∆ ` t
R−→ u then

∆, 〈ai#t〉nf ` ai#u for any ai such that 〈ai#t〉nf is consistent.
Checking uniformity looks hard. In fact it is not:

Lemma 4.1 R = ∇ ` l −→ r is uniform if and only if ∇, 〈ai#l〉nf ` ai#r for all
a occurring in the syntax of R, and for one atom a which does not.

Proof. See [5]. 2

Uniformity ensures freshness properties are not destroyed by rewriting:

Lemma 4.2 If R is uniform and ∆ ` t
R−→ u and ∆ ` ai#t, then ∆ ` ai#u.

Proof. Suppose ∆ ` ai#t. By uniformity ∆, 〈ai#t〉nf ` ai#u. By elementary
properties of natural deduction style proofs, ∆ ` ai#u. 2

Theorem 4.3 In a uniform rewrite system, peaks which are instances of trivial
critical pairs are joinable.

3 We assume that unknowns in rules may be renamed. This is standard both in first-order and nominal
rewriting [5].

38

Gabbay

Proof. Suppose two rules Ri = ∇i ` li → ri for i = 1, 2 have a critical pair

Γ ` (r1θ, Lθ[r2θ])

Then l1 = L[l′1], and (Γ, θ) is such that l′1θ = l2θ, and Γ ` ∇1θ,∇2θ. Recall also
that we call the critical pair trivial when L = [-] and R1, R2 are copies of the same
rule, or l′1 is a unknown.

If R1 and R2 are identical, then their rewrites are identical If R1 and R2 differ
and l′1 is a unknown, then the only way we might not be able to apply R1 in Lθ[r2θ]
or its instances, is if some freshness condition on l′1 in ∇1 is unsatisfiable after R2,
which was satisfiable before R2. For uniform rules Lemma 4.2 guarantees that this
cannot happen. 2

5 Rewrites for substitution

Our idea when designing hierarchical nominal rewriting is that it should be able
to represent meta-levels and instantiation. We used atoms to represent variable
symbols. Our first task is therefore to use the framework of rewriting to give some
framework by which atoms may be instantiated to terms.

Introduce a binary term-former sub and sugar sub([a]u, t) to u[a7→t]. Rewrites
for sub are:

(suba) ai[ai 7→X] −→ X

(sub#) ai#Z ` Z[ai 7→X] −→ Z

(subaa) Z[ai 7→ai] −→ Z

(subf) f(Z1, . . . , Zn)[ai 7→X] −→ f(Z1[ai 7→X], . . . , Zn[ai 7→X])
(subabs>) ([ck]Z)[ai 7→X] −→ [ck](Z[ai 7→X]) (i > k)
(subabs≤) bj#X ` ([bj]Z)[ai 7→X] −→ [bj](Z[ai 7→X]) (i ≤ j)

These are axiom-schemes for all i and j and every n, and for every term-former f
(if we like). We could avoid this by enriching syntax of rewrite rules but it does not
seem worth the trouble. We always assume at least an axiom (subsub).

Even without term-formers aside from sub, these rules have very interesting
structure. The following rewrites are derivable, where here j > i and k ≤ i:

Z[ai 7→X][bj 7→Y] −→∗ Z[bj 7→Y][ai 7→X[bj 7→Y]]

ai#Y ` Z[ai 7→X][ck 7→Y] −→∗ Z[ck 7→Y][ai 7→X[ck 7→Y]] (1)

Rewrites for the first case are:

Z[ai 7→X][bj 7→Y]
(subf)

−→∗ sub(([ai]Z)[bj 7→Y], X[bj 7→Y])
(subabs>)

−→∗ sub([ai](Z[bj 7→Y]), X[bj 7→Y]) = Z[bj 7→Y][ai 7→X[bj 7→Y]].

The second case is similar, but we have to use (subabs≤) and to do that we must
prove ai#Y .

39

Gabbay

Thus strong substitution distributes over weak substitution without avoiding
capture whereas weak substitution distributes over strong substitution but only
subject to a capture-avoidance condition bj#X. Thus a2[a1 7→2][a2 7→a1] −→∗ 2
arguably models exactly what we mean when we say ‘let t be a in t with a replaced
by 2’ (where 2 is some term-former; any term would do as well).

Since rewriting is more general than a particular calculus or logic, this example
is meant to exhibit capture-avoiding substitution, and non-capture-avoiding instan-
tiation, as two sides of a single unified theory of sub.

Recall that uniform rewrite rules satisfy Theorem 4.3.

Theorem 5.1 The rewrite rules for sub are all uniform. Nontrivial critical pairs
may be joined. The rules above are locally confluent.

Proof. By Lemma 4.1 we need only check a finite number of properties such as
〈ai#ai[ai 7→X]〉nf ` ai#X. They are all routine. It is detailed but routine to check
the nontrivial critical pairs. The third part follows by standard reasoning using
Theorem 4.3. 2

We believe that our rewrite system is confluent but proving this is nontrivial even
in the two-level case. The problem is (1) above, which is non-directed and makes
terms syntactically larger. These problems have been investigated and overcome
(see [7] and see the brief discussion in Section 7) but investigating them here is
outside the scope of this paper.

6 Scope extrusion of N

Introduce a term-former N. Sugar N[ai]t to Nai.t. Read this as ‘generate a fresh
name ai in t’.

Our framework can express scope-extrusion rules consistent with this intuition,
similar to the behaviour of the π-calculus restriction operator ν [13]. Assume the
term-formers and rewrites of substitution above. Introduce rewrites:

(N#) bj#Z ` Nbj .Z −→ Z

(Nsub) bj#Y ` N(([bj]Z)[ai 7→Y]) −→ N([bj](Z[ai 7→Y])) (j > i)

The effect of (Nsub) is handled by (subabs>) when j ≤ i, so the following rewrite
is always valid:

bj#Y ` N(([bj]Z)[ai 7→Y]) −→ N([bj](Z[ai 7→Y]))

This beautifully implements that the abstracted atom really is private in the scope
of N. There is no rewrite

(NFALSE) bj#Z ` Z[ai 7→ Nbj .Y] −→ Nbj .(Z[ai 7→Y])

because substitution might copy Nbj .Y and each copy should have a private copy of
the fresh atom. For example assume a term-former f and consider scope-extrusion

40

Gabbay

rewrite rules

bj#Y ` f(Nbj .X, Y) −→ Nbj .f(X, Y) bj#X ` f(X, Nbj .Y) −→ Nbj .f(X, Y).

Then in a context with b′j#Z we may first reduce

b′j#Z ` (f(ai, ai))[ai 7→ Nbj .Z]
(subf),(suba)

−→∗ f(Nbj .Z, Nbj .Z)

bj# Nbj .Z
−→ Nbj .f(Z, Nbj .Z)

b′
j#Z
−→ Nbj . Nb′j .f(Z, (b′j bj)Z).

In the presence of (NFALSE) there is a second reduction path:

b′j#Z ` (f(ai, ai))[ai 7→ Nbj .Z]
(NFALSE)−→ Nbj .(f(ai, ai)[ai 7→Z])

(subf),(suba)

−→∗ Nbj .(Z, Z)

This is not desired behaviour so we rule out (NFALSE).

Theorem 6.1 (N#) and (Nsub) are uniform (and so we can apply tools such as
Theorem 4.3 to rewrite systems making use of N).

Proof. We must show that:

bj#Z, 〈ai# Nbj .Z〉nf ` ai#Z bj#Z, 〈bj# Nbj .Z〉nf ` bj#Z

bj#Z, 〈ck#[ai] Nbj .Z〉nf ` ck# Nbj .[ai]Z
bj#Z, 〈ai#[ai] Nbj .Z〉nf ` ai# Nbj .[ai]Z
bj#Z, 〈bj#[ai] Nbj .Z〉nf ` bj# Nbj .[ai]Z.

We consider a few cases, they are very easy:

• 〈ai# Nbj .Z〉nf = {ai#Z}. The result follows.
• bj#Z ∈ {bj#Z}. The result follows.
• 〈cj#[ai] Nbj .Z〉nf = cj#Z. The result follows using the derivation rules for fresh-

ness assertions.
• ` ai# Nbj .[ai]Z and ` bj# Nbj .[ai]Z are easy to derive using the derivation rules

for freshness assertions. The result follows.
2

7 A hierarchical λ-calculus

Assume term-formers sub, N, λ and app. Sugar app(t, u) to tu. Sugar sub([a]u, t)
to u[a7→t]. Rewrites of a hierarchical λ-calculus are givven by the rewrites for sub

41

Gabbay

and N, along with rewrites:

(β) (λai.Z)X −→ Z[ai 7→X] (σ#) ai#Z ` Z[ai 7→X] −→ Z

(σa) ai[ai 7→X] −→ X

(σp) (aiZ1 . . . Zn)[bj 7→Y] −→ (ai[bj 7→Y]) . . . (Zn[bj 7→Y])
(σp′) (aiZ1 . . . Zn)[ai 7→X] −→ (ai[ai 7→X]) . . . (Zn[ai 7→X])
(σσ) Z[ai 7→X][bj 7→Y] −→ Z[bj 7→Y][ai 7→X[bj 7→Y]] (j>i)
(σλ) ai#X ` (λai.Z)[ck 7→X] −→ λai.(Z[ck 7→X]) (k≤i)

(σλ′) (λai.Z)[bj 7→Y] −→ λai.(Z[bj 7→Y]) (j>i)
(σtr) Z[ai 7→ai] −→ Z (Np) nj#Y ` (Nnj .X)Y −→ Nnj .(XY)

(Nλ) λai. Nnj .Z −→ Nnj .λai.Z (N#) nj#Z ` Nnj .Z −→ Z

(Nσ) nj#X ` (Nnj .Z)[ai 7→X] −→ Nnj .(Z[ai 7→X])

This system is discussed in detail elsewhere [6], though we since simplified the
presentation. Note the weaker treatment of substitution compared to Section 5,
e.g. (σp) and (σp′) and a closely connected lack of a rule (σσ′) corresponding to
(1). This is what is needed to avoid (1) while retaining confluence.

Theorem 7.1 Rewrites in the system above are confluent.

Proof. For local confluence it suffices by Theorem 4.3 along with some standard
further calculations, to check that nontrivial critical pairs may be joined. This is
detailed work but essentially routine. For confluence we use Theorem 7.2 below
taking R1 to be the system with just (β), and R2 to be the system with all the
other rules. 2

Call two hierarchical nominal term rewrite systems R1 and R2 when there is no
nontrivial critical pair between a pair of rules one in R1 and the other in R2.

Theorem 7.2 If R1 and R2 are left-linear, confluent, and orthogonal, then their
union is confluent.

The proof is identical to one the literature [18, Thm 5.10.5].
Call a term which does not mention unknowns and which mentions only atoms

of level 1 a value. We briefly indicate how to translate the untyped λ-calculus to
values: a translates to a1 (assume some arbitrary injection of untyped λ-calculus
variable symbols to atoms of level 1), tu translates to t′u′ if t and u translate to
t′ and u′ respectively, and λa.t translates to Nai.([ai]t′) if t translates to t′. This
translation is correct in a natural sense and preserves strong normalisation.

8 α-equivalence

We can use substitution to recover α-equivalence:

(α) bi#X ` ([ai]X) −→ [bi](X[ai 7→bi])
(α′) bi#Z ` Z[ai 7→bi][bi 7→Y] −→ Z[ai 7→Y]

42

Gabbay

Lemma 8.1 In the presence of (α) and the rules for sub except for (subaa), the
rewrite Z[ai 7→ai] −→ Z is valid.

Proof. We use (α) (recall that Z[ai 7→ai] = sub([ai]Z, ai)), (α′), and (sub#). 2

The rewrite [ai]ai

(α),(suba)

−→∗ [bi]bi is valid.
This is all very well for terms not mentioning unknowns or atoms that are too

strong, but if we have [ai]X or [ai]bj for j > i, and want to rename ai to some bi

such that bi#X or bi#bj . Where do we find this guaranteed-fresh bi?
Say ∆ has sufficient freshnesses when for every finite set S of atoms and/or

unknowns, and for every level i, there is an atom ai 6∈ S such that ai#bj ∈ ∆
for every bj ∈ S, and ai#X ∈ ∆ for every X in ∆. It is not hard to prove the
existence of contexts with sufficient freshnesses by an inductive construction. If ∆
has sufficient freshnesses then it is infinite.

This achieves the effect of dynamic creation of names, since any syntax we
rewrite is finite and we obtain the desired effect of ‘always having a fresh atom’,
which we can always rename within its scope using α-equivalence.

In short, if the freshness context is sufficiently rich then (some fragment) of
α-equivalence becomes accessible. The downside is of course that extra rules may
mean extra critical pairs if we want to use Theorem 4.3.

So assuming sufficient freshnesses, how do these axioms behave?
Write (ai bi)ci · t for the term Nci.t[ai 7→ci][bi 7→ai][ci 7→bi].

Lemma 8.2 Suppose we are rewriting in a context with sufficient freshnesses and
suppose ci#X and di#X. Then the following rewrites are valid:

(ai bi)ci ·X −→∗ (ai bi)di
·X (ai bi)ci ·X −→∗ (bi ai)ci ·X

(ai bi)ci · (ai bi)ci ·X −→∗ X.

Proof. We just sketch the first reduction, the others are no harder:

(ai bi)ci ·X
(α)−→ Ndi.(X[ai 7→ci][bi 7→ai][ci 7→ai][ci 7→di])

(α)−→ Ndi.(X[ai 7→ci][bi 7→ai][ci 7→di][di 7→ai][ci 7→di])

−→∗ Ndi.(X[ai 7→di][bi 7→ai][di 7→ai])

2

In view of the lemma above we may write just (ai bi) · t for (ai bi)ci · t. It is now
not hard to prove that:

(ai bi) · (ci di) ·X −→∗ (ci di) · (ai bi) ·X
(ai bi) · (ai di) ·X −→∗ (ai di) · (di bi) ·X (ai ai) ·X −→∗ X.

43

Gabbay

This suffices to verify that we have implemented a permutation action in terms
of atom-for-atom substitution. Furthermore:

(ai bi) · f(t1, . . . , tn) −→∗ f((ai bi) · t1, . . . , (ai bi) · tn)

(ai bi) · ai −→∗ bi ai#X, bi#X ` (ai bi) ·X −→∗ X

(ai bi) · [ai]X −→∗ [bi](ai bi) ·X (ai bi) · [bi]X −→∗ [ai](ai bi) ·X
(ai bi) · [ci]X −→∗ [ci](ai bi) ·X.

These are characteristic properties of the permutation action on nominal terms.
More research on this is needed; in particular a detailed examination of how these
axioms make atoms of different levels interact, might give useful information about
an appropriate built-in permutation action on hierarchical nominal terms.

9 Conclusions and future work

Many systems formalise aspects of meta-level logic and programming. Examples are
first- and higher-order logic [2,20], rewriting [18,12], logical frameworks [1,10,15],
and many more including of course nominal-based systems [19,5,4,17,8]. This work
is distinct from other investigations in several ways:

We investigated a hierarchy of levels modelling increasingly ‘meta’ treatments
of an object-level theory (in the framework of rewriting). Our hierarchy of atoms
can accurately capture our intuitions about how meta-level variables should be
instantiated. For example the rewrite a2[a1 7→2][a2 7→a1] −→∗ 2 discussed in Section 5
is supposed to model what we mean when we say ‘let t be a in t with a replaced by
2’.

As with all nominal-based systems we implement abstraction and freshness as
an explicit and logical property of terms (e.g. recall the logical derivation rules for
freshness from Section 2). But there are twists; the hierarchy demanded changes
in derivation rules for freshness assertions, notably (#abs<). We also omit α-
equivalence as primitive, which simplified the framework at the cost of having a
weaker theory of equality of terms.

Recall that we have given rewrites for substitution, π-calculus style restric-
tion [13], α-equivalence, and a computationally powerful λ-calculus inspired from
previous work [6] for which we exploited the meta-level results about hierarchi-
cal nominal term rewrite systems presented here to indicate a particularly concise
method of proof for confluence. We have sketched some indication of how the infinite
hierarchy can give ‘meta-levels within the rewrite system’.

A previous formalisation of the meta-level with an infinite hierarchy is the Rus-
selian type hierarchy [16]. Since its inception a century ago this has sired higher-
order logic [20], the polymorphic λ-calculus [9], dependent type systems [14], and
higher-order rewriting [12] to name a few. We can see these systems as having a
‘hierarchy of meta-levels’ in the sense that objects of functional type ‘talk about’
the types they are functions on. Yet this forces a particular notion of meta-level be-
cause substitution is capture-avoiding, a syntactic identity (though see [3,11] which
discuss an explicit substitution; it is capture-avoiding though) and freshness is not

44

Gabbay

directly expressed. Our hierarchy of atoms with freshness contexts gives a us a
different slant; it remains to relate nominal techniques to higher-order techniques
in general, and in the specific case that we have a hierarchy of atoms.

Other future work includes a more profound analysis of the NEW calculus of
contexts, a λ-calculus based on the same ideas [6], restoring permutations as built-
in, and further analyses of substitution and α-equivalence. We also see logics based
on hierarchical nominal terms which can internalise aspects of the meta-level using
the hierarchy to avoid inconsistencies. We anticipate many interesting insights into
the mathematical content of naming unknowns and the meta-level.

References

[1] Arnon Avron, Furio A. Honsell, Ian A. Mason, and Robert Pollack. Using typed lambda calculus to
implement formal systems on a machine. Journal of Automated Reasoning, 9(3):309–354, 1992.

[2] J. Barwise. An introduction to first-order logic. In J. Barwise, editor, Handbook of Mathematical Logic,
pages 5–46. North Holland, 1977.

[3] Roel Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven University
of Technology, Eindhoven, 1997.

[4] James Cheney and Christian Urban. Alpha-prolog: A logic programming language with names, binding
and alpha-equivalence. In Bart Demoen and Vladimir Lifschitz, editors, Proceedings of the 20th
International Conference on Logic Programming (ICLP 2004), number 3132 in LNCS, pages 269–283.
Springer-Verlag, September 2004.

[5] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. Pending publication, Information and
Computation, 2005.

[6] Murdoch J. Gabbay. A new calculus of contexts. In Proc. 7th Int. ACM SIGPLAN Conf. on Principles
and Practice of Declarative Programming (PPDP’2005). ACM, 2005.

[7] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding substitution as a nominal algebra.
Submitted ICTAC’06.

[8] Murdoch J. Gabbay and Aad Mathijssen. Nominal algebra. Available online.

[9] J. Roger Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, July 1997.

[10] Huet, Kahn, and Paulin-Mohring. The COQ tutorial, v7.2. LogiCal Project.

[11] Pierre Lescanne. From lambda-sigma to lambda-upsilon a journey through calculi of explicit
substitutions. In POPL ’94: Proc. 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 60–69. ACM Press, 1994.

[12] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192:3–29, 1998.

[13] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Information and
Computation, 100(1):41–77, September 1992.

[14] B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Lof’s Type Theory, volume 7 of
International Series of Monographs on Computer Science. Clarendon Press, Oxford, 1990. Also online
at http://www.cs.chalmers.se/Cs/Research/Logic/book/.

[15] Larry Paulson. The Isabelle reference manual. Cambridge University Computer Laboratory, February
2001.

[16] B. Russell and A. Whitehead. Principia Mathematica. Cambidge University Press, 1910, 1912, 1913.
3 vols.

[17] M.R. Shinwell and A.M. Pitts. Fresh objective caml user manual. Technical Report UCAM-CL-TR-621,
University of Cambridge, February 2005.

[18] Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[19] C. Urban, A. M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theoretical Computer Science,
323(1–3):473–497, 2004.

[20] Johan van Benthem. Higher-order logic. In D.M. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, 2nd Edition, volume 1, pages 189–244. Kluwer, 2001.

45

LFMTP 2006

A Head-to-Head Comparison of
de Bruijn Indices and Names

Stefan Berghofer1 and Christian Urban2

Institut für Informatik
Technische Universität München

Boltzmannstraße 3, 85748 Garching, Germany

Abstract

Often debates about pros and cons of various techniques for formalising lambda-calculi rely on subjective arguments, such
as de Bruijn indices are hard to read for humans or nominal approaches come close to the style of reasoning employed in
informal proofs. In this paper we will compare four formalisations based on de Bruijn indices and on names from the nominal
logic work, thus providing some hard facts about the pros and cons of these two formalisation techniques. We conclude that
the relative merits of the different approaches, as usual, depend on what task one has at hand and which goals one pursues
with a formalisation.

Keywords: Proof assistants, lambda-calculi, de Bruijn indices, nominal logic work, Isabelle/HOL.

1 Introduction

When formalising lambda-calculi in a theorem prover, variable-binding and the associated
notion of alpha-equivalence can cause some difficult problems. To mitigate these problems
several formalisation techniques have been introduced. However, discussions about the
merits of these formalisation techniques seem to be governed mainly by personal preference
than by facts (see [1]). In this paper, we will study four examples and compare two formal-
isation techniques—de Bruijn indices [6] and names from nominal logic work [10,15]—in
order to shed more light on their respective strengths and weaknesses.

In terms of ease and convenience the standard to which techniques for formalising
lambda-calculi have to measure up is, in our opinion, the vast corpus of informal proofs
in the existing literature. Even if one can find several works about lambda-calculi contain-
ing faulty reasoning, on the whole the informal reasoning on “paper” seems to be quite
robust, in particular issues arising from binders and alpha-equivalence seem to cause little
problems and introduce almost no overhead. (The point of formalising lambda-calculi is to
achieve 100% correctness, to provide easy maintenance of proofs and to allow for proofs

1 Email: berghofe@in.tum.de
2 Email: urbanc@in.tum.de

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Berghofer and Urban

about languages where a human reasoner is overwhelmed by the sheer number of cases and
subtleties to be considered [3].)

When engineering a formal proof in a theorem prover, blindly applying automatic proof
tools often leads to a dead end. Usually more successful is the strategy to start with a rough
sketch containing a proof idea, and then to try to translate this idea into actual proof steps
in the theorem prover. This style of formalising proofs is very much encouraged by the
Isar-language of Isabelle [16]. In case of the substitution lemma in the lambda-calculus

Substitution Lemma: If x 6≡ y and x 6∈ FV (L), then

M [x := N][y := L] ≡ M [y := L][x := N [y := L]].

one might start with the following informal proof given by Barendregt [4]:

Proof: By induction on the structure of M .

Case 1: M is a variable.

Case 1.1. M ≡ x. Then both sides equal N [y := L] since x 6≡ y.

Case 1.2. M ≡ y. Then both sides equal L, for x 6∈ FV (L) implies
L[x := . . .] ≡ L.

Case 1.3. M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may assume that
z 6≡ x, y and z is not free in N,L. Then by induction hypothesis

(λz.M1)[x := N][y := L] ≡ λz.(M1[x := N][y := L])

≡ λz.(M1[y := L][x := N [y := L]])

≡ (λz.M1)[y := L][x := N [y := L]].

Case 3: M ≡ M1M2. The statement follows again from the induction hy-
pothesis. 2

In order to translate this informal proof to proof steps in a theorem prover, one has to
decide how to encode lambda-terms and how to define the substitution operation. A naı̈ve
choice would be to represent the lambda-terms as the datatype

datatype lam = Var name | App lam lam | Lam name lam(1)

where the type name can, for example, be strings or natural numbers. Since the term-
constructor Lam has a concrete name, one has to prove the substitution lemma modulo an
explicit notion of alpha-equivalence, that is one has to prove

M [x := N][y := L] ≈α M [y := L][x := N [y := L]] .

47

Berghofer and Urban

For the substitution operation one might follow Church [5] and define

(Var y)[x := N] def=

 N if x ≡ y

Var y otherwise

(App M1 M2)[x := N] def= App (M1[x := N]) (M2[x := N])

(Lam x M1)[x := N] def= Lam x M1

(Lam y M1)[x := N] def= Lam z (M1[y := z][x := N])

(2)

where in the last clause it is assumed that y 6≡ x, and if x 6∈ FV (M1) or y 6∈ FV (N) then
z ≡ y, otherwise z is the first variable in the sequence v0, v1, v2, . . . not in M1 or N .

Unfortunately, with these naı̈ve choices the translation of the informal proof into actual
reasoning steps is a nightmare: Already the simple property stating that L[x := . . .] ≈α L

provided x 6∈ FV (L) is a tour de force. In nearly all reasoning steps involving Lam one
needs the property

if M ≈α M ′ and N ≈α N ′ then M [x := N] ≈α M ′[x := N ′]

in order to manually massage the lambda-terms to a suitable form. The “rough sketches”
Curry gives for this property extend over 10 pages [5, Pages 94–104]. As can be easily
imagined, implementing these sketches results in a rather unpleasant experience with theo-
rem provers—nothing of the sort that makes formalising proofs “addictive in a videogame
kind of way” [8, Page 53]. One reason for the difficulties is the fact that Curry’s substitution
operation is not equivariant—that means is not independent under renamings [10].

The main point of de Bruijn indices and names from the nominal logic work is to allow
for more clever methods of representing binders and to substantially reduce the amount of
effort needed to formalise proofs. In Section 2 we illustrate this in the context of the substi-
tution lemma. Section 3 contains a brief sketch of the formalisations for the narrowing and
transitivity proof of subtyping from the POPLmark-Challenge [3]. Section 4 draws some
conclusions.

2 The Substitution Lemma Formalised

2.1 Version using de Bruijn Indices

De Bruijn indices are sometimes labelled as a hack 3 since they are a very useful imple-
mentation technique, but are often dismissed as being unfit for consumption by a human
reader. Yet six out of the eleven solutions currently submitted for the theorem proving part
of the POPLmark-Challenge are based on some form of de Bruijn indices. This indicates
that de Bruijn indices are quite respectable amongst theorem proving experts. In this sec-
tion, for the benefit of casual users of theorem provers, we want to study in minutiae detail
a formalisation of the substitution lemma using this formalisation technique.

We assume the reader is familiar with the de Bruijn notation of lambda-terms using for
example the datatype:

datatype dB = Var nat | App dB dB | Lam dB

3 personal communication with N. G. de Bruijn

48

Berghofer and Urban

One central notion when working with de Bruijn indices is the lifting operation, written ↑n
k

where n is an offset by which the indices greater or equal than k are incremented; k is the
upper bound of indices that are regarded as locally bound. This operation can be defined
as:

↑n
k (Var i) def=

 Var i if i < k

Var (i + n) otherwise

↑n
k (App M1 M2)

def= App (↑n
k M1) (↑n

k M2)

↑n
k (Lam M1)

def= Lam (↑n
k+1 M1)

The substitution of a term N for a variable with index k, written as [k := N], can then be
defined as follows:

(Var i)[k := N] def=

Var i if i < k

↑k
0 N if i = k

Var (i− 1) if i > k

(App M1 M2)[k := N] def= App (M1[k := N]) (M2[k := N])

(Lam M)[k := N] def= Lam (M [k + 1 := N])

Since the type dB is a completely standard datatype, both definitions can be implemented
by primitive recursion. The substitution lemma then takes the following form:

Substitution Lemma with de Bruijn Indices: For all indices i, j, with
i ≤ j we have that

M [i := N][j := L] = M [j + 1 := L][i := N [j − i := L]] .

Note that one proves an equation, rather than an alpha-equivalence. Because equational
reasoning is usually much better supported by theorem provers or is even a basic notion
in their logics, the de Bruijn indices version avoids the manual massaging of terms with
respect to alpha-equivalence needed in the version with concrete names. This fact alone
already relieves one of much work when formalising this lemma. Notice also that the
condition i ≤ j is necessary, otherwise the equation does not hold in general.

Like the informal proof by Barendregt, the formalised proof proceeds by induction on
the structure of M . Unlike the informal proof, however, the induction hypothesis needs to
be strengthened to quantify over all indices i and j. This strengthening is necessary in the
de Bruijn version in order to get the Lam-case through. With this strengthening the Lam
and App case are completely routine. The non-routine case in the de Bruijn version is the
Var -case where we have to show that

(Var n)[i := N][j := L] = (Var n)[j + 1 := L][i := N [j − i := L]](3)

holds for an arbitrary n. Like in the informal proof, we need to distinguish cases so that we
can apply the definition of substitution. There are several ways to order the cases; below we
have given the cases as they are suggested by the definition of substitution (namely n< i,
n = i and n> i):

• Case n< i: We know by the assumption i ≤ j that also n< j and n< j + 1. Therefore
both sides of (3) are equal to Var n.

49

Berghofer and Urban

• Case n = i: The left-hand side of (3) is therefore equal to (↑i
0 N)[j := L] and because

we know by the assumption i ≤ j that n < j + 1, the right-hand side is equal to
↑i
0 (N [j − i := L]). Now we have to show that both terms are equal. For this we prove

first the lemma

∀i, j. if i ≤ j and j ≤ i + m then ↑n
j (↑m

i N) =↑m+n
i N(4)

which can be proved by induction on N . (The quantification over i and j is necessary in
order to get the Lam-case through.) This lemma helps to prove the next lemma

∀k, j. if k ≤ j then ↑i
k (N [j := L]) = (↑i

k N)[j + i := L](5)

which too can be proved by induction on N . (Again the quantification is crucial to get
the induction through.) We can now instantiate this lemma with k 7→ 0 and j 7→ j − i,
which makes the precondition trivially true and thus we obtain the equation

↑i
0 (N [j − i := L]) = (↑i

0 N)[j − i + i := L] .

The term (↑i
0 N)[j − i + i := L] is equal to (↑i

0 N)[j := L], as we had to show.
However this last step is surprisingly not immediate: it depends on the assumption that
i ≤ j. This is because in theorem provers like Isabelle/HOL and Coq subtraction over
natural numbers is defined so that 0−n = 0 and consequently the equation j− i+ i = j

does not hold in general!

• Case n> i: Since the right-hand side of (3) equals (V ar(n−1))[j := L], we distinguish
further three subcases (namely n− 1 <j, n− 1 = j and n− 1> j):

• Subcase n − 1< j: We therefore know also that n< j + 1 and thus both sides of (3)
are equal to Var (n− 1).

• Subcase n − 1 = j: Taking into account that n > i implies 0 < n, we have also
n = j +1 (remember that because of the “quirk” with subtraction, this is not obvious).
Hence we can calculate that the left-hand side of (3) equals ↑j

0 L and the right-hand
side equals (↑j+1

0 L)[i := N [j − i := L]]. To show that these terms are equal we need
the lemma

∀k, i. if k ≤ i and i < k + (j + 1) then (↑j+1
k L)[i := P] =↑j

k L(6)

proved by induction on L. Instantiating this lemma with k 7→ 0, i 7→ i and using the
assumption i ≤ j, we can infer that the preconditions of this lemma hold and thus can
conclude that (↑j+1

0 L)[i := N [j − i := L]] =↑j
0 L.

• Subcase n− 1> j: We therefore also know that n> j + 1. These inequalities in turn
imply that both sides of (3) are equal to Var (n− 2).

This concludes the proof of the substitution lemma. 2

In this formalisation considerable ingenuity is needed when inventing the lemmas (4), (5)
and (6). Also they are quite “brittle”—in the sense that they seem to go through just in
the form stated. To find them can be a daunting task for an inexperienced user of theo-
rem provers (they are only in little part inspired by the facts needed in the main proof). In
practice however they seem to cause few problems, because they “carry over” from lan-
guage to language, and hence one does not need to “invent the wheel” again for a new
language. Theorem proving experts just copy these lemmas from existing formalisations.
Indeed when submitting his solution of the POPLmark-Challenge, the first author only min-
imally adapted to System F<: the proofs Nipkow [9] gave in Isabelle/HOL for the lambda-
calculus. Nipkow in turn got his collection of lemmas from Rasmussen [12] who worked

50

Berghofer and Urban

with Isabelle/ZF. Nipkow wrote [9, Page 57]:

“ Initially I tried to find and prove these lemmas from scratch but soon decided to
steal them from Rasmussen’s ZF proofs instead, which has obvious advantages:

– I did not have to find this collection of non-obvious lemmas myself. . . ”

Rasmussen seems to have gotten his lemmas from a formalisation by Huet [7] in Coq.
In light of the subtleties and quirks in the proof based on de Bruijn indices, it might

be surprising that one does not end up with a proof script of more than 100 lines of code.
In fact the formalised proof by Nipkow consists of only a few lines—similar numbers for
the lemmas corresponding to (4), (5) and (6). The reason is that one can “optimise” proof
scripts by employing automatic proof tools. Such proof tools can make case distinctions
and apply definitions without manual interference. However such optimisations are done
after one has a formal proof like the one described above. As we mentioned earlier, just
blindly attacking a problem with automatic proof tools leads to dead ends, except in the
most trivial proofs, and the substitution lemma is already too complicated. This is not
surprising considering how much ingenuity one needs to invent the lemmas (4), (5) and (6).
However, once one knows how the proof proceeds, one can guide the automatic proof tools
by providing explicitly the lemmas that lead to a proof. In case of the de Bruijn indices
version of the substitution lemma, however, this kind of post-processing is not without
pitfalls. For example it helps if the lemma is stated the other way around, namely as

M [j + 1 := L][i := N [j − i := L]] = M [i := N][j := L]

otherwise the simplifier can easily loop. As we shall see next, the proof based on names is
much more robust in this respect.

2.2 Version using the Nominal Datatype Package

The nominal datatype package [13,15] eases the reasoning with “named” alpha-equivalent
lambda-terms; one can define them by

nominal datatype lam = Var name | App lam lam | Lam 〈〈name〉〉lam(7)

where name is a type representing atoms [10]—in informal proofs atoms are usually re-
ferred to as variables; 〈〈 . . . 〉〉 indicates that a name is bound in Lam . This definition allows
one to write lambda-terms as Lam a (Var a). Unlike the naı̈ve representation mentioned in
the Introduction, however, the nominal datatype lam stands for alpha-equivalence classes,
that means one has equations such as

Lam x (Var x) = Lam y (Var y) .

When formalising the substitution lemma, this will allow us to reap the benefits of equa-
tional reasoning. However, it raises a small obstacle for the definition of the substitution
operation. Using the infrastructure of the nominal datatype package one can define this

51

Berghofer and Urban

operation as

(Var y)[x := N] def=

 N if x ≡ y

Var y otherwise

(App M1 M2)[x := N] def= App (M1[x := N]) (M2[x := N])

(Lam y M1)[x := N] def= Lam y (M1[x := N]) provided y # (x,N)

where the side-constraint y # (x,N) means that y 6= x and y not free in N . However to
ensure that one has indeed defined a function, one needs to verify some properties of the
clauses by which substitution is defined (see [11,13] for the details). This requires some
small proofs that have no counterpart in the informal proof and in the formalisation based
on de Bruijn indices. This need of verifying some properties arises whenever a function is
defined by recursion over the structure of alpha-equated lambda-terms.

With the definition of the nominal datatype lam comes the following strong structural
induction principle [14,15]:

∀c x. P (Var x) c

∀cM1 M2. (∀d. P M1 d) ∧ (∀d. P M2 d) ⇒ P (App M1 M2) c

∀c z M. z # c ∧ (∀d. P M d) ⇒ P (Lam z M) c

P M c

This induction principle states that if one wants to establish a property P for all lambda-
terms M , then, as expected, one has to prove it for the constructors Var , App and Lam . It
is called strong induction principle because it has Barendregt’s variable convention already
built in. Barendregt assumes in his informal proof that in the lambda-case the binder z is
not equal to x and y, and is not free in N and L. Using the strong induction principle, we
will be able to mimic the variable convention by instantiating c, we call this the context of
the induction, with c 7→ (x, y, N,L). 4 When it then comes to establishing the Lam-case,
we can assume that the binder z is fresh for (x, y, N,L), that means is not equal to x and
y, and is not free in N and L. As a result, the induction in the substitution lemma will go
through smoothly, just like in Barendregt’s informal proof. If the nominal datatype package
had not provided such strong induction principles, reasoning would be quite inconvenient:
one would have to rename binders so that, for example, substitutions can be moved under
lambdas.

Despite the excellent notes from Barendregt conveying very well the proof idea, for the
formalisation of the substitution lemma we need to supply some details that are left out in
his notes. For example in Case 1.2 the details are left out for how to prove the property of

x # L implies that L[x := P] = L .(8)

4 An aspect we do not dwell on here is the fact that the induction context must always be finitely supported, i.e. mentions
only finitely many free names, see [10,15].

52

Berghofer and Urban

where x # L stands for x 6∈ FV (L). This fact can be proved by an induction over L using
the strong induction principle. For this we make the following instantiations:

P 7→ λL.λ(x, P). x # L ⇒ L[x := P] = L

M 7→ L

c 7→ (x, P)

As a result, the variable and application case are completely routine. In the lambda-case
we have to show that x # (Lam z L1) implies (Lam z L1)[x := P] = (Lam z L1) with
the assumption that z # (x, P) and the induction hypothesis

∀x, P. x # L1 ⇒ L1[x := P] = L1 .

From the assumption that z is not equal to x and not free in P , we can infer from x #
(Lam z L1) that x # L1 holds and by applying the definition of substitution that (Lam z L1)[x :=
P] = Lam z (L1[x := P]) holds. Now we just need to apply the induction hypothesis and
are done.

Although not obvious from first glance, also in Case 2, in the last step of the calculation
where the substitution is pulled back from under the binder λz, there are some details
missing from Barendregt’s informal proof. In order to get from Lam z (M1[y := L][x :=
N [y := L]]) to (Lam z M1)[y := L][x := N [y := L]], we need the property that:

if z # N and z # L then z # (N [y := L]) .(9)

where the preconditions are given by his use of the variable convention. This property,
too, can be easily proved by strong induction over the structure of N . In this induction
we instantiate the induction context with c 7→ (z, y, L), because then we can in the Lam-
case, say instantiated as (Lam x N1), move the substitution under the binder x and also
infer from the assumption z # (Lam x N1) that z is also fresh for N1 (this reasoning step
depends on z 6= x). Consequently we can apply the induction hypothesis and infer that
z # (N1[y := L]) holds. Again since z 6= x, also z # (Lam x N1[y := L]) holds and we
are done.

The formalisation of the substitution lemma

Substitution Lemma with Names: If x 6= y and x # L then

M [x := N][y := L] = M [y := L][x := N [y := L]] .

now follows almost to the word Barendregt’s informal proof. The variable-case, say with
the instantiation (Var z), proceeds by a case-analysis with z = x, z 6= x ∧ z = y and
z 6= x∧ z 6= y. The calculations involved are routine using in the second case the property
in (8). The application case does not need any special attention. The lambda-case, too,
is relatively easy: by instantiating the induction context with c 7→ (x, y, N,L), the strong
induction principle allows us to assume that the binder is not equal to x and y, and is not
free in Nand L. Consequently we can reason like Barendregt:

(Lam z M1)[x := N][y := L] = Lam z (M1[x := N][y := L])

= Lam z (M1[y := L][x := N [y := L]])

= (Lam z M1)[y := L][x := N [y := L]]

where, as mentioned earlier, in the last equation we make use of the property in (9).

53

Berghofer and Urban

The resulting formalised proof is quite simple: one only has to manually set up the
induction and supply the properties (8) and (9) to the automatic proving tools for which it
is a straightforward task to complete the proof (similar for the two side lemmas). We take
this as an indicator that the formalised proof using names is “simpler” than the one based
on de Bruijn indices.

3 Transitivity and Narrowing for Subtyping

Another proof where we can compare names and de Bruijn indices is the transitivity and
narrowing proof for the subtyping relation described in the POPLmark-Challenge. This
proof is quite tricky involving a simultaneous outer induction over a type and two inner
inductions on the definition of the subtyping relation. The “rough notes” from which we
can start the formalisations are given in [3] by the authors of this challenge.

3.1 Version using the Nominal Datatype Package

Using the nominal datatype package the types can be defined as

nominal datatype ty = Tvar name | Top | Fun ty ty | All ty 〈〈name〉〉ty

with typing contexts being lists of pairs consisting of a name and a type. A type T is well-
formed w.r.t. a typing context Γ, written Γ ` T , provided (supp T) ⊆ (dom Γ)—that
means all free names of T , i.e. its support [10], must be included in the domain of the
typing context Γ. A valid typing context, written valid Γ, is defined inductively by:

valid []
valid Γ X # (dom Γ) Γ ` T

valid ((X, T) ::Γ)

The subtyping relation, written Γ ` S <: Q, can then be inductively defined as follows:

valid Γ Γ ` S
Γ ` S <: Top

Top
valid Γ X ∈ (dom Γ)
Γ ` Tvar X <: Tvar X

Refl

(X, S) ∈ Γ Γ ` S <: T

Γ ` Tvar X <: T
Trans

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` Fun S1 S2 <: Fun T1 T2
Fun

Γ ` T1 <: S1 X # Γ (X, T1) ::Γ ` S2 <: T2

Γ ` All S1 X S2 <: All T1 X T2
All

These definitions are quite close to the “rough notes” from the POPLmark-Challenge; the
only difference is that we had to ensure validity of the typing contexts in the leaves and
to explicitly require that the binder X is fresh for Γ in the All -rule. The transitivity and
narrowing lemma can then be stated as

Transitivity and Narrowing with Names: For all Γ, S, T , ∆, X , P , M , N :

• Γ ` S <: Q and Γ ` Q <: T implies Γ ` S <: T , and

• ∆@(X, Q)@Γ ` M <: N and Γ ` P <: Q

implies ∆@(X, P)@Γ ` M <: N .

54

Berghofer and Urban

About the proof of this lemma the POPLmark-paper states:

“ The two parts are proved simultaneously, by induction on the size of Q. The
argument for part (2) assumes that part (1) has been established already for the
Q in question; part (1) uses part (2) only for strictly smaller Q.”

The main point we want to make here is that the formal proof using names proceeds exactly
as stated, while as we shall see later this is not the case for the de Bruijn indices version.
The main inconvenience with the named approach is, however, that the proof then proceeds
by two inner inductions on the definition of the subtyping relation and in order to follow
the reasoning on “paper” one has to provide manually a strong version of the induction
principle for subtyping. This strong induction principle has the form (showing only the
premise for the All -inference rule):

. . .

∀Γ X S1 S2 T1 T2 c. X # (c,Γ, T1, S1) ∧ Γ ` T1 <: S1 ∧
(∀d. P Γ T1 S1 d) ∧ Γ ` S2 <: T2 ∧ (∀d. P Γ S2 T2 d)
⇒ P Γ (All S1 X S2) (All T1 X T2) c

Γ ` S <: T ⇒ P Γ S T c

where we can assume that X # (c,Γ, S1, T1). These freshness condition are crucial to get
the induction through without the need of renaming binders. Unlike the strong structural
induction principle that comes with a nominal datatype definition for “free”, establishing
the strong induction principle for subtyping is quite a task—something one does not want
to burden up to the users of the nominal package. But so far, unfortunately, it is entirely
burdened onto them. (This might change however in future versions of the nominal datatype
package.)

3.2 Version using de Bruijn Indices

Two out of the three solution currently submitted that solve all theorem proving parts of
the POPLmark-Challenge use de Bruijn indices. 5 The solution of the first author defines
types as:

datatype dbT = Tvar nat | Top | Fun dbT dbT | All dbT dbT

with the lifting operation given by:

↑n
k (Tvar i) def=

 Tvar i if i < k

Tvar (i + n) otherwise

↑n
k Top def= Top

↑n
k (Fun S T) def= Fun (↑n

k S)(↑n
k T)

↑n
k (All S T) def= All (↑n

k S) (↑n
k+1 T)

Note that the lifting operation preserves the size of a dbT -type. This often allows one
to establish facts involving lifting using inductions over the size, if an induction over the
structure is not strong enough.

5 The third uses higher-order abstract syntax in Twelf.

55

Berghofer and Urban

Typing contexts are lists of types and the predicate for valid contexts is defined like in
the named variant, except that we do not need freshness constraints when working with de
Bruijn indices. One way for defining when a type is well-formed is by using the function

frees j (Tvar i) def=

 ∅ if i < j

{i− j} otherwise

frees j (Top) def= ∅

frees j (Fun S T) def= (frees j S) ∪ (frees j T)

frees j (All S T) def= (frees j S) ∪ (frees (j + 1) T)

and then define the well-formedness judgement Γ ` T as the proposition (∀i ∈ (frees 0 T). i <

|Γ|) where |Γ| stands for the length of the list Γ. The look-up function for typing context is
written Γ(i) and returns the type on the ith place in the list Γ. The inductive definition of
the subtyping relation with de Bruijn indices takes then the following form:

valid Γ Γ ` S
Γ ` S <: Top

Top valid Γ Γ ` Tvar i
Γ ` Tvar i <: Tvar i

Tvar

Γ(i) = S Γ ` (↑i+1
0 S) <: T

Γ ` Tvar i <: T
Trans

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` Fun S1 S2 <: Fun T1 T2
Fun

Γ ` T1 <: S1 T1 ::Γ ` S2 <: T2

Γ ` All S1 S2 <: All T1 T2
All

Whether these definitions require much ingenuity w.r.t. the informal rules given in the
POPLmark-paper is a matter of taste, but an undebatable fact is that the proof for the tran-
sitivity and narrowing lemma formulated with de Bruijn indices as follows

Transitivity and Narrowing with de Bruijn Indices: For all Γ, S, T , ∆ P , M ,
N :

• Γ ` S <: Q and Γ ` Q <: T implies Γ ` S <: T , and

• ∆@Q@Γ ` M <: N and Γ ` P <: Q

implies ∆@P@Γ ` M <: N .

does not proceed as stated in the informal proof of the POPLmark-Challenge. Once one
has set up the (outer) simultaneous induction over the size of Q, the inner induction for
transitivity needs to be strengthened to apply not just for Q, but also for all types that have
the same size as Q. That means the inner induction does not establish the property

∀Γ S T. Γ ` S <: Q ∧ Γ ` Q <: T ⇒ Γ ` S <: T

rather the strengthened property

∀Q′ Γ S T. (size Q) = (size Q′) ∧ Γ ` S <: Q′ ∧ Γ ` Q′ <: T

⇒ Γ ` S <: T

This strengthened property is needed in the narrowing part of the lemma where in the
Trans-case one needs transitivity not for Q, but for a lifted version of Q, where however
the lifted version has the same size as Q. The interesting details in this case are as follows:

56

Berghofer and Urban

the statement to be proved is

∀∆ Γ M N P. ∆@Q@Γ ` M <: N ⇒ Γ ` P <: Q ⇒ ∆@P@Γ ` M <: N

and its proof proceeds by an (inner) induction over the left-most subtyping relation. With
the induction infrastructure [17] of Isabelle, we can implement this induction as stated
above, without having to introduce ”seemingly pointless equalities” 6 that handle syntactic
constraints, such as the typing-context being of the form ∆@Q@Γ. By induction hypoth-
esis we know that ∆@P@Γ ` (↑i+1

0 S) <: T and (∆@Q@Γ)(i) = S, and we must show
that ∆@P@Γ ` Tvar i <: T holds. The non-straightforward subcase is where i = |∆|,
because then (∆@P@Γ)(i) = P and we can infer that S equals Q. We have Γ ` P <: Q

by assumption and hence ∆@P@Γ ` (↑i+1
0 P) <: (↑i+1

0 Q) by weakening. Since S = Q

we can now use the transitivity property to infer that ∆@P@Γ ` (↑i+1
0 P) <: T . As can

be seen, one needs transitivity for (↑i+1
0 Q) rather than for Q as stipulated in the informal

proof. We then can conclude by applying the Trans-inference rule.

4 Conclusion

We have studied formalisations based on de Bruijn indices and on names from the nominal
logic work. The former approach is already well-tested featuring in many formalisations,
while the latter is still under heavy development in the nominal datatype package. Extrapo-
lating an amazing amount from the submissions to the POPLmark-Challenge, it seems that
all problems occurring in programming meta-theory can, in principle, be solved by theorem
proving experts using de Bruijn indices. Further, the reasoning infrastructure needed for de
Bruijn indices (mainly arithmetic over natural numbers) has been part of theorem provers,
for example Coq and Isabelle/HOL, for a long time. In contrast, the nominal datatype pack-
age has been implemented in Isabelle/HOL, only. Except some preliminary work reported
in [2], there is little work about replicating our results in non-HOL-based theorem provers.

Another advantage of de Bruijn indices is that they do not introduce any classical rea-
soning into the formalisation process. In contrast, the nominal datatype package employs
in several places classical reasoning principles. It is currently unknown whether a construc-
tive variant of the nominal datatype package that offers the same convenience is attainable.
Connected with the aspect of constructivity is the infrastructure to extract programs from
proofs, which exists in Isabelle for the proofs with de Bruijn indices, but does not exist at
all for proofs using the nominal datatype package.

The biggest disadvantage we see with using the nominal datatype package is the amount
of infrastructure that needs to be implemented. So far, this package supports only single
binders (although iteration is possible and they can occur anywhere in a term-constructor).
One can imagine situations where this is not general enough or requires some unpleas-
ant encodings. Unfortunately, if more general binding structures need to be supported, a
considerable body of code must be adapted.

One big advantage of the nominal datatype package, we feel, is the relatively small
“gap” between an informal proof on “paper” and an actual proof in a theorem prover. An
important point we would like to highlight with this paper is that in the context of theorem
proving the fact about de Bruijn indices being hard to read for humans is not the worst
aspect: the biggest source of grief for us is the substantial amount of ingenuity needed

6 See solutions of the POPLmark-challenge by Chlipala and by Stump in Coq.

57

Berghofer and Urban

to translate informal proofs to versions using de Bruijn indices. Since we are also the
kind of theorem prover users who copied from existing formalisations when doing our
own formalisations with de Bruijn indices, we were quite surprised how much reasoning
is involved, if one unravels all the steps needed for the substitution lemma. This is an
important aspect if one is in the business of educating students about formal proofs in the
lambda-calculus: it is not difficult to imagine that a student will give up with great disgust,
if one tries to explain the subtleties of de Bruijn indices in the substitution lemma. We
hope therefore that the nominal datatype package will make broad inroads in this area.
The slickness with which difficult proofs involving Barendregt’s variable convention can
be formalised using the nominal datatype package is something we cannot live without
anymore.

The conclusion we draw from the comparisons is that the decision about favouring de
Bruijn indices or names from the nominal logic work very much depends on what task
one has at hand. It would be quite desirable to know how the other main formalisation
technique—higher order abstract syntax—fares. But alas, we are not (yet) experts in Twelf,
where this technique has been extensively employed.

Acknowledgement

The first author received funding via the BMBF project Verisoft. The second author is
supported by an Emmy-Noether fellowship from the German Research Council.

References
[1] POPLmark maling list, http://lists.seas.upenn.edu/pipermail/poplmark/.

[2] Aydemir, B., A. Bohannon and S. Weirich, Nominal Reasoning Techniques in Coq (Work in Progress), in: Proc. of the
International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP), To appear in
Electronic Notes in Theoretical Computer Science, 2006, pp. 68–75.

[3] Aydemir, B. E., A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich
and S. Zdancewic, Mechanized Metatheory for the Masses: The PoplMark Challenge, in: Proc. of the 18th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs), LNCS 3603, 2005, pp. 50–65.

[4] Barendregt, H., “The Lambda Calculus: Its Syntax and Semantics,” Studies in Logic and the Foundations of
Mathematics 103, North-Holland, 1981.

[5] Curry, H. B. and R. Feys, “Combinatory Logic Vol. I,” Studies in Logic and the Foundations of Mathematics, North-
Holland, 1958.

[6] de Bruijn, N. G., Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation,
with Application to the Church-Rosser Theorem, Indagationes Math. 34 (1972), pp. 381–392.

[7] Huet, G., Residual Theory in Lambda-Calculus: A Formal Development, Journal of Functional Programming 4 (1994),
pp. 371–394.

[8] Leroy, X., Formal Certification of a Compiler Back-End, or: Programming a Compiler with a Proof Assistant, in:
Proc. of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2006), pp.
42–54.

[9] Nipkow, T., More Church-Rosser Proofs (in Isabelle/HOL), Journal of Automated Reasoning 26 (2001), pp. 51–66.

[10] Pitts, A. M., Nominal Logic, A First Order Theory of Names and Binding, Information and Computation 186 (2003),
pp. 165–193.

[11] Pitts, A. M., Alpha-Structural Recursion and Induction (Extended Abstract), in: Proc. of the 18th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs), LNCS 3603, 2005, pp. 17–34.

[12] Rasmussen, O., The Church-Rosser Theorem in Isabelle: A Proof Porting Experiment, Technical Report 364, Cambridge
University (1995).

58

Berghofer and Urban

[13] Urban, C. and S. Berghofer, A Recursion Combinator for Nominal Datatypes Implemented in Isabelle/HOL, in: Proc. of
the 3rd International Joint Conference on Automated Reasoning (IJCAR), LNAI 4130, 2006, pp. 498–512.

[14] Urban, C. and M. Norrish, A Formal Treatment of the Barendregt Variable Convention in Rule Inductions, in: Proc. of
the 3rd International ACM Workshop on Mechanized Reasoning about Languages with Variable Binding and Names
(MERLIN), 2005, pp. 25–32.

[15] Urban, C. and C. Tasson, Nominal Techniques in Isabelle/HOL, in: Proc. of the 20th International Conference on
Automated Deduction (CADE), LNCS 3632, 2005, pp. 38–53.

[16] Wenzel, M., Isar — A Generic Interpretative Approach to Readable Formal Proof Documents, in: Proc. of the 12th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), number 1690 in LNCS, 1999, pp.
167–184.

[17] Wenzel, M., Structured Induction Proofs in Isabelle/Isar, in: Proc. of the 5th International Conference on Mathematical
Knowledge Management (MKM), LNAI 4108, 2006, p. ??

59

LFMTP 2006

Nominal Reasoning Techniques in Coq
(Work in Progress)

Brian Aydemir Aaron Bohannon Stephanie Weirich

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, USA

Abstract

We explore an axiomatized nominal approach to variable binding in Coq, using an untyped lambda-calculus
as our test case. In our nominal approach, alpha-equality of lambda terms coincides with Coq’s built-
in equality. Our axiomatization includes a nominal induction principle and functions for calculating free
variables and substitution. These axioms are collected in a module signature and proved sound using locally
nameless terms as the underlying representation. Our experience so far suggests that it is feasible to work
from such axiomatized theories in Coq and that the nominal style of variable binding corresponds closely
with paper proofs. We are currently working on proving the soundness of a primitive recursion combinator
and developing a method of generating these axioms and their proof of soundness from a grammar describing
the syntax of terms and binding.

Keywords: Coq, nominal reasoning techniques, variable binding.

1 Introduction

We present here work on implementing within the Coq proof assistant [2] a “nomi-
nal” approach to formalizing syntax with variable binding. This approach is charac-
terized by a close correspondence between common practice on paper and reasoning
within Coq. For example:

(i) All occurrences of object-level variables of a given sort (binding, bound, and
free) are represented uniformly using atoms, an infinite set of objects with
decidable equality.

(ii) Alpha-equivalence of object-level terms is represented by Coq’s built-in equal-
ity, not a separately defined equivalence relation.

Both of these points reflect common practice with pencil and paper formalizations.
More generally, our nominal approach is designed to eliminate the need to reason

1 Email: baydemir@cis.upenn.edu
2 Email: bohannon@cis.upenn.edu
3 Email: sweirich@cis.upenn.edu

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Aydemir, Bohannon, and Weirich

about any terms that do not actually appear in paper proofs, e.g., pre-terms, shifted
terms, and exotic terms.

Our ultimate goal is to provide a system that takes as input a specification of a
language and produces as output a Coq signature providing the term constructors
for this language and axioms about their behavior, including a natural induction
principle. The system should also generate a module implementing the signature,
thereby proving the signature’s soundness. The signature will not define object-level
terms as an inductive datatype in Coq. Nevertheless, we believe that the axioms in
the signature can be made easily usable by generating a specialized library of tactics
and lemmas. Our framework also includes a library containing concepts, such as
atoms and swapping (introduced in Section 2), common to all languages.

The primary contributions of this paper are to demonstrate that a nominal ap-
proach to variable binding is indeed possible in Coq and to highlight the issues
that arise when implementing such an approach in a dependently typed type the-
ory. While we do not yet have the system described above, we have assessed the
theoretical and practical viability of this approach in the particular instance of an
untyped lambda calculus, while bearing in mind the issues that arise in more com-
plex languages. We feel that our experience with this specific case will allow us to
build a complete system as described above.

The rest of this paper is structured as follows. We first describe the foundational
components of our approach in Section 2 and the design and implementation of our
signature for an untyped lambda calculus in Section 3. We then give some empirical
observations about using this signature in Section 4. We discuss related work in
Section 5 and conclude in Section 6 with an overview of our ongoing work.

2 Foundations for nominal signatures

As in previous work on nominal approaches for variable binding [7,8,9], we base
our work on atoms, swapping, and support. Since swapping and support cannot be
defined parametrically for all types, we use an encoding of Haskell-like type classes
to quantify over all types for which these notions are defined. We discuss each of
these components in this section.

Our development makes extensive use of dependently typed records to capture
types which possess certain properties and operations. In the case of atom swap-
ping, the ability to abstract over such records is critical. In other cases, it simply
makes our code more flexible. For example, we describe a type for finite sets with
extensional equality using the record type ExtFset, part of which is shown below.

Record ExtFset (T : Set) : Type := mkExtFset {
extFset : Set; In : T -> extFset -> Prop; ... }

The record type is parameterized by T, the type of elements carried by the sets.
The actual type of finite sets over T is given by the field extFset, and In is a
set-membership predicate. The names of these fields are constants (i.e., record field
selectors) whose full types are

extFset : ∀ T : Set, ExtFset T -> Set
In : ∀ (T : Set) (R : ExtFset T), T -> extFset T R -> Prop .

61

Aydemir, Bohannon, and Weirich

Record AtomT : Type := mkAtom {
atom : Set; asetR : ExtFset atom; aset := extFset asetR;
atom eqdec : ∀ a b : atom, {a = b} + {a <> b};
atom infinite : ∀ F : aset, { b : atom | b /∈ F } }.

Fig. 1. Atoms.

Record SwapT (A : AtomT) (X : Set) : Set := mkSwap {
swap : (A * A) -> X -> X;
swap same : ∀ a x, swap (a, a) x = x;
swap invol : ∀ a b x, swap (a, b) (swap (a, b) x) = x;
swap distrib : ∀ a b c d x,
swap (a, b) (swap (c, d) x) =
swap (swapa A (a, b) c, swapa A (a, b) d) (swap (a, b) x) }.

Fig. 2. Swapping.

We use Coq’s implicit arguments mechanism to infer the arguments T and R when
possible, and we write x /∈ F for not (In x F) when this can be done.

In general, our use of records implements a dictionary-passing semantics for type
classes. Each record type defines a type class, and fields of the record type are fields
of the type class. To quantify over only those types which are members of a given
type class, we quantify over its dictionary. We do not use modules for this purpose
because we cannot quantify over all modules implementing a given signature.

We also use a record type to capture the essential qualities of the variable names
in our object languages, namely that there are an infinite number of names and that
equality on names is decidable. We call objects with these properties atoms; records
of type AtomT, shown in Figure 1, consist of a type and proofs that the type is a
collection of atoms. The field atom is the type of the atoms, aset is the type of finite
sets of atoms, and atom eqdec asserts that equality on the atoms is decidable. The
function atom infinite, when supplied any finite set F of atoms, produces an atom
b paired with a proof that b is not in F. Note that this function requires that the
type atom be infinite and implements “choosing a fresh atom,” an operation whose
details are typically left unspecified on paper. With Coq’s implicit coercions, for
any A : AtomT, we may write A wherever atom A is required. Specifically, whenever
A occurs in a location where a term of type Set is required, Coq implicitly inserts
an application of atom.

Having characterized atoms, we need to construct a definition for swapping a
pair of atoms in arbitrary expressions. Atom swapping is a central concept in
nominal approaches for two reasons. First, it is easy to define an appropriate method
of swapping atoms on almost any type, including function types and types with
nominal binding. Second, it gives us a means to generically specify which names
are fresh for any such type. The important properties of atom swapping for any type
X are specified by the record SwapT in Figure 2. The property swap same asserts
that swapping an atom with itself must always leave the expression unchanged.
The next property states that swapping must be an involution. The final property
allows nested swaps to be reordered.

In theory, the user may use any definition of swapping for a given type that

62

Aydemir, Bohannon, and Weirich

Parameters (tmvar : AtomT) (tm : Set).
Parameter var : tmvar -> tm.
Parameter app : tm -> tm -> tm.
Parameter lam : tmvar -> tm -> tm.
Axiom tm induction : ∀ (P : tm -> Prop) (F : aset tmvar),
(∀ x : tmvar, P (var x)) ->
(∀ t : tm, P t -> ∀ u : tm, P u -> P (t @ u)) ->
(∀ x : tmvar, x 6∈ F -> ∀ t : tm, P t -> P (λ x . t)) ->
(∀ t : tm, P t).

Fig. 3. Term constructors and induction principle.

satisfies the properties in SwapT, but in practice there is usually a natural one
defined by the structure of the type. The simplest form of swapping is the swap of
atoms a and b of type atom A applied to the atom c, also of type atom A, denoted by
swapa A (a, b) c. We provide the constructor mkAtomSwap that uses the swapa
function to construct the SwapT record. For types where no atoms (of the sort being
swapped) appear (e.g., the type nat), the only reasonable definition of applying a
swap is to leave the object unchanged.

Defining how to apply a swap to an expression with a function type is not too
difficult, either. Our definition follows Pitts [8] and satisfies the properties in the
SwapT record (if we allow ourselves an axiom of functional extensionality):

Variables (A : AtomT).
Variables (X : Set) (XS : SwapT A X) (Y : Set) (YS : SwapT A Y).
Definition func swap (a b : A) (f : X -> Y) :=

fun x => swap YS (a, b) (f (swap XS (a, b) x)).

Our framework for atom swapping allows users to define swapping on any non-
dependent type that lives in the sort Set. It is currently unclear whether there is a
good way to specify what it means to swap over a dependent type.

3 Signature for an untyped lambda calculus

In this section, we describe the main components of our signature for terms of the
untyped lambda calculus. First, our signature includes a declaration of a type for
terms, which live in the sort Set, and introduction and elimination forms for this
type, as shown in Figure 3. Using Coq’s notation mechanism, we write t @ u for
app t u and λ x . t for lam x t. We would like the type tm to resemble an
inductive type, so our introduction and elimination forms for it are similar to those
of types defined by Coq’s Inductive keyword.

For a natively defined inductive type X, Coq generates the definition of a term
X rect (using the language constructs fix and match), which serves as a recursion
combinator that can produce results with a dependent type. When specialized to
the sort Prop, the type of this combinator serves as an induction principle. How-
ever, it is not clear how to perform swapping on terms with dependent types, so we
cannot axiomatize such a powerful recursion operator in this signature. Instead we
axiomatize an independent induction principle. Importantly, this induction princi-
ple allows us to reason only about fresh names for the bound variable in the lam

63

Aydemir, Bohannon, and Weirich

Parameter fvar : tm -> aset tmvar.
Axiom fvar lam : ∀ (x : tmvar) (s : tm),
fvar (lam x s) = remove x (fvar s)

Parameter subst : tm -> tmvar -> tm -> tm
Axiom subst lam : ∀ (x y : tmvar) (s t : tm),
x <> y -> x /∈ (fvar t) ->
(λ x . s) [y := t] = λ x . (s [y := t]).

Fig. 4. Free variables and substitution on terms.

Axiom swap var : ∀ (x y z : tmvar),
(x, y) • (var z) = var ((x, y) ◦ z).

Axiom swap app : ∀ (x y : tmvar) (t u : tm),
(x, y) • (t @ u) = ((x, y) • t) @ ((x, y) • u).

Axiom swap lam : ∀ (x y z : tmvar) (t : tm),
(x, y) • (λ z . t) = λ ((x, y) ◦ z) . ((x, y) • t).

Axiom eq lam : ∀ (x y : tmvar) (t : tm),
y 6∈ fvar t -> λ x . t = λ y . ((x, y) • t).

Axiom injection lam : ∀ (x x’ : tmvar) (t t’ : tm),
λ x . t = λ x’ . t’ ->
(x = x’ ∧ t = t’) ∨ (x 6∈ fvar t’ ∧ t = (x, x’) • t’).

Fig. 5. Axioms for swapping and equality.

case, by taking a finite set of names from which the bound variable is guaranteed
to be distinct (recall that aset tmvar is the type of finite sets of tmvars).

Our signature does not yet include a recursion combinator—we are currently
working to provide such an operator (see Section 6). However, for lambda calculus
terms, the main use of a recursion combinator is for the definitions of substitution
and free variable functions. Therefore, our signature axiomatizes these operations—
the axioms for the lam cases are shown in Figure 4. Even with a recursion operator,
it may make sense to include these operations in a generated signature. Again, we
use Coq’s notation to write s [y := t] for subst s y t. Note that subst lam
is the only axiom defining the behavior of subst on lam-abstractions, yet subst
must be a total function by virtue of its type. Therefore we also axiomatize alpha-
equivalence for lambda terms (see Figure 5). Given a lam-abstraction, we can use
always eq lam to rename the bound variable so that subst lam applies, as on paper.

Axiomatizing equivalence requires a canonical notion of swapping on lambda-
terms. Thus, our signature includes the following:

Definition tvS := mkAtomSwap tmvar.
Parameter tmS : SwapT tmvar tm.

The first line constructs a default definition of swapping for tmvar atoms. The
second asserts the existence of a definition of swapping on terms. We use Coq’s
notation mechanism to write (x, y) ◦ z for swap tvS (x, y) z, which applies
a swap of the variable names x and y to the variable z, and (x, y) • t for
swap tmS (x, y) t, which applies the swap to the term t. The result of ap-
plying a swap to a term is given by three axioms—one for each constructor—and
is also shown in Figure 5. Note that this definition simply applies the swap to the

64

Aydemir, Bohannon, and Weirich

arguments of the constructor, even in the lam case.
We have implemented a module with this signature (thereby proving the sound-

ness of our axioms) using a locally nameless [5] implementation of lambda terms
where free variables are named and bound variables are encoded using de Bruijn
indices. We define tm to be the type of locally nameless terms paired with well-
formedness proofs indicating that all indices refer to bound variables, and we use an
axiom of proof irrelevance to equate well-formedness proofs when comparing terms
for equality. Thus, our induction principle allows one to prove properties about all
well-formed terms without having to explicitly prove anything about indices. When
proving that this principle holds, we assume its premises, in particular that

∀ x : tmvar, x 6∈ F -> ∀ t : tm, P t -> P (λ x . t) ,

and then show that P holds for all x by induction on the size of x. The interesting
case is when x is a locally nameless lambda abstraction, where we need to use the
above premise to show that P x holds. In the abstraction’s body, we instantiate
the bound index to a sufficiently fresh name y, resulting in a term t such that x =
λ y . t. Since P t holds by the induction hypothesis, the above premise implies
that P (λ y . t) holds. Structural induction on x would fail here since t is not a
subterm of x. The remainder of the signature is straightforward to implement.

4 Experience using the signature

The statements of theorems in the nominal style are about as close to those on paper
as one could hope for. For example, the following two theorems can be proved from
our signature by nominal induction on M.

Theorem subst not fv : ∀ x M N, x 6∈ (fvar M) -> M [x := N] = M.
Theorem subst comm : ∀ x y M N L, x <> y -> x 6∈ (fvar L) ->
M [x := N] [y := L] = M [y := L] [x := N [y := L]].

Proof by induction using the tm induction principle is not significantly different
from proofs that would use the induction tactic on a standard inductive type. The
reasoning in inductive proofs is very similar to that done on paper, too, but does
require that we be precise in the lambda case about the set of variables from which
the name of the binder must be distinct. Conservatively, we often assert that the
bound variable is distinct from all free names appearing in any expression in our
context. Using such assumptions requires a little more detail and care than is seen
in paper proofs, but seems consistent with the general overhead of mechanization.
Furthermore, we hope to automate this process.

Another critical issue that we have attempted to assess is whether it is practical
to work from axiomatized equalities in Coq. For instance, since the behavior of
fvar is axiomatized rather than defined concretely, tactics such as simpl cannot
unfold its definition. Additionally, since alpha-equivalent terms are not convertible
under our signature, there may be cases when it is necessary to use eq lam to rewrite
a term in order to apply a given lemma or hypothesis. We have, however, found
Coq’s autorewrite tactic to be quite powerful, allowing common simplifications to
be performed automatically, even in cases where the rewrites have preconditions,
and convertibility was not an issue in the proofs of the theorems above. Coq’s

65

Aydemir, Bohannon, and Weirich

tactic language has even allowed us to easily perform more complex combinations
of simplification and case analysis. There is some room for improvement, but we
have found no serious obstacles to working in this style.

5 Related work

Our work is inspired by a nominal datatype package for Isabelle/HOL [1,9]. How-
ever, in addition to the common goal of providing automated tools for reasoning
about datatypes with binding, we seek to explore the issues that arise when using
nominal techniques in a dependently-typed type theory and to make explicit the
“signature” required to provide an effective and practically usable formalization of
syntax with binding. As in the Isabelle/HOL package, and unlike in nominal logic
[7], wherever we require equivariance (the invariance of a relation under swapping)
or finite support, we state that requirement explicitly rather than making a global
assumption.

As our signature is an axiomatization of lambda-terms and related functions, it
is very similar in spirit to Gordon and Melham’s axiomatization [3]. It is not clear
whether a direct translation of Gordon and Melham’s iteration operator could be
used to derive a natural induction principle in Coq, even if the development were
augmented with axioms from higher-order logic. Additionally, in the lam case of
their iteration operator, instead of quantifying over the name of the bound variable,
they quantify over functions from names to terms. In other words, they provide a
“nominal” introduction form for the type of terms, and a weak-HOAS elimination
form. Taking into account Norrish’s experience using Gordon and Melham’s axioms
[6], our approach avoids making a direct connection between meta- and object-level
binders in favor of a pure nominal approach.

We are not the first to use a “locally nameless” approach to representing syntax
with binding. McBride and McKinna [5] give a brief history of the technique, and
Leroy used it in his solution [4] to the PoplMark challenge. Our use of this
approach, in addition to an axiom of proof irrelevance, is crucial in making Coq’s
built-in equality coincide with alpha-equality on object-level terms.

6 Ongoing and future work

Our ongoing work includes implementing a combinator for defining functions on
terms by primitive recursion, developing a tool to generate signatures and imple-
mentations from user-provided grammar specifications, and investigating swapping
on dependent types. We discuss below our progress on the recursion combinator.

Taking the work of Pitts [8] as inspiration, we begin by defining what it means
for a finite set of atoms to support an object. Intuitively, an object is supported by
a set of atoms when the set includes the free names of the object. Freshness then
generalizes the idea of when a name is free for an object. Precise definitions are
given in Figure 6. Note that the sets that support an object change depending on
the definition of swapping used, and hence so do the atoms that may be considered
fresh for an object.

Based on our initial attempts to define a recursion combinator, we expect that

66

Aydemir, Bohannon, and Weirich

Variables (A : AtomT) (X : Set) (S : SwapT A X).
Definition supports (F : aset A) (x : X) : Prop :=
∀ a b : A, a /∈ F -> b /∈ F -> swap S (a, b) x = x.

Definition fresh (b : A) (x : X) : Prop :=
∃ F : aset A, supports F x ∧ b /∈ F.

Parameter tm rec : ∀ (R : Set) (PR : SwapT tmvar R),
∀ f var : tmvar -> R,
∀ f app : tm -> R -> tm -> R -> R,
∀ f lam : tmvar -> tm -> R -> R,
∀ F : aset tmvar, (supports ... F (f var, f app, f lam)) ->
(∃ b : tmvar, (b /∈ F ∧ ∀ x y, fresh PR b (f lam b x y))) ->
(tm -> R).

Axiom tm rec lam : ∀ R PR F f var f app f lam supp fcb,
let f := (tm rec R PR F f var f app f lam supp fcb) in
∀ b t, b /∈ F -> f (lam b t) = f lam b t (f t).

Fig. 6. A recursion operator and related definitions. Ellipses indicate an omitted dictionary argument.

tm rec, shown in Figure 6, can be implemented and tm rec lam can be proved
sound. Except for the side condition b /∈ F, the axiom tm rec lam takes the usual
form for a function defined by primitive recursion. The arguments

∀ F : aset tmvar, (supports ... F (f var, f app, f lam)) and
∃ b : tmvar, (b /∈ F ∧ ∀ x y, fresh PR b (f lam b x y))

to tm rec follow Pitts. The supports proposition concisely captures Norrish’s re-
quirements on his recursion operator that the functions f var, f app, and f lam
“respect permutation” and “not create too many fresh names” [6]. Finally, whereas
tm rec can be used to define only non-dependently typed functions, we plan on
investigating a combinator for defining dependently typed functions.

References

[1] Berghofer, S. and C. Urban, Nominal datatype package for Isabelle/HOL, http://isabelle.in.tum.de/
nominal/.

[2] Bertot, Y. and P. Castéran, “Interactive Theorem Proving and Program Development: Coq’Art: The
Calculus of Inductive Constructions,” Springer-Verlag, 2004.

[3] Gordon, A. and T. Melham, Five axioms of alpha-conversion, in: J. von Wright, J. Grundy and
J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th International Conference, TPHOLs
’96, LNCS 1125 (1996), pp. 173–190.

[4] Leroy, X., A locally nameless solution to the POPLmark challenge, http://cristal.inria.fr/~xleroy/
POPLmark/locally-nameless/.

[5] McBride, C. and J. McKinna, Functional pearl: I am not a number—I am a free variable, in: Haskell
’04: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell (2004), pp. 1–9.

[6] Norrish, M., Recursive function definition for types with binders, in: K. Slind, A. Bunker and
G. Gopalakrishnan, editors, Theorem Proving in Higher Order Logics: 17th International Conference,
TPHOLs 2004, LNCS 3223 (2004), pp. 241–256.

[7] Pitts, A. M., Nominal logic, a first order theory of names and binding, Information and Computation
186 (2003), pp. 165–193.

[8] Pitts, A. M., Alpha-structural recursion and induction (extended abstract), in: J. Hurd and T. Melham,
editors, Theorem Proving in Higher Order Logics: 18th International Conference, TPHOLs 2005, LNCS
3603 (2005), pp. 17–34.

67

Aydemir, Bohannon, and Weirich

[9] Urban, C. and C. Tasson, Nominal techniques in Isabelle/HOL, in: R. Nieuwenhuis, editor, Automated
Deduction — CADE-20: 20th International Conference on Automated Deduction, LNAI 3632 (2005),
pp. 38–53.

68

LFMTP 2006

Practical Reflection for Sequent Logics

Jason Hickey and Aleksey Nogin and Xin Yu and Alexei Kopylov

Department of Computer Science, 256-80
California Institute of Technology

Pasadena, CA 91125
Email: {jyh,nogin,xiny,kopylov}@cs.caltech.edu

Abstract

It is well-known that adding reflective reasoning can tremendously increase the power of a proof assistant.
In order for this theoretical increase of power to become accessible to users in practice, the proof assistant
needs to provide a great deal of infrastructure to support reflective reasoning. In this paper we explore the
problem of creating a practical implementation of such a support layer.

Our implementation takes a specification of a logical theory (which is identical to how it would be specified
if we were simply going to reason within this logical theory, instead of reflecting it) and automatically
generates the necessary definitions, lemmas, and proofs that are needed to enable the reflected meta-
reasoning in the provided theory.

One of the key features of our approach is that the structure of a logic is preserved when it is reflected.
In particular, all variables, including meta-variables, are preserved in the reflected representation. This also
allows the preservation of proof automation—there is a structure-preserving one-to-one map from proof
steps in the original logic to proof step in the reflected logic.

To enable reasoning about terms with sequent context variables, we develop a principle for context
induction, called teleportation.

This work is fully implemented in the MetaPRL theorem prover.

Keywords: Reflection, Higher-Order Abstract Syntax, Meta-Theory, Type Theory, MetaPRL, NuPRL,
Languages with Bindings, Mechanized Reasoning.

1 Introduction

By reflection, we mean the ability to use one logic to reason about another, or
the ability to use a logic to reason about itself. At its core, a reflection system
has two parts. There is a representation function, written ptq, that defines the
representation or “quotation” of a logical formula t. Then, there is a provability
operator, written 2 q, which is a predicate specifying that q is a quotation of a
provable formula.

An implementation of a reflection system needs to have two corresponding parts:
a specific representation function, and a mechanized reflective reasoning (including
a definition of 2 · and some degree of reasoning automation)?

The issue of representation is central, and far from trivial. For example, while
it is conceptually easy to define a representation function using a Gödel numbering
[10], such schemes are impractical as the structure of a reflected term (a number)

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hickey, Nogin, Yu, and Kopylov

is so different from the original formula. Any plan to re-use mechanized reasoning
methods on reflected terms would be extremely difficult.

The challenge is an instance of a general canonical problem—that of using mech-
anized reasoning to reason about meta-properties of systems, languages, or logics.
Our goal is to develop a canonical solution that can be used for meta-reasoning
in general. In our approach, we use reflection to implement a framework where
meta-reasoning is higher-order. For example, one can develop theorems of the form,
“Any system that has meta-property P also has meta-property Q,” or “Every meta-
property of system A is also a meta-property of system B.”

However, mechanized reflection is not easy. The general issue is that, if one
wants to talk about provability, then it seems necessary to formalize or emulate the
theorem prover and its meta-logic. This näıve approach is not only difficult, but
it would also require reimplementing the theorem prover within itself. Following
Barzilay [4], we aim at reusing the theorem prover instead of reimplementing it.

We present an approach to practical reflection as part of a logical framework,
where the representation function p·q is defined over a logic, as well as the formulas,
inferences, and theorems that it contains. That is, to develop an account of system
L and its meta-properties, one first defines the system L as a primitive logic, using
the exact same syntax and definition mechanism that are used in not-reflective case.
Then, to develop an account of the meta-properties of L, the logic is (automatically)
reflected en masse to pLq, where each theorem T in L is reflected as 2LpT q in pLq,
and any proof of T is reflected to form a proof of 2LpT q. In our system, it is not
necessary to prepare for reflection. One may develop a theory in the usual way,
calling upon reflection if/when it is necessary to perform meta-reasoning.

Of course, this would still not be practical if reasoning in the reflected logic is
difficult. The fundamental reason that our approach is practical is that the repre-
sentation function preserves structure exactly in this sense: all variables, including
both object and meta-variables, are preserved by the representation. One might
call this meta-higher-order abstract syntax. In particular, since we are working
with logics that use sequents to express their judgments, the representation func-
tion preserves sequent context variables. To do so, we develop a weak induction
principle for sequent contexts, called teleportation.

The benefit of preserving the term structure is that mechanized reasoning works
transparently. That is, there is a one-to-one correspondence from proof steps in
the original logic L to proof steps in pLq. In fact the translation is direct and
mechanical, which means that proof automation in the original logic L also applies
in the reflected logic pLq.

This work is implemented in the MetaPRL logical framework [14, 17], and is
available at http://www.metaprl.org/. The following is a summary of the contri-
butions.

• A representation function peq that preserves the structure of formula e, specifi-
cally preserving object and meta-variables, and all binding structure.

• A one-to-one map from proofs in L to proofs in the reflected logic pLq.
• A new induction principle, called teleportation, for induction on sequent contexts.
• A practical implementation in the MetaPRL system.

69

Hickey, Nogin, Yu, and Kopylov

t ::= x object (first-order) variables
| z[t1; · · · ; tn] second-order meta-variables
| Γ ` t sequents
| op{b1; · · · ; bn} concrete terms

b ::= x1, . . . , xn.t bound terms
Γ ::= h1; · · · ;hn sequent contexts
h ::= X[t1; · · · ; tn] context meta-variables 1

| x : t hypothesis bindings and terms
L ::= R1;R2; · · · ;Rn a logic
R ::= t1 −→ · · · −→ tn an inference rule (ti are closed w.r.t. object variables)

Fig. 1. Syntax of formulas and logics

The organization of the paper is as follows. In Section 2 we develop the syntax
and language of logics. This then allows the formal definition of the representation
function in Section 3, as well as the definition of provability 2 t in Section 4. In
order to work with sequent context variables, we develop the teleportation induction
principle in Section 5. The final step in Section 6 is to develop methods for proof
induction in reflected logics. We present related work in Section 7, and we conclude
with a discussion of our approach to reflection in Section 8.

2 Terminology

We assume we are working in a meta-language with sequents, second-order meta-
variables, and terms, as shown in Fig. 1. A term t is a formula containing variables,
concrete terms, or sequents. A concrete term op{b1; · · · ; bn} has a name op, and
some subterms b1, . . . , bn that have possible binding occurrences of variables. For
example, a term for representing the sum i + j might be defined as add{.i; .j}
(normally we will omit the leading . if there are no binders, writing it as add{i; j}).
A lambda-abstraction λx.t would include a binding occurrence lambda{x.t}. Note
that here the primitive binding construct is the bound term b, and λ-binders are a
defined term. An alternate choice would be to use a single primitive λ binder (for
example, as is done in LF [11]).

A sequent Γ ` t includes a sequent context Γ, which is a sequence of dependent
hypotheses h1; · · · ;hm, where each hypothesis is a binding x : t or a context variable
X[t1; · · · ; tn] (x and X bind to the right). Note that sequents can be arbitrarily
nested inside other terms and are not necessarily associated with judgments.

Second-order meta-variables z[t1; · · · ; tn] and context variables X[t1; · · · ; tn] in-
clude zero-or more term arguments t1, . . . , tn. These meta-variables represent closed
substitution functions, and are implicitly universally quantified for each rule in which
they appear [19]. For example, a second-order variable z[] represents all closed terms
(we will normally omit empty bracket, writing simply z). The second-order variable
z[x] represents all terms with zero-or-more occurrences of the variable x (that is,
any term where x is the only free variable).

1 Strictly speaking, context variables are bindings and meta-variables have context arguments in addition
to term argument. This does not affect the presentation until we get to context induction (Section 5, and
we omit context arguments for now.

70

Hickey, Nogin, Yu, and Kopylov

Terms

ptq : pxq ≡ x
pz[t1; · · · ; tn]q ≡ z[pt1q; · · · ; ptnq]
pΓ ` tq ≡ pΓqp`qptq
pop{b1; · · · ; bn}q ≡ popq{pb1q; · · · ; pbnq}

pbq : px1, . . . , xn.tq ≡ λbx1. . . . λbxn.ptq

Sequent contexts

pΓq : ph1; · · · ;hnq ≡ ph1q; · · · ; phnq
phq px : tq ≡ x : ptq

pX[t1; · · · ; tn]q ≡ X[pt1q; · · · ; ptnq]

Rules and logics

pLq : pR1; · · · ;Rnq ≡ pR1q; · · · ; pRnq
pRq : pt1 −→ · · · −→ tnq ≡ (Z ` 2Lpt1q) −→ · · · −→ (Z ` 2Lptnq)

Fig. 2. The definition of the representation function

To illustrate, consider the “substitution lemma” that is valid in many logics. In
textbook notation, it might be written as follows, where t1[x ← s] represents the
substitution of s for x in t1.

Γ, x : t3,∆ ` t1 ∈ t2 Γ,∆ ` s ∈ t3
Γ,∆ ` t1[x← s] ∈ t2

In our more concrete notation, s, t1, t2, t3 are all represented with second-order
variables, and Γ,∆ with context variables. Substitutions are defined using the term
arguments; rules are defined using the meta-implication · −→ ·, and we consider all
meta-variables to be universally quantified in a rule. The concrete version is written
as follows (where we use s ∈ t as a pretty form for a term member{s; t}, and zi are
second-order meta-variables).

(X;x : z3;Y ` z1[x] ∈ z2) −→
(X;Y ` z0 ∈ z3) −→
(X;Y ` z1[z0] ∈ z2)

(2.I)

In the final sequent, the term z1[z0] specifies substitution of z0 for x in z1.
Note how the term arguments are used to specify binding precisely—the variable

x is allowed to occur free in z1, but in no other term. The reason we adopt this
second-order notation is for this precision. All rule schemata representable with
substitution notation are also representable as second-order schemata, but not vice-
versa.

For the final part, a logic L is an ordered sequence of rules. Each rule may be
an axiom, or it may be derived from the previous rules in the logic.

3 Representation of reflected terms

We will assume that we are working in the context of a logical framework, so there
are at least three logics in consideration—L: the object logic, M: the meta-logic in

71

Hickey, Nogin, Yu, and Kopylov

which reasoning about the object logic is to be performed; and F: the meta-meta-
logic, or framework logic, in which the meta-logic M is defined. The first step in
the reflection process is to define a representation of formulas, judgments, rules and
theorems of L in terms of formulas, propositions, and sentences in M.

The representation function p·q produces a quoted form of its argument. As
we have mentioned previously, to preserve a one-to-one correspondence between
proofs in an original logic L and its reflected logic pLq, it is important that p·q
preserve the structure of the term, including variables, meta-variables, and binding
structure. Note that the representation function itself is not a part of the language
of the logical framework; it is only a symbol of the “on-paper meta-meta-language”
that we use for describing our implementation. Only for operators, popq refers to
some concrete way of reflecting the operator op within the system itself [21].

The representation function is shown in Fig. 2. The parts of interest are the quo-
tations for concrete terms, sequents, and inference rules. The quoted representation
of a concrete term, pop{b1; · · · ; bn}q, produces a new term with a quoted name popq,
and the quotation is carried out recursively on the subterms pb1q; · · · ; pbnq. 2 The
quotation of a sequent, pΓ ` tq, is similar: the “turnstile operator” is quoted, and
the parts are quoted recursively.

The quotation of bound terms introduces a binder, written λbx.t, that represents
each binding in quoted form. 2 Note that the binding variable itself is unchanged;
the variable is preserved as a binding, but each binding is explicitly coded as a λb.

Finally, the quotation of an inference rule, pt1 −→ · · · −→ tnq becomes a judg-
ment about provability (Z ` 2Lpt1q) −→ · · · −→ (Z ` 2Lptnq). The context
variable Z is fresh, and each sequent Z ` 2Lptiq is a judgment in the meta-logic
about provability.

Informally, the reflected rule states that if each premise t1, . . . , tn−1 is provable in
logic L, then so is tn. A key goal is that the reflected rule pRq must be automatically
derivable from the definition of L. For clarity, when reasoning about a single logic
we will normally omit the subscript 2L and just write 2.

The choice of meta-logic is somewhat arbitrary. For our purposes, we have
chosen to use computational type theory (CTT), which is a variant of Martin-Löf
intuitionistic type theory as implemented in the MetaPRL logical framework [16]. In
other words, our meta-logic Mis CTT and our framework logic F is the one provided
by MetaPRL. Note that in CTT, the reflected rules pRq are sometimes required to
include additional well-formedness constraints on the typing of the meta-variables.

Returning to our example, the quoted form of the substitution lemma (2.I) is as
follows, where we write s p∈q t for pmemberq{s; t}.

Z ` 2(X;x : z3;Y p`q z1[x] p∈q z2) −→
Z ` 2(X;Y p`q z0 p∈q z3) −→
Z ` 2(X;Y p`q z1[z0] p∈q z2)

(3.I)

The operators have been quoted (in this case p`q and p∈q), and the theorem
is now a judgment about provability stated in the meta-logic as Z ` 2 · · · . Only

2 Further discussion on quotations of names and concrete terms can be found in [21]. The encoding we
use is an essential foundation for this work, however the specific encoding details have little effect on the
presentation here.

72

Hickey, Nogin, Yu, and Kopylov

the operator names have been changed, otherwise the structure, including variables
and binding, has not changed.

For an example with binding, consider the rule for universal-introduction, shown
below with the translated version. In this case, the binder x is translated to a meta-
binder with λb.⌈

X;x : z1 ` z2[x] −→
X ` ∀x : z1.z2[x]

⌉
=

(
Z ` 2(X;x : z1 p`q z2[x]) −→
Z ` 2(X p`q p∀q{z1;λbx.z2[x]})

)

3.1 Proof reflection and automation

One important consequence of structure-preservation is that proofs can be reflected
as well. Consider a proof in the original logic L of some theorem t1 −→ · · · −→ tn.
In a foundational prover, the proof is expressed as a tree of inferences that can be
linearized to a finite sequence of rule applications R1, R2, . . . , Rn.

Since the structure of each inference is preserved, there is a corresponding
proof in the reflected logic pLq of the reflected theorem (Z ` 2pt1q) −→ · · · −→
(Z ` 2ptnq). In fact, the proof is a one-to-one map of the original theorem, us-
ing reflected justifications in place of the original. That is, the reflected proof is
pR1q, pR2q, . . . , pRnq.

While this might seem quite straightforward, the important property here is that
the prover internals do not need to be reflected. It is not necessary to formalize the
inference mechanics of the theorem prover, because the original mechanism works
without change in the reflected theory.

Proof automation is similar. Again, in a foundational prover, 3 each run of a
heuristic or decision procedure is justified by a sequence of inferences R1, R2,
The existing automation may be used for reasoning in the reflected logic, provided
that rule selection for reflected proofs uses the reflected rules rather than the original
ones.

3.2 Syntax and reasoning

Reflected rules have an important property—the quoted terms are syntactical ex-
pressions, and they can be manipulated. There are constructors and destructors
for quoted terms, and more importantly there is an inductively-defined type that
contains all quoted terms. The specific details of the encoding have been published
previously [21]. For our current purposes it simply matters that there is a type, so
that meta-properties can be expressed.

For example, one may wish to prove a formal cut-elimination property. Using
the type Context for sequent contexts, and the type BTerm for quoted terms, a
cut-elimination theorem can be written as the following predicate.

∀X : Context.∀a, b : BTerm.2(X p`q a)⇒ 2(X, a p`q b)⇒ 2(X p`q b)

In addition, we have yet to define the provability predicate 2 t, where it will again
be necessary to give a type to the quoted term t. Provability is the topic of the next
section.

3 It isn’t clear to us whether a similar mechanism might work for non-foundational provers (those with
“trusted” decision procedures).

73

Hickey, Nogin, Yu, and Kopylov

4 Defining provability

So far, we have postponed the treatment of the provability predicate 2L t, which
specifies that the quoted formula t is provable in logic L. To define provability
properly, we take the following steps.

• First, for each rule R ∈ L, we define a proof checking predicate that specifies
whether a proof step is a valid application of rule R.

• Next, we define the (legal) derivations to be the proof trees where each proof step
in the tree is validated by some rule R ∈ L.

• A formula t is provable in logic L if, and only if, there is a derivation with root t.

The usual properties hold: proof checking is decidable, provability is not decidable
in general.

4.1 Proof checking

A logic L is an ordered list of inference rules R1, . . . , Rn. A proof is a tree of
inferences, and it is legal only if each proof step corresponds to an inference using
some rule Ri. A proof step is a node in the proof tree that corresponds to a concrete
inference t1 −→ · · · −→ tn−1 −→ tn. We call the terms t1, . . . , tn−1 the premises,
and the term tn the goal.

In general, a rule R defines a schema, where each second-order meta-variable
stands for a term, and each context meta-variable stands for a context. A concrete
proof step is a valid inference of a rule R iff for each second-order meta-variable
in R there is an actual term, and for each context-meta variable in R there is an
actual context, such that the concrete inference is an instance of the rule.

Let us state this more formally. The arity of a meta-variable is the number
of arguments, so a variable z[t1; · · · ; tn] has arity n. Let BTerm{i} be the type
of quoted terms of arity i, corresponding to the space of substitution functions
BTermi → BTerm. Similarly, let Context{i} be the type of contexts of arity i (the
contexts correspond to lists of quoted terms).

Consider a rule R with free context variables {Xi1
1 , . . . , Xim

m } and free second-
order variables {zj1

1 , . . . , zjn
n }, where the superscripts ik and jk indicate the arities

of the variables. 4 Then a concrete inference r is a valid instance of rule R iff the
following holds.

∃Xi1
1 : Context{i1}, . . . , Xim

m : Context{im}.
∃zj1

1 : BTerm{j1}, . . . , zjn
n : BTerm{jn}.r = R ∈ ProofStep

(4.I)

That is, the concrete inference r is equal to an instance of rule R. The type
ProofStep is the type of proof steps BTerm list × BTerm containing the pairs
(premises, goal).

For the purposes of proof checking, the existential witnesses are assembled into
a proof witness term, and passed as explicit arguments to the checker. A proof
witness is defined to be an element of the Witness type, which in turn is defined as

4 In a setting where context variables are treated as binders, the variable arities are expressions that depend
on the lengths |Xk|.

74

Hickey, Nogin, Yu, and Kopylov

Context list× BTerm list. Returning to the example of the substitution lemma
(3.I), the corresponding proof checker is defined as follows, where r is the concrete
proof step to be checked.

checks(subst lemma, r, 〈[X;Y], [z1; z2; z3; z0]〉) ≡

r=

(
[(X;x : z3;Y p`q z1[x] p∈q z2); (X;Y p`q z0 p∈q z3)],

(X;Y p`q z1[z0] p∈q z2)

)
∈ ProofStep

(4.II)

In general, the “rule checker” predicate checks{R; r;w} takes three arguments,
where R is a rule, r ∈ ProofStep is a concrete inference, and w ∈ Witness is the
witness for the rule instantiation. Given a logic L with rules R1, . . . , Rn, a proof
step is valid iff it is an instance of one of the rules in the logic.

checks{r;w} ≡ ∃R ∈ {R1, . . . , Rn}.checks{R; r;w}

Since proof step equality is decidable, and each logic has a finite number of rules,
the checks{r;w} predicate is decidable as well.

4.2 Derivations

Now that we have defined proof step checking, the next part is to define the valid
derivations, or proof trees. The type D of all derivations is defined inductively in
the usual way.

D0 ≡ void

Di+1 ≡ Σpremises : Di list.Σgoal term : BTerm{0}.Σw : Witness.
checks{(goal{premises}, goal term);w}

D ≡
⋃

i∈N Di

(4.III)

In this definition, the term goal{[d1; · · · ; dn]} is the list of goal terms for derivations
d1, . . . , dn.

This definition also allows us to prove an induction principle, which will form
the basis for proof induction.

∀P.(∀premises : D list.∀g : BTerm{0}.∀w : Witness.
checks{(goal{premises}, g);w}
⇒ (∀p ∈ premises.P [p])⇒ P [(premises, g, w)])

⇒ (∀d : D.P [d])

At this point, the definition of the provability predicate 2 t is straightforward.
A quoted term t is provable iff there is a derivation where t is the goal term.

2 t ≡ ∃d : D.(goal{d} = t ∈ BTerm{0})

5 Sequent context induction

At this point, we now have a representation function where rules are reflected into
statements of provability, and in addition we have a proof-checking predicate for
establishing proof correctness. The next step is to prove that the reflected rules

75

Hickey, Nogin, Yu, and Kopylov

are valid using the definition of provability. For example, consider the substitu-
tion lemma example. From the proof-checking predicate (4.II), we must prove the
reflected rule (3.I).

However, there is a substantial gap between the two forms. We have glossed
over the fact that the proof-checking predicates are defined using standard exis-
tential quantifiers (4.I and 4.III). For a quantifier of the form ∃X : Context{i}. · · ·
the variable X is a first-order variable in the meta-logic MCTT. In contrast, the
reflected rules preserve meta-variables, and are expressed using context and second-
order meta-variables (variables of the framework logic FMetaPRL).

Second-order variables can be modeled with functions on BTerm, so the object
quantifiers are expressive enough to represent second-order quantification. The
question remains, how does one derive a formula involving context variables from a
similar formula that does not? In general, sequent context variables are bindings,
sequent contexts are not terms, and they cannot be modeled directly in the object
logic.

Since the framework meta-logic we are using (the FMetaPRL meta-logic) does
not include context quantifiers, one option is to add them and use them in the proof-
checking predicate. However, this is undesirable in part because the framework’s
meta-logic would become extremely expressive and powerful, but also because the
extension is perilous and difficult to get right.

Instead, we extend the framework’s meta-logic with a weak theory of sequent
context induction that we call teleportation. The central logical property is that
contexts are finite and inductively defined. Note that this represents a strengthening
of the meta-logic by effectively including Peano arithmetic.

5.1 Teleportation

The concept behind teleportation is deceptively simple. Since contexts are induc-
tively defined, contexts can be “migrated,” one hypothesis at a time, from one point
in a rule to another. Scoping must be preserved, including context variable scoping,
but beyond that the migration locations are unconstrained.

To formalize this more precisely, we introduce the notion of teleportation con-
texts, written R[[Γ]], which represents a term or a rule with exactly one occurrence
of the context Γ. We will use the symbol ε to denote the empty context. These
definitions are for presentation purposes; they are not part of the meta-logic. Tele-
portation is specified using a pair of nested teleportation contexts, which we will
write as F [[·;G[[·]]]]. Here F [[Γ;G[[∆]]]] must be a rule that has exactly one occurrence
of each of the Γ, ∆ and G; in addition G must be in scope of Γ.

The simplest teleportation rule hoists the context from G to F .

(base) ∀X. F [[ε;G[[X]]]]
(step) ∀X, Y, z. F [[X;G[[x : z;Y [x]]]]] −→ F [[X;x : z;G[[Y [x]]]]]

∀X. F [[X;G[[ε]]]]

For clarity, we have written explicit universal quantifiers for the meta-variables
to emphasize that meta-variables are quantified for each clause/rule. Again, these
do not exist explicitly in the meta-logic, and we will omit them in the remaining

76

Hickey, Nogin, Yu, and Kopylov

rules. As usual, it is assumed that the schema language of the teleportation contexts
would alpha-rename the bound variables as needed to avoid capture.

For generality, it is frequently useful to transform the hypotheses during migra-
tion. In the following rule f is an arbitrary function.

(base) F [[ε;G[[X]]]]
(step) F [[X;G[[x : f(z);Y [x]]]]] −→ F [[X;x : z;G[[Y [x]]]]]

F [[X;G[[ε]]]]

There is a corresponding reverse-hoisting rule.

(base) F [[X;G[[ε]]]]
(step) F [[X;x : f(z);G[[Y [x]]]]] −→ F [[X;G[[x : z;Y [x]]]]]

F [[ε;G[[X]]]]

We add the teleportation rules as new primitive rules in our framework logic
FMetaPRL. The conservativity theorem for sequent schema [19], which states that
the language of framework meta-variables is a conservative extension of the meta-
theory, can be extended to include teleportation rules. The central observation here
is that for any particular finite concrete context Γ, any proof using the teleporta-
tion rules can be transformed into a proof without teleportation by posing a finite
sequence of lemmas, one for each of the intermediate steps.

5.2 A simple example

For a fairly natural example, consider the problem of context exchange. That is,
we are given an exchange rule for hypotheses, and we wish to derive a rule for
exchanging contexts.

X; y : z2;x : z1;Y [x; y] ` z3[x; y]

X;x : z1; y : z2;Y [x; y] ` z3[x; y]
=⇒

X;Z2;Z1;Y ` z

X;Z1;Z2;Y ` z

The proof in this case can be posed as a nested induction. To begin, we propose
to migrate Z2 left, where the • denotes the target: X; •;Z1;Z2;Y ` z. The base case
follows by assumption, and the step case presents us with the following subproblem.

(X;Z3;x : z′;Z1;Z2;Y ` z) −→ (X;Z3;Z1;x : z′;Z2;Y ` z).

The proof is concluded by migrating Z1 past the hypothesis x : z′.

5.3 Computation on sequent terms

The sequent induction scheme also introduces a sequent induction combinator for
computation over a sequent context. We introduce two new terms to the meta-logic.
The sequent ind{x, y.step[x; y]; s} performs computation over a sequent term s.
The reduction rules for sequent computation are as follows.

sequent ind{x, y.step[x; y]; (` t)} → t

sequent ind{x, y.step[x; y]; (z : t1;X[z] ` t2[z])} →

step[t1;λz.sequent ind{x, y.step[x; y]; (X[z] ` t2[z])}]

77

Hickey, Nogin, Yu, and Kopylov

To illustrate, suppose we wish to develop a “vector” universal quantifier. That is,
a sequent with the following definition, given that the logic has a “scalar” quantifier
∀x : t1.t2[x].

x1 : t1; · · · ;xn : tn `∀ tn+1 ≡ ∀x1 : t1, . . . , xn : tn.tn+1

The definition is implemented in terms of sequent induction.

Γ `∀ t ≡ sequent ind{x, y.∀z : x.(yz); (Γ ` t)}

We get the following reductions.

`∀ z → z
x : z1;X[x] `∀ z2[x] → ∀x : z1.(X[x] `∀ z2[x])

The simple introduction rule can be derived directly.

Z;x : z1 ` (X[x] `∀ z2[x])
Z ` (x : z1;X[x] `∀ z2[x])

vall-intro-single

A general introduction rule is also derivable using the teleportation rules.

Z;X ` z

Z ` (X `∀ z) vall-intro

Using similar methods, it is possible to define a logic of vector operators, quantifiers,
and a vector lambda calculus.

Note that in these rules, the variable X is a context variable, and the rules are
valid for any instance of X.

5.4 Sequent induction and reflection

With this new tool in hand, let us return to the topic of reflection, where the issue
was that we need to derive proofs of the reflected rules (with context variables) from
the proof-checking predicates (no context variables).

At this point, the plan is conceptually easy. There are two parts. First, we
develop a canonical representation of concrete sequents without context variables.
For the second part, we define a (formal) function that computes the canonical
representation from the non-canonical form that includes context variables.

The first part is an issue of coding, where the goal is to define a representation
that preserves the structure of concrete sequents. We choose the following repre-
sentation, where pλHqx : t1.t2 is a quoted term that represents a hypothesis, its
binding, and the rest of the sequent; and pconclq{t} represents the conclusion of
the sequent. The proof-checking predicates operate directly on quoted terms with
this representation.

x1 : t1; · · · ;xn : tnp`qtn+1 ≡ pλHqx1 : t1. . . . pλHqxn : tn.pconclq{tn+1}

For the second part, we define a function using sequent ind that computes the
canonical representation from its non-canonical form. This function, written `B, is
defined as follows.

X `B t ≡ sequent ind{x, y.pλHqz : x.(y z); (X ` pconclq{t})}

78

Hickey, Nogin, Yu, and Kopylov

The original reflected form of a rule R = (Γ1 ` t1) −→ · · · −→ (Γn ` tn)
is pRq = Z ` 2(pΓ1q p`q pt1q) −→ · · · −→ Z ` 2(pΓnqp`qptnq). Using the
non-canonical forms, the new representation is as follows.

pRq = (Z ` 2(pΓ1q `B pt1q)) −→ · · · −→ (Z ` 2(pΓnq `B ptnq))

The right-hand-side is now proved by reducing the `B sequents to canonical
form, then proving that the reduced form passes the proof–checking predicate for
all instances of the meta-variables. Note that contexts and context variables are
not terms, and so it remains impossible to quantify over them directly. However,
the reduced form of a non-canonical `B sequent with context variables does contain
sequent subterms with context variables. With teleportation it is possible to show
that these embedded terms are well–defined.

These correspondence between a reflected rule and its proof-checking predicate
is very close. In our implementation, the reflected rule and the proof checking
definitions are created mechanically, and the proof is completely automated.

6 Reflection and induction

So far, we have presented a structure-preserving representation function, a mech-
anism for formalizing reflected logics, and a procedure for deriving reflected prov-
ability rules. This system is already powerful enough to express and prove meta-
properties over reflected systems. However, it remains impractical. There is a
crucial piece missing—induction on the provability predicate.

What exactly is the induction principle for provability? Suppose we wish to
prove a theorem of the form 2 x⇒ P [x], where x is a variable, and P is a predicate
on quoted terms. Since x is provable, that means there is a derivation with root x,
and we can apply induction on the length of the derivation.

Now, for illustration, assume the logic L contains three rules, L = t11, t21 −→
t22, t31 −→ t32 −→ t33. Then the induction form has the following shape.

(rule sketch)
Γ;2 t11 ` P [t11]
Γ;2 t21;2 t22;P [t21] ` P [t22]
Γ;2 t31;2 t32;2 t33;P [t31];P [t32] ` P [t33]

Γ;2 x ` P [x]

However, this rule is not quite right. The issue is that the terms tij will in general
contain meta-variables, and the meta-variables must be separately universally quan-
tified for each induction case. As we explained in Section 5, explicit quantification
of meta-variables is not expressible in our meta-logic.

However, here it is acceptable to use object-quantifiers. There is no appreciable
effect on proof automation as long as the first-order form is compatible with the
automatically–generated reflected rules. The correct form of the rule explicitly
quantifies over the meta-variables, re-using the mechanism for generating the proof-
checking rules. For the current example, we introduce explicit quantifiers. In this
case we write tij [X] to represent a term that may contain any of the variable X

79

Hickey, Nogin, Yu, and Kopylov

but is otherwise free of context variables.

Γ;X : Context;2 t11[X] ` P [t11[X]]
Γ;X : Context;2 t21[X];2 t22[X];P [t21[X]] ` P [t22[X]]
Γ;X : Context;2 t31[X];2 t32[X];2 t33[X];P [t31[X]];P [t32[X]] ` P [t33[X]]

Γ;2 x ` P [x]

In our implementation, we generate a variant of this rule that allows for induction
over terms, not just variables. This is done by introducing a “shared” term u that
establishes a connection provable term t and the predicate P . The actual theorem
has the form Γ; u : t1;2 t2[u] ` P [t3[u]], where u is the shared part. The new form
is derivable from the previous case for provability on variables, and we omit it here.
In fact, the size of the rule is one of the main drawbacks. In practice, even for fairly
small logics L, the statement of the elimination rule is already several pages long,
and it is difficult to use the rule interactively. We are expecting to address this in
future work.

This mechanism establishes the principle of proof induction. The principle of
structural induction is reducible to proof induction by specifying the syntax of a
language as a logic of type-checking.

For every object logic, the corresponding induction principle is not only auto-
matically formulated by our system, but is also automatically derived. Since the
proof induction principle implies soundness, this means that while we do not prove
the soundness of our formalization in general, for each particular object logic, it will
be established automatically.

7 Related work

This work build upon a very large number of related efforts. In fact, the number of
such efforts is so big that we are unable to give an adequate overview in this limited
space. Harrison [12] has written an excellent survey and critique of a broad range
of approaches to reflection. We give another broad survey in a previous paper [21].

Our approach to representing the syntax with bindings has some similarities
to the HOAS implemented in Coq by Despeyroux and Hirschowitz [6] and to the
modal λ-calculus [9, 7, 8].

In 1931 Gödel used reflection to prove his famous incompleteness theorem [10].
A modern version of the Gödel’s approach was used by Aitken et.al. [3, 1, 2, 5]
to implement reflection in the NuPRL theorem prover. A large part of this effort
was essentially a reimplementation of the core of the NuPRL prover inside NuPRL’s
logical theory.

A number of approaches to logical reflection were explored in the Coq proof
assistant. Rueß [23] has implemented a computation reflection mechanism. Hen-
driks [13] formalized natural deduction for first-order logic in the proof assistant
Coq, using de Bruijn indices for variable binding. O’Connor [22] constructively
proved the Gödel–Rosser incompleteness theorem using the natural numbers to en-
code formulas and proofs.

80

Hickey, Nogin, Yu, and Kopylov

8 Conclusion

The goal of this work is to develop a practical theory of logical reflection. We
claim that doing so requires preserving the structure of a theory when it is re-
flected, including variables, meta–variables, and bindings. We presented a structure-
preserving representation, building on previous work with the representation of log-
ical terms [21]. Besides, we developed a new account of sequent context induction,
called teleportation, to allow reasoning and computation over terms that include se-
quent context variables. This led to a formalization of proofs, proof–checkers, and
derivations, together with automated generation of reflected rules and induction
forms in the reflected theory.

In some ways, the result seems startlingly simple. When a logic is reflected, its
presentation changes only slightly, and the existing reasoning methods and proof
procedures continue to work. The difference is, of course, that reasoning about
meta-properties of the logic becomes possible.

It was important to us that the development of the theory of reflection be ac-
companied by its implementation. This makes it more useful of course, but an
additional reason is that the theory of reflection is rife with paradoxes, and it is
easy to fall into false thinking. While we have tried to simplify the account in this
paper, the actual formalization was demanding. In particular, the formalization of
context induction required several man-months of effort, mainly due to the need
to develop a logical infrastructure for reasoning about terms containing context
variables.

We are currently using reflection to develop an account of F<:type theory, which
has acted both as a challenge and a guide [15]. For work in the near future, we are
considering alternate ways to pose the proof induction principle. Induction is, by
nature, not modular. However, we believe that significant practical advances can
be made through improved automation and hierarchical decomposition.

We believe that our results may be generalized to other provers and frameworks.
The non-standard properties of the logical framework that we rely upon are the fol-
lowing. 1) Programs may be expressed without first giving them a type; in addition,
programs may have more than one type. 2) Computation defines a congruence; any
two programs that are computationally (beta) equivalent can be interchanged in
any formal context. 3) For reasoning about sequents, the teleportation principle is
needed. 4) A function image type [20].

References

[1] Aitken, W. and R. L. Constable, Reflecting on NuPRL : Lessons 1–4, Technical report, Cornell
University, Computer Science Department, Ithaca, NY (1992).

[2] Aitken, W., R. L. Constable and J. Underwood, Metalogical Frameworks II: Using reflected decision
procedures, Journal of Automated Reasoning 22 (1993), pp. 171–221.

[3] Allen, S. F., R. L. Constable, D. J. Howe and W. Aitken, The semantics of reflected proof, in: Proceedings
of the 5th Symposium on Logic in Computer Science (1990), pp. 95–197.

[4] Barzilay, E., “Implementing Reflection in NuPRL,” Ph.D. thesis, Cornell University (2006).

[5] Constable, R. L., Using reflection to explain and enhance type theory, in: H. Schwichtenberg, editor,
Proof and Computation, NATO Advanced Study Institute, International Summer School held in
Marktoberdorf, Germany, July 20-August 1, NATO Series F 139, Springer, Berlin, 1994 pp. 65–100.

81

Hickey, Nogin, Yu, and Kopylov

[6] Despeyroux, J. and A. Hirschowitz, Higher-order abstract syntax with induction in Coq, in: LPAR ’94:
Proceedings of the 5th International Conference on Logic Programming and Automated Reasoning,
Lecture Notes in Computer Science 822 (1994), pp. 159–173, also appears as INRIA research report
RR-2292.

[7] Despeyroux, J. and P. Leleu, A modal lambda calculus with iteration and case constructs, in:
T. Altenkirch, W. Naraschewski and B. Reus, editors, Types for Proofs and Programs: International
Workshop, TYPES ’98, Kloster Irsee, Germany, March 1998, Lecture Notes in Computer Science
1657, 1999, pp. 47–61.
URL http://www.springerlink.com/link.asp?id=984f76cm6b6qv0a4

[8] Despeyroux, J. and P. Leleu, Recursion over objects of functional type, Mathematical Structures in
Computer Science 11 (2001), pp. 555–572.
URL http://citeseer.ist.psu.edu/despeyroux00recursion.html

[9] Despeyroux, J., F. Pfenning and C. Schürmann, Primitive recursion for higher–order abstract syntax,
in: Hindley [18], pp. 147–163, an extended version is available as Technical Report CMU-CS-96-172,
Carnegie Mellon University.

[10] Gödel, K., Über formal unentscheidbare sätze der principia mathematica und verwandter systeme I,
Monatshefte für Mathematik und Physik 38 (1931), pp. 173–198, english version in [24].

[11] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, Journal of the Association for
Computing Machinery 40 (1993), pp. 143–184, a revised and expanded version of the 1987 paper.

[12] Harrison, J., Metatheory and reflection in theorem proving: A survey and critique, Technical Report
CRC-53, SRI International, Cambridge Computer Science Research Centre, Millers Yard, Cambridge,
UK (1995).
URL http://www.cl.cam.ac.uk/users/jrh/papers/reflect.html

[13] Hendriks, D., Proof reflection in Coq, Journal of Automated Reasoning 29 (2002), pp. 277–307.

[14] Hickey, J., A. Nogin, R. L. Constable, B. E. Aydemir, E. Barzilay, Y. Bryukhov, R. Eaton, A. Granicz,
A. Kopylov, C. Kreitz, V. N. Krupski, L. Lorigo, S. Schmitt, C. Witty and X. Yu, MetaPRL — A
modular logical environment, in: D. Basin and B. Wolff, editors, Proceedings of the 16th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2003), Lecture Notes in Computer
Science 2758 (2003), pp. 287–303.
URL http://nogin.org/papers/metaprl.html

[15] Hickey, J., A. Nogin, X. Yu and A. Kopylov, Mechanized meta-reasoning using a hybrid HOAS/de
Bruijn representation and reflection, Accepted to the International Conference on Functional
Programming (ICFP) (2006).

[16] Hickey, J. J., B. Aydemir, Y. Bryukhov, A. Kopylov, A. Nogin and X. Yu, A listing of MetaPRL theories.
URL http://metaprl.org/theories.pdf

[17] Hickey, J. J., A. Nogin, A. Kopylov et al., MetaPRL home page.
URL http://metaprl.org/

[18] Hindley, R., editor, “Proceedings of the International Conference on Typed Lambda Calculus and its
Applications (TLCA’97),” Lecture Notes in Computer Science 1210, Springer-Verlag, Nancy, France,
1997.

[19] Nogin, A. and J. Hickey, Sequent schema for derived rules, in: V. A. Carreño, C. A. Muñoz and S. Tahar,
editors, Proceedings of the 15th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2002), Lecture Notes in Computer Science 2410 (2002), pp. 281–297.
URL http://nogin.org/papers/derived_rules.html

[20] Nogin, A. and A. Kopylov, Formalizing type operations using the “Image” type constructor, Accepted
to Workshop on Logic, Language, Information and Computation (WoLLIC) (2006).

[21] Nogin, A., A. Kopylov, X. Yu and J. Hickey, A computational approach to reflective meta-reasoning
about languages with bindings, in: MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN workshop on
Mechanized reasoning about languages with variable binding (2005), pp. 2–12, an extended version is
available as California Institute of Technology technical report CaltechCSTR:2005.003.

[22] OConnor, R., Essential incompleteness of arithmetic verified by Coq, in: Proceedings of the 18th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2005), Lecture Notes
in Computer Science 3603, 2005, pp. 245–260.

[23] Rueß, H., Computational reflection in the calculus of constructions and its application to theorem
proving, in: Hindley [18].

[24] van Heijenoort, J., editor, “From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931,”
Harvard University Press, Cambridge, MA, 1967.

82

LFMTP 2006

An Algebraic Framework for Logics and
Type Theories

(Invited Talk)

Gordon Plotkin1

LFCS, School of Informatics, University of Edinburgh, U.K.

Abstract

It seems a natural principle to seek logical frameworks that are as simple and as weak as possible while still
enabling direct natural representations of a wide variety of formalisms. We present an algebraic framework,
which can be considered an extension of multi-sorted equational logic with abstraction and dependent types,
but with no ability to form compound types (= sorts) and thereby no λ-abstraction. Abstraction enables
the representation of binding mechanisms; dependent types enables, for example, the representation of the
proofs of a formula; and it seems that no other representational mechanisms are necessary. We present
the system as a combination of two simpler subsystems: one with only parameterisation and one with
only dependent sorts. The closest related previous work is the PAL+ system of Z. Luo which also supplies
mechanisms for parameterisation and dependency and avoids lambda abstraction; our system is, perhaps,
somewhat simpler.

1 Email: gdp@inf.ed.ac.uk.

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

LFMTP 2006

A List-machine Benchmark for
Mechanized Metatheory

(Extended Abstract)

Andrew W. Appel

Princeton University and INRIA Rocquencourt

Xavier Leroy

INRIA Rocquencourt

Abstract

We propose a benchmark to compare theorem-proving systems on their ability to express proofs of compiler
correctness. In contrast to the first POPLmark, we emphasize the connection of proofs to compiler imple-
mentations, and we point out that much can be done without binders or alpha-conversion. We propose
specific criteria for evaluating the utility of mechanized metatheory systems; we have constructed solutions
in both Coq and Twelf metatheory, and we draw conclusions about those two systems in particular.

Keywords: Theorem proving, proof assistants, program proof, compiler verification, typed machine
language, metatheory, Coq, Twelf.

1 How to evaluate mechanized metatheories

The POPLmark challenge [3] aims to compare the usability of several automated
proof assistants for mechanizing the kind of programming-language proofs that
might be done by the author of a POPL paper, with benchmark problems “chosen
to exercise many aspects of programming languages that are known to be difficult
to formalize.” The first POPLmark examples are all in the theory of F<: and
emphasize the theory of binders (e.g., alpha-conversion).

Practitioners of machine-checked proof about real compilers have interests that
are similar but not identical. We want to formally relate machine-checked proofs
to actual implementations, not particularly to LATEX documents. Furthermore,
perhaps it is the wrong approach to “exercise aspects . . . that are known to be
difficult to formalize.” Binders and αβ-conversion are certainly useful, but they

1 Email: appel@princeton.edu
2 Email: Xavier.Leroy@inria.fr

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Appel and Leroy

are not essential for proving real things about real compilers, as demonstrated in
several substantial compiler-verification projects [9,10,13,6,7,8]. If machine-checked
proof is to be useful in providing guarantees about real systems, let us play to its
strengths, not to its weaknesses.

Therefore we have designed a down-to-earth example of machine-checked metathe-
ory, closer to the semantics of typed assembly languages. It is entirely first-order,
without binders or the need for alpha conversion. We specify the Structured Oper-
ational Semantics (SOS) of a simple pointer machine (cons, car, cdr, branch-if-nil)
and we present a simple type system with constructors for list-of-τ and nonempty-
list-of-τ . The benchmark explicitly covers the relationship of proofs about a type
system to proofs about an executable type checker.
The challenge is to represent the type system, prove soundness of the type sys-
tem, represent the type-checking algorithm, and prove that the algorithm correctly
implements the type system. We have implemented the benchmark both in Coq
and in Twelf metatheory, and we draw conclusions about the usability of these two
systems.

We lack space to present here, but discuss in the full paper[1],

• how the needs of implementors (of provably correct compilers and provably sound
typecheckers) differ from the needs of POPL authors addressed by the first
POPLmark;

• a specification of the entire problem down to details such as the recommended
ascii names for predicates and inference rules;

• details of our Coq and Twelf solutions;
• more details about which subtasks were easy or difficult in Coq and Twelf;
• how easy it is to learn Twelf and Coq given the available documentation.

As well as a benchmark, the list machine is a useful exercise for students learning
Coq or Twelf; we present the outlines of our solutions (with proofs deleted) on the
Web [2].

2 Specification of the problem

Machine syntax. Machine values A are cons cells and nil.

a : A ::= nil | cons(a1, a2)

The instructions of the machine are as follows:
ι : I ::=

jump l (jump to label l)
| branch-if -nil v l (if v = nil go to l)
| fetch-field v 0 v′ (fetch the head of v into v′)
| fetch-field v 1 v′ (fetch the tail of v into v′)
| cons v0 v1 v′ (make a cons cell in v′)
| halt (stop executing)
| ι0 ; ι1 (sequential composition)

In the syntax above, the metavariables vi range over variables; the variables them-
selves vi are enumerated by the natural numbers. Similarly, metavariables li range

86

Appel and Leroy

over program labels Li.
A program is a sequence of instruction blocks, each preceded by a label.

p : P ::= Ln : ι; p | end

Operational semantics. Machine states are pairs (r, ι) of the current instruction
ι and a store r associating values to variables. We write r(v) = a to mean that a

is the value of variable v in r, and r[v := a] = r′ to mean that updating r with the
binding [v := a] yields a unique store r′. The semantics of the machine is defined
by the small-step relation (r, ι)

p7→ (r′, ι′) defined by the rules below, and the Kleene
closure of this relation, (r, ι)

p7→∗ (r′, ι′).

(r, (ι1; ι2); ι3)
p7→ (r, ι1; (ι2; ι3))

r(v) = cons(a0, a1) r[v′ := a0] = r′

(r, (fetch-field v 0 v′; ι))
p7→ (r′, ι)

r(v) = cons(a0, a1) r[v′ := a1] = r′

(r, (fetch-field v 1 v′; ι))
p7→ (r′, ι)

r(v0) = a0 r(v1) = a1 r[v′ := cons(a0, a1)] = r′

(r, (cons v0 v1 v′; ι))
p7→ (r′, ι)

r(v) = cons(a0, a1)

(r, (branch-if -nil v l; ι))
p7→ (r, ι)

r(v) = nil p(l) = ι′

(r, (branch-if -nil v l; ι))
p7→ (r, ι′)

p(l) = ι′

(r, jump l)
p7→ (r, ι′)

A program p runs, that is, p ⇓, if it executes from an initial state to a final state.
A state is an initial state if variable v0 = nil and the current instruction is the one
at L0. A state is a final state if the current instruction is halt.

{ }[v0 := nil] = r p(L0) = ι (r, ι)
p7→∗ (r′,halt)

p ⇓

It is useful for a benchmark for machine-verified proof to include explicit ascii

names for each constructor and rule. Our full specification [1] does that.

A type system. We will assign to each live variable at each program point a list
type. To guarantee safety of certain operations, we provide refinements of the list
type for nonempty lists and for empty lists. In particular, the fetch-field operations
demand that their list argument has nonempty list type, and the branch-if-nil
operation refines the type of its argument to empty or nonempty list, depending on
whether the branch is taken.

τ : T ::=
nil (singleton type containing nil)

| list τ (list whose elements have type τ)
| listcons τ (non-nil list of τ)

An environment Γ is an type assignment of types to a set of variables. We define
the obvious subtyping τ ⊂ τ ′ among the various refinements of the list type, using
a common set of first-order syntactic rules, easily expressible in most mechanized
metatheories. We extend subtyping widthwise and depthwise to environments.

We define the least common supertype τ1u τ2 = τ3 of two types τ1 and τ2 as the
smallest τ3 such that τ1 ⊂ τ3 and τ1 ⊂ τ2.

87

Appel and Leroy

In the operational semantics, a program is a sequence of labeled basic blocks. In
our type system, a program-typing, ranged over by Π, associates to each program
label a variable-typing environment. We write Π(l) = Γ to indicate that Γ represents
the types of the variables on entry to the block labeled l.

Instruction typing. Individual instructions are typed by a judgment Π `instr

Γ{ι}Γ′. The intuition is that, under program-typing Π, the Hoare triple Γ{ι}Γ′

relates precondition Γ to postcondition Γ′.
Π `instr Γ{ι1}Γ′ Π `instr Γ′{ι2}Γ′′

Π `instr Γ{ι1; ι2}Γ′′

Γ(v) = list τ Π(l) = Γ1 Γ[v := nil] = Γ′ Γ′ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}(v : listcons τ, Γ′)

Γ(v) = listcons τ Π(l) = Γ1 Γ[v := nil] = Γ′ Γ′ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}Γ
Γ(v) = nil Π(l) = Γ1 Γ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}Γ
Γ(v) = listcons τ Γ[v′ := τ] = Γ′

Π `instr Γ{fetch-field v 0 v′}Γ′
Γ(v) = listcons τ Γ[v′ := list τ] = Γ′

Π `instr Γ{fetch-field v 1 v′}Γ′

Γ(v0) = τ0 Γ(v1) = τ1 (list τ0) u τ1 = list τ Γ[v := listcons τ] = Γ′

Π `instr Γ{cons v0 v1 v}Γ′

Block typing. A block is an instruction that does not (statically) continue with
another instruction, because it ends with a jump.

Π `instr Γ{ι1}Γ′ Π;Γ′ `block ι2
Π;Γ `block ι1; ι2

Π(l) = Γ1 Γ ⊂ Γ1

Π;Γ `block jump l

Program typing. We write |=prog p : Π and say that a program p has program-
typing Π if for each labeled block l : ι in p, the block ι has the precondition Π(l) = Γ
given in Π, that is, Π; Γ `block ι. Moreover, we demand that Π(L0) = v0 : nil, { }
and that every label l declared in Π is defined in p.

Type system vs. type checker. We have presented some relations defined by
derivation rules and some defined informally. This is a bit sloppy, especially where
a derivation rule refers to an informally defined relation; any solution to the bench-
mark must formalize this. We will use the notation |=prog p : Π to mean that
program p has type Π in the (not necessarily algorithmic) type system, and the
notation `prog p : Π to mean that p : Π is derived in some algorithmic type-checker.
The full paper [1] outlines two such algorithmic type-checkers. One is written in
pseudo-code and corresponds to a type-checker implemented in imperative or func-
tional style. The other refines the derivation rules given above to make them fully
syntax-directed and therefore amenable to an implementation as a logic program.

Sample program. The following list-machine program has three basic blocks.
Variable v0 is initialized to nil as prescribed by the operational semantics. Block
0 initializes v1 to the list cons(nil, cons(nil,nil)) and jumps to block 1. Block 1
is a loop that, while v1 is not nil, fetches the tail of v1 and continues. The last
instruction of block 1 is actually dead code (never reached). Block 2 is the loop

88

Appel and Leroy

exit, and halts.
psample =
L0 : cons v0 v0 v1; cons v0 v1 v1; cons v0 v1 v1; jump L1;
L1 : branch-if -nil v1 L2; fetch-field 1 v1 v1; branch-if -nil v0 L1; jump L2;
L2 : halt;
end

The program is well-typed with

Πsample = L0 : (v0 : nil, { }), L1 : (v0 : nil, v1 : list nil, { }), L2 : { }, { }

3 Mechanization tasks

Implementing the “list-machine” benchmark in a mechanized metatheory (MM)
comprises the following tasks:

1. Represent the operational semantics in the MM.

2. Derive the fact that psample ⇓. The MM should conveniently simulate execution
of small examples, so the user can debug the SOS and get an intuitive feel for
its expressiveness.

Soundness of a type system.

3. Represent the type system in the MM (define enough notation to represent the
formula |=prog p : Π and inference rules from which type-soundness could be
proved).

4. Represent in the MM an algorithm for least-common-supertype, that is, the
computation τ1 u τ2 = τ3 producing τ3 from inputs τ1 and τ2.

5. Using the type system, derive the fact that |=prog psample : Πsample. The MM
should conveniently simulate type-checking of small examples, so the user can
debug the type system and get a feel for its expressiveness.

6. Represent the statement of the defining properties of least common supertypes,
e.g., τ1 u τ2 = τ3 ⇒ τ1 ⊂ τ3.

7. Prove that the u algorithm enjoys these properties.

8. Represent the statement of a soundness theorem for the type system. The
informal statement of soundness is, “a well-typed program will not get stuck.”
A program state is not stuck if it steps or halts:

|=prog p : Π initial(p, r, ι) (r, ι)
p7→∗ (r′, ι′)

(∃r′′, ι′′. (r′, ι′) p7→ (r′′, ι′′)) ∨ ι′ = halt
soundness

9. Prove the soundness theorem. The full paper [1] outlines the principal lemmas
of this proof, which is a standard argument by type preservation and progress.

Efficient type-checking algorithm.

10. Represent an asymptotically efficient type-checking algorithm `prog p : Π in
the MM. By efficient we mean that an N -instruction program with M live
variables should type-check in O(N log M) time.

11. Using the type-checking algorithm, calculate `prog psample : Πsample. The MM
should simulate execution of algorithms on small inputs.

12. Prove that the type-checking algorithm terminates on any program.

89

Appel and Leroy

13. Demonstrate the type-checker on large-scale examples with good performance.
Typically this will be done through an automatic translation to Prolog or ML
which is then compiled by an optimizing compiler.

14. Prove that `prog p : Π implies |=prog p : Π. That is, the type-checker soundly
implements the type system.

Writing the paper.

15. Use an automatic tool to generate readable LATEX formulas for the SOS rules,
the typing rules, and the statements of (not the proofs of) the least-common-
supertype lemmas and soundness theorems. Klein and Nipkow [6] demonstrate
this very nicely in the Isabelle/HOL formalization of a Java subset compiler.

4 A proof in Twelf metatheory

The Twelf system[12] is an implementation of the Edinburgh Logical Framework
(LF). One can represent the operators of a logic as type constructors in LF, and
proofs in that logic as terms in LF, and one can do proof-checking by type-checking
the terms (considering them as derivations).

In Twelf one can prove theorems (proofs in a logic), or metatheorems (proofs
about a logic). Either approach could be used for our benchmark. Our solution uses
the usual approach in Twelf, which is metatheoretic.

In this case the logics in question are our operational semantics and our type
system, and the metatheorem to be proved is type soundness: that is, if one can
combine the inference rules of the type system to produce a derivation of type-
checking, then it must be possible to combine the inference rules of the SOS to
produce (only) non-stuck derivations of execution.

This approach is aggressively syntactic. Instead of saying that p is a mapping
from labels to instructions, we give syntactic constructions that (we claim) represent
such a mapping. One consequence of this style is that our |=prog p : Π is not just a
semantic relation, but a syntactically derivable one expressed as Horn clauses. By
carefully structuring the Horn clauses that define our relations so that we can iden-
tify “input” and “output” arguments, we can ensure that the logic-programming
interpretation of our clauses is actually an algorithm. This input-output organi-
zation can be specified and mechanically checked in Twelf via %mode declarations.
Our type system is then directly executable in Twelf.

Each clause in Twelf is named. When Twelf traces out, via Prolog-style back-
tracking, one or more derivations of a result by the successful application of clauses,
it builds as well a derivation tree for each derivation.

In LF, one can compute as well on the derivation trees themselves. Suppose
we write another Prolog program (set of clauses) that takes as input a derivation
tree for type-checking, and produces as output a derivation tree for safe (non-stuck)
execution. If this program is total (that is, terminates successfully on any input)
then we have constructively proved that any well typed program is safe.

To reason about this meta-program, we use (machine-checked) %mode declara-
tions to explain what are the inputs and outputs of the derivation transformer. We
also use (machine-checked) %total declarations to ensure that our meta-program

90

Appel and Leroy

has covered all the cases that may arise, and that our meta-program does not
infinite-loop. We give an example of such a proof in section 6, items 6 and 7.

Twelf has an amazing economy of features. One does not have to learn a module
system—because there is none—one just uses naming conventions on all one’s iden-
tifiers. One does not have to learn how to use large libraries of lemmas and tactics,
because there are no libraries of lemmas and tactics: but such libraries would not
be so useful, because Twelf has few abstraction features, and no polymorphism. All
proofs are done with the simple mechanism of proving the totality of metaprograms.
There’s a calculated gamble here: In return for the benefit of proving everything
in one simple style, and rarely having to translate between abstractions, one trades
away many things: there are some theorems that this notation cannot even express
(because the quantifiers are nested too deep, for example); and there are some things
that are provable but in a contrived way (expressing semantic properties only with
inductive syntactic constructors), as illustrated below.

Our Twelf proof starts by defining inductively the notion of equalities and in-
equalities on natural numbers, labels, variables, type structure, and term structures.
We give syntactic characterizations of well-formed environments (i.e., that do not
map the same variable twice).

Sometimes it is tricky to make a properly inductive syntactic definition of a
semantic property. For example, consider environment subtyping, semantically
Γ1 ⊂env Γ2 ≡ ∀v. v ∈ dom Γ2 ⇒ (v ∈ dom Γ1 ∧ Γ1(v) ⊂ Γ2(v)).

An “obvious” “inductive” definition uses the syntactic rules,

Γ ⊂ {}
a1

Γ1(v) = τ ′ τ ′ ⊂ τ Γ1 ⊂env Γ2

Γ1 ⊂env v : τ, Γ2
a2

The induction is (supposedly) over the size of the term to the right of the ⊂env

symbol. However, this definition is not sufficiently inductive for useful properties
(transitivity, reflexivity) to be provable—at least, we were not able to prove them.
The problem appears to be that Γ1 does not decrease in rule a2.

The following definition is properly inductive—we use Γ′ instead of Γ1 in the
premise of rule b2. Proving transitivity and reflexivity from this definition is easy;
the difficulty is to avoid wasting time with the pseudo-inductive definition above.

Γ ⊂env { }
b1

Γ1
.= (v : τ ′, Γ′) τ ′ ⊂ τ Γ′ ⊂env Γ2

Γ1 ⊂env v : τ, Γ2
b2

5 A proof in Coq

The Coq system [5,4] is a proof assistant based on the Calculus of Inductive Con-
structions. This logic is a variant of type theory, following the “propositions-as-
types, proofs-as-terms” paradigm, enriched with built-in support for inductive and
coinductive definitions of predicates and data types.

From a user’s perspective, Coq offers a rich specification language to define prob-
lems and state theorems about them. This language includes (1) constructive logic
with all the usual connectives and quantifiers; (2) inductive definitions via inference
rules and axioms (as in Twelf’s meta-logic); (3) a pure functional programming
language with pattern-matching and structural recursion (in the style of ML or

91

Appel and Leroy

Haskell).
For the list-machine benchmark, we used a combination of all three specification

styles, following common practice in research papers on type systems. The inference
rules for operational semantics and the type systems are transcribed directly as
inductive definitions. Operations over stores, environments and program-typing,
as well as least common supertypes and the type-checking algorithm are presented
as functions. Finally, subtyping between environments Γ ⊂ Γ′ is defined by the
propositional formula

∀v,∀t′, Γ′(v) = t′ ⇒ ∃t, Γ(v) = t ∧ t ⊂ t′

Unlike Twelf’s meta-theory, the logic of Coq provides rich forms of polymor-
phism. This enabled us to factor out the treatment of stores, environments, and
program-typing by reusing an efficient, polymorphic implementation of finite maps
as radix-2 search trees developed earlier by Leroy as part of the Compcert project [8].

6 Comparison of mechanized proofs

Task Twelf Coq
1. Operational Semantics 126 98 lines
2. Derive p ⇓ 1 8
3. Type system |=prog p : Π 167 130
4. u algorithm * *
5. Derive |=prog psample : Πsample 1 no
6. State properties of u 12 13
7. Prove properties of u 114 21
8. State soundness theorem 29 15
9. Prove soundness of |=prog p : Pi 2060 315

10. Efficient algorithm 22 145
11. Derive `prog psample : Πsample 1 1
12. Prove termination of `prog p : Π 18 0
13. Scalable type-checker yes yes
14. Prove soundness of `prog p : Pi 347 141
15. Generate LATEX no no

We have implemented those tasks that are implementable in both the Twelf
(metatheory) and Coq systems. The number of lines of code required is summarized
in the table above. Total parsing and proof-checking time 3 was 0.558 seconds real
time for Twelf, 2.622 seconds for Coq.

1. Operational semantics. Both Twelf and Coq make it easy and natural
to represent inductive definitions of the kind found in SOS. In Coq one also has
the choice of representing operations over mappings (e.g., lookup and update in
stores) either as relations (defined by inductive predicates) or as functions (defined
by recursion and pattern-matching).

2. Derive p ⇓. Twelf makes it very easy to interpret inductive definitions as
logic programs. Therefore this task was trivial in Twelf. Coq does not provide
a general mechanism to execute inductive definitions. However, the rules for the

3 Dell Precision 360, Linux, 2.8 GHz Pentium 4, 1GB RAM, 512kB cache.

92

Appel and Leroy

operational semantics were simple enough that (after some experimentation) we
could use the proof search facilities of Coq (the eauto tactic) as a poor man’s logic
program interpreter. A more general method to execute inductive definitions in
Coq, which we implemented also, is to define an execution function (61 lines), prove
its correctness with respect to the inductive definition (35 lines), then execute the
function. (Evaluation of functional programs is supported natively by Coq.)

3. Represent the type system. Easy and natural in both Twelf and Coq
(with, as before, the choice in Coq of using the functional presentation of operations
over mappings).

4. Least-upper-bound algorithm. Because the “type system” represented in
Twelf is most straightforwardly done as a constructive algorithm, this was already
done as part of task 3 in our Twelf representation. In Coq, while the type system
itself is not algorithmic, we chose to specify the least-upper bound operation as a
function from pairs of types to types. Therefore, the algorithm to compute least-
upper bounds was already done as part of task 3 in the Coq development as well.

5. Derive an example of type-checking. Trivial to do in Twelf, by running
the type system as a logic program. Not directly possible in Coq because the
specification of the type system is not algorithmic: it uses universal quantification
over all variables to specify environment subtyping.

6. State properties of least-upper-bound. Entirely straightforward in Coq.
For example, here are the Coq statements of these properties:

Lemma lub_comm: forall t1 t2, lub t2 t1 = lub t1 t2.
Lemma lub_subtype_left: forall t1 t2, subtype t1 (lub t1 t2).
Lemma lub_subtype_right: forall t1 t2, subtype t2 (lub t1 t2).
Lemma lub_least: forall t1 t3, subtype t1 t3 ->

forall t2, subtype t2 t3 -> subtype (lub t1 t2) t3.

The correspondence with the mathematical statements of these properties is obvi-
ous.

In Twelf, stating the properties of least-upper-bound must be done in a way
that seems artificial at first, but once learned is reasonably natural. The lemma

τ1 u τ2 = τ3

τ1 ⊂ τ3
lub-subtype-left

is represented as a logic-programming predicate,

lub-subtype-left: lub T1 T2 T3 -> subtype T1 T3 -> type.

which transforms a derivation of lub T1 T2 T3 into a derivation of subtype T1 T3.
The “proof” will consist of logic-programming clauses over this predicate. To be a
“proof” of the property we want, we will have to demonstrate (to the satisfaction
of the metatheory, which checks our claims) that our clauses have the following
properties:

%mode lub-subtype-left +P1 -P2. The modes of a logic program specify which
arguments are to be considered inputs (+) and which are outputs (-). For-
mally, given any ground term (i.e., containing no logic variables) P1 whose type is
lub T1 T2 T3, our clauses (if they terminate) must produce outputs P2 of type
subtype T1 T3 that are also ground terms.

93

Appel and Leroy

%total P1 (lub-subtype-left P1 P2). We ask the metatheorem to check our
claim that no execution of lub-subtype-left can infinite-loop: it must either fail
or produce a derivation of subtype T1 T3; and we check the claim that the
execution never fails (that all cases are covered). The use of P1 in two places
in our %total declaration is (in some sense) mixing the thing to be proved with
part of the proof: we indicate that the induction should be done over argument
1 of lub-subtype-left, not argument 2.

7. Prove properties of least-upper-bound. In Twelf this is done by writ-
ing logic-programming clauses that satisfy all the requirements listed above. For
example, the following 9 clauses will do it:

-: lub-subtype-left lub-refl subtype-refl.
-: lub-subtype-left lub-1 subtype-refl.
-: lub-subtype-left (lub-2 P1) (subtype-list P2) <-

lub-subtype-left P1 P2.
-: lub-subtype-left (lub-2b P1) (subtype-listcons P3) <-

lub-subtype-left P1 P3.
-: lub-subtype-left (lub-3 P1) (subtype-list P2) <-

lub-subtype-left P1 P2.
-: lub-subtype-left lub-4 subtype-nil.
-: lub-subtype-left lub-5 subtype-nil.
-: lub-subtype-left lub-6 (subtype-listcons subtype-refl).
-: lub-subtype-left (lub-7 P1) (subtype-listmixed P2) <-

lub-subtype-left P1 P2.

These are not clauses of a type-checker, they are clauses about a type-checker, and
serve only to “prove” the %mode and %total declarations.

In Coq, the proofs are done interactively by constructing proof scripts. For
example, the proof of lub_subtype_left is:

induction t1; destruct t2; simpl; auto; rewrite IHt1; auto.

which corresponds to doing an induction on the structure of the first type t1, then
a case analysis on the second type t2, then some equational reasoning.

There are 6 separate steps to the Coq proof, each takes just two or three tokens
to write, and each takes some thought from the user. On the other hand, each of
the 9 clauses of the Twelf proof, ranging in size from 6 to 16 tokens, also takes some
thought. The time or effort required to build a proof is not necessarily proportional
to the token count, but we report what measures we have.

8. State soundness theorem for the type system. In Coq, the statement
is just ordinary mathematics. In Twelf, this is done, as above, by writing a logical
predicate that relates a derivation of type-checking to a derivation of runs-or-halts,
and then making the appropriate %mode and %total claims for the Twelf system to
check.

9. Prove soundness of the type system. Writing such a logic program
in Twelf takes more than 2000 lines; our full paper [1] explains this proof in more
detail. The Coq proof of soundness is about 7 times shorter (300 lines). There
are several reasons for Coq’s superiority over Twelf here. The first is Coq’s proof

94

Appel and Leroy

automation facilities, which were very effective for many of the intermediate proofs:
once we indicated manually the structure of the inductions, Coq’s proof search tac-
tics were often able to derive automatically the conclusion from the hypotheses. A
second reason is the use of non-algorithmic specifications, especially for environment
subtyping, which are simpler to reason about. The last reason is the ability to reuse
basic properties over mappings, such as the so-called “good variables” properties,
instead of proving them over and over again.

Twelf lacks the ability to create and re-use abstract data types, so many clauses
of the program and proof must be copied and edited. Twelf has some proof
automation—the %total declaration calculates the structural induction automat-
ically, and (if it fails) prints a report detailing the missing cases—but it does not
automate the case analysis. 4

10. Asymptotically efficient algorithm. In Twelf, the most straightforward
representation of the type system, when run as an algorithm, takes quadratic time.
This is because the rules for looking up labels in global environments Π involve a
search of the length of Π for each lookup. In any Prolog system that permits the
efficient dynamic assertion of new clauses, one can do lookup in constant time (the
Prolog system uses hashing internally). Twelf supports dynamic clauses, so we can
write a nice linear-time “type-checker” as a new logic program, reusing many of the
Horn clauses that constitute the “type system.”

In Coq, the type-checker is defined as a function from program typing and
programs to booleans. Our solution uses intermediate functions for checking envi-
ronment subtyping and for type-checking instructions and blocks. These functions
return option types to signal typing errors, which are propagated in a monadic style.
To avoid an n2 algorithm, we represent environments and program typing as finite
maps implemented by radix-2 search trees. Therefore, the typing algorithm has
O(n log n) complexity.

11. Simulate the new algorithm. This is a trivial matter both in Twelf
and in Coq. In Twelf, once again, we perform a one-line query in the logic-program
interpreter. In Coq, we simply request the evaluation of a function application (of
the type-checker to the sample program and program typing), which is also one line.

12. Prove termination of the type-checker. Twelf has substantial au-
tomated support for doing proofs of termination of logic programs (such as the
type-checker) where the induction is entirely structural. This task was very easy in
Twelf.

In Coq, this task was even easier: all functions definable in Coq are guaranteed
to terminate (in particular, all recursions must be either structural or well-founded
by Noetherian induction), so there was nothing to prove for this task.

13. Industrial-strength type-checker. Coq has a facility to automatically
generate Caml programs from functions expressed in Coq. Automatic extraction of
Caml code from the Coq functional specification of the type-checker produces code
that is close to what a Caml programmer would write by hand if confined to the

4 Supplying the case analysis automatically will be the job of the Twelf metatheorem prover. Unfortunately,
it appears that the metatheorem prover does not work; the Twelf manual says, “The theorem proving
component of Twelf is in an even more experimental stage and currently under active development” [11]
and every version of the manual since 1998 contains this identical sentence. One doubts whether the last
two words are accurate.

95

Appel and Leroy

purely functional subset of the language.
Similarly, Twelf programs (such as our type-checker) that don’t use higher-order

abstract syntax can be automatically translated to Prolog, and those that use HOAS
can be automatically translated to lambda-Prolog. There are many efficient Prolog
compilers in the world, and there is one efficient lambda-Prolog compiler.

14. Prove soundness of type-checker. Straightforward (though a bit te-
dious) both in Twelf and in Coq. Again, Coq’s proof automation facilities result in
a significantly shorter proof (3 times shorter than the Twelf proof).

15. Generate LATEX. Although both Coq and Twelf have facilities for gener-
ating LATEX, neither has a facility that is sufficiently useful for the purposes of this
benchmark.

7 Conclusion

Proofs of semantic properties of operational specifications can be aggressively
“semantic,” meaning that they avoid all proof-theoretic induction over syntax;
denotational-semantic approaches and logical-relations models have this flavor. We
have not discussed these approaches in this paper, but they can be successfully
mechanized in Coq, in Isabelle/HOL, or in an object logic embedded in Twelf; how-
ever, it does not seem natural to mechanize semantic proofs in Twelf metatheory.

Or the proofs can be aggressively “syntactic,” meaning that only proof-theoretic
induction is used, and we avoid any attribution of “meaning” to the operators; the
Wright-Felleisen notation [14] encourages this approach. Coq and Isabelle support
this style, among others; Twelf metatheory supports only this pure proof-theoretic
style. The advantages to using a pure style are that the metatheory itself can be
much smaller and simpler—making it easier to learn and easier to reason about.
Indeed, Twelf is a much simpler and smaller system than Coq.

Between these two extremes, it is possible to reason using a mix of semantic
and syntactic reasoning. Authors who believe they are writing in a purely Wright-
Felleisen style are often reasoning semantically about such things as environments
and mappings. The Coq system supports the mixed style (or either of the two ex-
tremes) reasonably well. Therefore, it may be the case that specifications expressed
in Coq are closer to what one would write in a research paper. Coq proofs can
be substantially shorter than Twelf proofs, especially when experienced experts are
manipulating the language of tactics. Therefore Coq may be a language of choice
for those who do not want to commit in advance to a purely proof-theoretic style.

However, our benchmark does not exercise one of the main strengths of the
Twelf system, the higher-order abstract syntax and related proof mechanisms. For
syntactic theories that use binders and αβη-conversion, the comparison might come
out differently.

References

[1] Appel, A. W. and X. Leroy, A list-machine benchmark for mechanized metatheory, Research report
5914, INRIA (2006).

96

Appel and Leroy

[2] Appel, A. W. and X. Leroy, List-machine exercise (2006), http://www.cs.princeton.edu/~appel/
listmachine/ or http://gallium.inria.fr/~xleroy/listmachine/.

[3] Aydemir, B. E., A. Bohannon, N. Foster, B. Pierce, D. Vytiniotis, G. Washburn, S. Weirich,
S. Zdancewic, M. Fairbairn and P. Sewell, The POPLmark challenge (2005), http://fling-l.seas.
upenn.edu/~plclub/cgi-bin/poplmark/.

[4] Bertot, Y. and P. Castran, “Interactive Theorem Proving and Program Development – Coq’Art: The
Calculus of Inductive Constructions,” EATCS Texts in Theoretical Computer Science, Springer-Verlag,
2004.

[5] The Coq proof assistant (1984–2006), software and documentation available from http://coq.inria.
fr/.

[6] Klein, G. and T. Nipkow, A machine-checked model for a Java-like language, virtual machine and
compiler, ACM Transactions on Programming Languages and Systems (To appear).

[7] Leinenbach, D., W. Paul and E. Petrova, Towards the formal verification of a C0 compiler, in: 3rd
International Conference on Software Engineering and Formal Methods (SEFM 2005) (2005), pp.
2–11.

[8] Leroy, X., Formal certification of a compiler back-end, or: Programming a compiler with a
proof assistant, in: POPL’06: 33rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2006), pp. 42–54.

[9] Moore, J. S., A mechanically verified language implementation, Journal of Automated Reasoning 5
(1989), pp. 461–492.

[10] Moore, J. S., “Piton: a mechanically verified assembly-language,” Kluwer, 1996.

[11] Pfenning, F. and C. Schuermann, Twelf user’s guide, version 1.4 (2002), http://www.cs.cmu.edu/
~twelf/guide-1-4.

[12] Pfenning, F. and C. Schürmann, System description: Twelf — a meta-logical framework for deductive
systems, in: The 16th International Conference on Automated Deduction (1999).

[13] Strecker, M., Formal verification of a Java compiler in Isabelle, in: Proc. Conference on Automated
Deduction (CADE), Lecture Notes in Computer Science 2392 (2002), pp. 63–77.

[14] Wright, A. K. and M. Felleisen, A syntactic approach to type soundness, Information and Computation
115 (1994), pp. 38–94.

97

LFMTP 2006

A Formalization of Strong Normalization for
Simply-Typed Lambda-Calculus and System

F

Kevin Donnelly1,2 and Hongwei Xi1,3

Computer Science Department, Boston University
Boston, USA

Abstract

We formalize in the logical framework ATS/LF a proof based on Tait’s method that establishes the simply-
typed lambda-calculus being strongly normalizing. In this formalization, we employ higher-order abstract
syntax to encode lambda-terms and an inductive datatype to encode the reducibility predicate in Tait’s
method. The resulting proof is particularly simple and clean when compared to previously formalized ones.
Also, we mention briefly how a proof based on Girard’s method can be formalized in a similar fashion that
establishes System F being strongly normalizing.

Keywords: Logical frameworks, Normalization, Tait’s method, Logical relations, Reducibility candidates,
HOAS, ATS/LF

1 Introduction

ATS/LF [4] is a logical framework rooted in the Applied Type System [15] and
is a pure total fragment of the programming language ATS. It uses a restricted
form of dependent types in which types may only be indexed by terms drawn from
limited domains in which equality is decidable (and can also be effectively reasoned
about). ATS/LF supports the use of higher-order abstract syntax (HOAS) [9] to
encode object languages. The use of HOAS, in which object variables are identified
with metavariables and β-reduction models substitution, leads to particularly simple
and elegant encodings. The combination of a limited type-index language and
a powerful proof language, as found in ATS/LF, allows for inductive proofs of
metatheorems over full higher-order abstract syntax to be directly encoded as total
recursive functions. The use of inductive datatypes with negative occurrences allows
for the encoding of the reducibility predicate.

1 The work is partly funded by NSF grant CCR-0229480
2 Email: kevind@cs.bu.edu
3 Email: hwxi@cs.bu.edu

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Donnelly and Xi

In this paper, we formalize a proof of strong normalization of the simply typed
lambda-calculus (STLC) using Tait’s method, closely following the one in [7]. On
one hand, we use HOAS to encode lambda-terms, obviating the need for explicitly
manipulating substitution on such terms. On the other hand, we use first-order
abstract syntax (FOAS) to encode typing derivations in STLC, which conveniently
supports inductive reasoning on typing derivations.

To our knowledge this is the first formalized (or mechanized) proof of strong nor-
malization using Tait’s method for an object language defined with HOAS. When
compared to other formalized proofs of strong normalization in the literature, the
brevity of our formalized proof and its closeness to the concise and elegant proof
in [7] yield some concrete evidence in support of the effectiveness of the represen-
tation of STLC in ATS/LF. To further strengthen this claim, we also discuss the
extension to the case of System F, formalizing a proof of strong normalization of
System F based on Girard’s notion of reducibility candidates [6]. We expect that
the techniques developed here can also allow for the formalization of other proofs
by logical relations while still being able to take advantage of HOAS.

2 ATS/LF

ATS/LF is split into two main parts: the language of types and type indices (called
the statics), and the language of proofs (called the dynamics). The statics is basi-
cally simply-typed lambda-calculus with constants (but no recursion), and terms in
the statics are referred to as static terms and types in the statics are referred to as
sorts. There are three important built-in base sorts:

• prop : A sort for static terms which represent types of proofs.
• int : A sort for static integer terms. There are constants for each integer

(. . . , -1, 0, 1, . . . : int) and for addition (+ : (int, int) → int) and subtraction
(- : (int, int) → int).

• bool : A sort for static boolean conditions. There are constants for truth values
(true, false : bool) and equality and inequality on integers (=, < : (int, int) →
bool).

Static constants may take multiple arguments. Equality in the statics is basically
β-conversion plus Presburger arithmetic, and it is decided by converting to βη long
normal form and then using a decision procedure for integer (in)equalities (after
mapping boolean terms to integer terms).

The dynamics is a dependently typed language with well-founded recursion,
exhaustive case-analysis and inductive datatypes. Termination is checked using a
programmer-supplied metric, which is a tuple of static terms representing natu-
ral numbers and decreasing in each recursive call according to the standard lex-
icographic ordering. Please see [13] for more details on this style of termination
checking. Case coverage is checked by requiring that any unlisted cases introduce
assumptions that allow false to be proven [14]. In the concrete syntax, a proof
(function) declaration looks like:

99

Donnelly and Xi

Syntax:

terms t ∈ tm ::= x | λx.t | t1 t2 | c
types τ ∈ tp ::= B | τ1 → τ2

contexts Γ ∈ ctx ::= · | Γ, x : τ

Fig. 1. Syntax for Simply-typed λ-calculus

prfun proofName {x1:stx1, ..., xn:stxn} .<m1, ..., mk>.
(p1:T1, ..., pl:Tl) : [y1:sty1, ..., ym:stym] T = ...

This declaration is for a total recursive function called proofName (prfun is a
keyword for introducing proof functions) with the type:

∀x1 : stx1, . . . , ∀xn : stxn.(T1, . . . , Tl) → ∃y1 : sty1, . . . , ∃ym : stym.T

This type signature consists of four parts. First, there are n static parameters xi of
sorts stx i, enclosed in curly braces (think of these as universally quantified). Sec-
ond, there is a metric, enclosed in .< and >., which is a k-tuple of static terms
representing natural numbers and may contain x1, . . . , xn. Third, there are l dy-
namic parameters pi with types Ti that may contain x1, . . . , xn. Fourth, there is the
return type which consists of m existentially quantified static variables yi of sorts
sty i and a type T which may contain x1, . . . , xn, y1, . . . , ym. In the case where the
declared function proofName is not recursive, we may also use the keyword prfn
and give no metric. Please see [4,5] for some examples of proofs formed in ATS/LF.

3 Encoding the Object Language

3.1 Syntax

The object language for which we prove strong normalization is STLC with a con-
stant c and a base type B. The syntax of the language is shown in Figure 1. We
will encode the syntax in the statics using HOAS. In order to do so we declare a
static sort for each syntactic category. We begin with a sort, tm, with constructors
for each term constructor of the object language:

TMlam : (tm → tm) → tm TMapp : (tm, tm) → tm TMcst : tm

Object variables are encoded as metavariables. The constant TMcst is only used
in the formalization as a placeholder when recursing under lambda binders. Object
functions are represented by functions in the statics, and this allows us to model
substitution in the object language with application in the metalanguage. The terms
of the object language are encoded in the statics with the function p·q defined by:

pxq = x pcq = TMcst

pλx.tq = TMlam(λx.ptq) pt1 t2q = TMapp(pt1q, pt2q)

This is a compositional bijection between terms of the object language with up to
n free variables and static terms of sort tm with up to n free variables.

To encode types we declare a sort tp, with constructors for each type constructor
of the object language:

TPbas : tp TPfun : (tp, tp) → tp

In some encodings with HOAS, there is no explicit representation of contexts in the
representation of typing judgments, but instead the context of the metalanguage is

100

Donnelly and Xi

Reduction: t1 −→ t2

t −→ t′

λx.t −→ λx.t′
(REDlam)

t1 −→ t′1

t1 t2 −→ t′1 t2
(REDapp1)

t2 −→ t′2

t1 t2 −→ t1 t′2
(REDapp2)

(λx.t1) t2 −→ t1[t2/x]
(REDapp3)

Fig. 2. Reduction rules for λ-calculus

utilized. Such higher-order representations of the typing judgment, as often used in
Twelf [10], benefit from inheriting substitution on typing from the metalanguage,
and so do not need a typing substitution lemma. On the other hand, the use of
explicit contexts allows for a first-order representation of typing derivations. This,
along with the separation between statics and dynamics, allows us to prove metathe-
orems directly, using total recursive functions, while still taking advantage of HOAS
for object syntax. The inconvenience of having to prove substitution on typing
derivations is minor, and not pervasive as issues involving binders in the syntax are.
In fact, we do not ever need to make use of substitution on typing derivations in
the proof of strong normalization. Contexts, of sort ctx, are represented by lists of
pairs of a tm and a tp:

CTXnil : ctx CTXcons : (tm, tp, ctx) → ctx

We may sometimes abbreviate CTXcons(t,T,G) as (t, T) :: G. Really this sort
represents explicitly typed substitutions. A term of sort ctx only represents a well-
formed context if its tm subterms are all distinct metavariables. We will return to
this issue when we encode typing derivations.

3.2 Reduction

The rules for small-step reduction for pure λ-calculus are shown in Figure 2. Reduc-
tion, t −→ t′, is encoded as a datatype with type constructor RED : (tm, tm, int) →
prop (where the third index measures the size of the derivation) and one term con-
structor to encode each rule in Figure 2. The most interesting rules are REDlam
and REDapp3 which correspond to the dynamic term constructors:

REDlam : ∀f : tm → tm.∀f ′ : tm → tm.∀n : nat.

(∀x : tm. RED(f x, f ′ x, n))→ RED(TMlam f, TMlam f ′, n + 1)

REDapp3 : ∀f : tm → tm.∀t : tm. RED(TMapp(TMlam f, t), f t, 0)

Since the rules themselves are first order, adequacy follows from the fact that the
higher-order syntax in the type indices correspond to the right terms. The most
interesting rule is REDlam: from the quantification in the argument of the con-
structor (∀x : tm. RED(f x, f ′ x, n)) and the fact that application in the statics
models substitution, we can see that f x and f ′ x represent lambda-terms with x
being free and that TMlam f and TMlam f ′ represent these same terms with x
bound by a lambda.

3.3 Type Assignment

The rules for typing judgments are shown in Figure 3. We begin by defining the
context lookup relation (x : τ) ∈ Γ. For this we use a datatype with type constructor
INCTX : (tm, tp, ctx, int) → prop, where INCTX(t, T, G, n) means that (t, T) is at

101

Donnelly and Xi

Type formation: ` τ type

` B type
(TPbas)

` τ1 type ` τ2 type

` τ1 → τ2 type
(TPfun)

Typing: Γ ` t : τ

(x : τ) ∈ Γ ` τ type

Γ ` x : τ
(DERvar)

Γ, x : τ1 ` t : τ2 ` τ1 type

Γ ` λx.t : τ1 → τ2
(DERlam)

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2
(DERapp)

Fig. 3. Typing rules for Simply-typed λ-calculus

the nth index in G (abbreviated as (t, T) ∈n G), and two term constructors which
correspond to the rules:

(t, T) ∈0 ((t, T) :: G)
(INCTXone)

(t, T) ∈n G

(t, T) ∈n+1 ((t′, T ′) :: G)
(INCTXshi)

Note that if INCTX(t, T, G, n) is inhabited, its member is unique and isomorphic
to n (since it is a non-branching tree of depth n).

We encode the judgment ` τ type with a datatype, where the type constructor
is TP : (tp, int) → prop and the term constructors represent the following rules
(where we write `n T type for TP(T, n)):

`0 TPbas type
(TPbas)

`n1 T1 type `n2 T2 type

`n1+n2+1 TPfun(T1, T2) type
(TPfun)

While the constructors of this type have the same names as terms of sort tp, there
is no ambiguity because dynamic terms are strictly separated from static terms.
The type TP(T, n) contains a single element which is isomorphic to T if the size
of T is n. The size index is used to provide a metric to support induction on the
structure of types. For convenience, we define TP0(T) ≡ ∃n : nat. TP(T, n) (which
we abbreviate as ` T type).

The encoding of the typing judgment Γ ` t : τ is a dependent datatype, DER :
(ctx, tm, tp, int) → prop, where the last index is a measure of the size of the typing
derivation. The constructors correspond to the inference rules in Figure 4 (where
G `n t : T abbreviates DER(G, t, T, n)). The typing rule for variables is encoded
by the term constructor:

DERvar : ∀G : ctx.∀t : tm.∀T : tp.∀n : nat. (INCTX(t, T, G, n),TP0 T) → DER(G, t, T, 0)

The context is represented as a list, so the variable lookup identifies the index in the
list that corresponds to the given variable. The typing rule for lambda-abstraction
is encoded by the following constructor:

DERlam : ∀G : ctx.∀f : tm → tm.∀T1 : tp.∀T2 : tp.∀n : nat.∀l : nat.

(TP0 T1,∀x. DER(CTXcons(x, T1, G), f x, T2, n)) →
DER(G, TMlam f,TPfun(T1, T2), n + 1)

Note that the quantification over x in the second argument of this constructor
(∀x.DER(CTXcons(x, T1, G), f x, T2, n)) guarantees that x is a metavariable not
occurring in G and thus CTXcons(x, T1, G) is a well-formed context if G is. The

102

Donnelly and Xi

Encoded Typing: G `n t : T

(t, T) ∈n G ` T type

G `0 t : T
(DERvar)

` T1 type (∀x. (x, T1) :: G `n f x : T2)

G `n+1 TMlam f : TPfun(T1, T2)
(DERlam)

G `n1 t1 : TPfun(T1, T2) G `n2 t2 : T1

G `n1+n2+1 TMapp(t1, t2) : T2
(DERapp)

Fig. 4. Encoded Typing Rules

typing rule for application is encoded by the following constructor:

DERapp : ∀G : ctx.∀t1 : tm.∀t2 : tm.∀T1 : tp.∀T2 : tp.∀n1 : nat.∀n2 : nat.

(DER(G, t1,TPfun(T1, T2), n1),DER(G, t2, T1, n2)) →
DER(G, TMapp(t1, t2), T2, n1 + n2 + 1)

For convenience we also define DER0(G, t, T) ≡ ∃n : nat. DER(G, t, T, n). This
representation for typing derivations is quite interesting. The dynamic terms inhab-
iting the datatype DER0(G, t, T) are isomorphic to simply-typed lambda-terms of
Church-style in which variables are represented as de Bruijn indices. The context G
is a typed substitution, which we can decompose into a substitution Θ = 〈t1, . . . , tm〉
(which maps the ith variable to ti for 1 ≤ i ≤ m) and a context Γ = 〈T1, . . . , Tm〉.
The datatype DER0(G, t, T) really represents a hypothetical judgment saying that
if we have derivations of ` ti : Ti (for 1 ≤ i ≤ m) then we can form a derivation of
` t : T . As long as Θ is a list of distinct meta-variables (say 〈x1, ..., xm〉), this is
an adequate encoding of the usual typing judgment x1 : T1, ..., xm : Tm ` t : T . We
can guarantee that a context is well-formed in this way when it is empty or when
it appears in a derivation that is a sub-derivation of one with an empty context.
We are able to prove strong normalization for terms typed in the empty context
and, since reduction under lambda is allowed, this implies strong normalization for
terms containing free variables as well.

4 Strong Normalization Proof

In this section, we formalize a proof of strong normalization of STLC based on Tait’s
method [12]. The formalized proof is nearly identical to the one in [7], with the only
exception that we use the constant c in some places where the proof in [7] uses a
variable. The cause for this exception directly results from HOAS being chosen
for representing lambda-terms (and thus making it difficult to manipulate object
variables). The proofs for the final few lemmas and strong normalization theorem
are given in Appendix A and the entire proof can be found on-line:

http://www.cs.bu.edu/~hwxi/ATS/EXAMPLE/LF/STLC-SN-hoas.dats

Definition 4.1 (Strong Normalization) A term t is strongly normalizing with bound
n, written SNn(t), if for all t′ such that t −→ t′ we have SNn′(t′) for some natural
number n′ < n (i.e. all reduction sequences starting from t have length at most
n). A term t is strongly normalizing, written SN0(t), if there is some n such that
SNn(t).

103

Donnelly and Xi

SNn(t) is encoded using a dependent datatype with type constructor SN : (tm, int) →
prop and one term constructor of the same name:

SN : ∀t : tm.∀n : nat.(∀t′ : tm.RED0(t, t′) → ∃n′ < n. SN(t′, n′)) → SN(t, n)

We encode SN0(t) by defining SN0(t) ≡ ∃n : nat. SN(t, n). Strong normalization is
closed under forward and backward reduction.

Lemma 4.2 If SNn(t) and t −→ t′ then SNn′(t′) for some n′ < n.

Proof. This follows directly from the definition of SNn(t). 2

The ATS/LF proof for this lemma is given as follows:
prfn forwardSN {t:tm, t’:tm, n:nat}

(sn: SN(t, n), red: RED0(t, t’)) : [n’:nat | n’ < n] SN(t’, n’) =
let prval SN (fsn) = sn in fsn red end

The keyword prval here is similar to the keyword val in ML.

Lemma 4.3 If for all t′, t −→ t′ implies SN0(t′), then SN0(t).

Proof. For any t there are a finite number of t′ such that t −→ t′. For each of
these t′ we have SNn′(t′) for some n′. If we take n to be one plus the maximum of
these n′ (which exists because there are only finitely many) then we have SNn(t) so
SN0(t). 2

This is an obvious consequence of the definition of SN0 and the fact that each term
has a finite number of different reducts, and formalizing it in ATS/LF is entirely
uninspiring (as the argument is purely set-theoretic). So we use the keyword dynprf
to introduce it as an unproven lemma:
dynprf backwardSN : {t:tm} ({t’:tm} RED0 (t, t’) -> SN0 t’) -> SN0 t

This is the only unproven lemma in the entire formalization.
Attempting to directly prove strong normalization of well-typed terms by induc-

tion on typing derivations does not work because the induction hypothesis is not
strong enough to handle application terms. In order to make the proof go through,
we strengthen the induction hypothesis using the notion of reducibility, introduced
by Tait [12].

Definition 4.4 (Reducibility) A lambda-term t is reducible at a type τ , written
Rτ (t), if:

(i) τ is a base type (that is, B in our case) and SN0(t), or

(ii) τ is τ1 → τ2 and for all t′, Rτ1(t
′) implies Rτ2(t t′).

It should be emphasized that Rτ (t) does not necessarily imply that t can be assigned
the type τ . As a matter of fact, we have RB(ω) for ω = λx.xx according to the
definition. Also, it is clear that we cannot have RB→B(ω) as it would otherwise
imply RB(ωω), which is a contradiction since ωω is not normalizing.

The definition in ATS/LF uses a dependent datatype with type constructor
R : (tm, tp) → prop and two term constructors:

Rbas : ∀t : tm. SN0 t → R(t, TPbas)
Rfun : ∀t : tm.∀T1 : tp.∀T2 : tp.

(∀t1 : tm.R(t1, T1) → R(TMapp(t, t1), T2)) → R(t, TPfun(T1, T2))

104

Donnelly and Xi

This is not a positive datatype because there is a negative occurrence of R in the
function case. However, this definition is still well-founded because the tp index
is structurally decreasing in all recursive occurrences (both positive and negative).
This allows us to view the datatype as being built up inductively in levels stratified
by the tp index. In particular, this means that when we are building the level
corresponding to TPfun(T1, T2), the levels corresponding to T1 and T2 are already
complete and thus the set of functions from level T1 to level T2 (which are the
possible arguments of Rfun) is also complete.

We begin by proving some important properties of the reducibility predicate.
We first define neutral terms as follows.

Definition 4.5 (Neutrality) A term is neutral if it is either the constant c or an
application of the form t t′.

This is defined in ATS/LF as a dependent datatype with type constructor NEU :
tm → prop and term constructors:

NEUcst : NEU(TMcst) NEUapp : ∀t : tm.∀t′ : tm. NEU(TMapp(t, t′))

We can now state and prove four important properties of reducibility, which are
given the names CR 1-4 in [7]:

CR 1: If Rτ (t) then SN0(t),

CR 2: If Rτ (t) and t −→ t′ then Rτ (t′),

CR 3: If t is neutral and for all t′, t −→ t′ implies Rτ (t′), then Rτ (t), and

CR 4: Rτ (c) for any τ , which is a special case of CR 3.

We first prove CR 2 on its own, and then prove CR 1, 3 and 4 simultaneously.

Lemma 4.6 (CR 2) Proof. By induction on τ :

case: τ = B, so we have SN0(t). By closure of strong normalization under forward
reduction (Lemma 4.2) we have SN0(t′), so RB(t′).

case: τ = τ1 → τ2, so for all t1, Rτ1(t1) implies Rτ2(t t1). Fix any t1 such that
Rτ1(t1), then we have Rτ2(t t1) and since t t1 −→ t′ t1, by induction hypothesis,
we have Rτ2(t

′ t1). Therefore Rτ1→τ2(t
′).

2

The proof is encoded in ATS/LF as follows:
prfun cr2 {t:tm, t’:tm, T:tp, n:nat} .<n>.

(tp: TP (T, n), r: R(t, T), rd : RED0(t, t’)): R(t’, T) =
case* r of // [case*] indicates exhaustive pattern matching

| Rbas (sn) => Rbas (forwardSN (sn, rd))
| Rfun{_, T1, _} (fr) => let

prval TPfun (_, tp2) = tp
in

Rfun(lam {t1:tm} (r:R(t1,T1)) => cr2(tp2, fr r, REDapp1 rd))
end

This proof function is a fairly straightforward encoding of the argument, taking the
extra argument of type TP(T, n) to provide a termination metric. The proof has a
slightly unusual feature: the Rfun case binds the static argument T1 in order to be
able to provide the type for the lambda-bound variable r.

Lemma 4.7 (CR 1, 3, 4) Proof. We prove CR 1, CR 3, CR 4, in that order,

105

Donnelly and Xi

by induction on τ . The argument for CR 3 makes use of a nested induction, and
CR 4 follows directly from CR 3 at each level.

case: τ = B. Reducibility at base types is just strong normalization.
CR 1: Direct from the definition of RB(·).
CR 3: By Lemma 4.3.

case: τ = τ1 → τ2.
CR 1: Let t be a term with Rτ1→τ2(t). By CR 4 induction hypothesis, Rτ1(c),

therefore Rτ2(t c). By CR 1 induction hypothesis t c is SN and any reduction
of t induces a reduction of t c, so t is SN.

CR 3: Let t be neutral such that for all t′ with t −→ t′ we have Rτ1→τ2(t
′). Let

t1 be a term such that Rτ1(t1), we need to show Rτ2(t t1). By CR 1 induction
hypothesis we know SNn(t1) for some n and we continue by nested induction on
n. t t1 is neutral, so if we show that all terms that it reduces to are reducible,
then we can use CR 1 induction hypothesis to conclude Rτ2(t t1). Suppose
t t1 −→ t2:
case: t2 = t′ t1, with t −→ t′. We know Rτ1→τ2(t

′) and Rτ1(t1), so we have
Rτ2(t

′ t1).
case: t2 = t t′1 with t1 −→ t′1. By CR 2 induction hypothesis Rτ1(t

′
1), and by

Lemma 4.2, SNn′(t′1) for some n′ < n, so by induction Rτ2(t t′1).
These are the only possibilities because t is neutral.

2

The full ATS/LF proof of this is omitted for brevity; it consists of 4 mutually
recursive proof functions:

cr1 : ∀t : tm.∀T : tp.∀n : nat. (TP(T, n),R(t, T)) → SN0(t)
cr3 : ∀t : tm.∀T : tp.∀n : nat. (NEU(t),TP(T, n),∀t′. RED0(t, t′) → R(t′, T)) → R(t, T)

cr3a : ∀t : tm.∀t1 : tm.∀T1 : tp.∀T2 : tp.∀m : nat.∀n1 : nat.∀n2 : nat.

(TP(T1, n1),TP(T2, n2),NEU(t),R(t1, T1),SN(t1,m),
∀t′. RED0(t, t′) → R(t′,TPfun(T1, T2))) → R(TMapp(t, t1), T2)

cr4 : ∀T : tp.∀n : nat. TP(T, n) → R(TMcst, T)

Each of these functions takes arguments of the form TP(T, n) in order to provide
a metric that corresponds to structural recursion on T . The auxiliary lemma cr3a
performs the inner induction on the length of the strong normalization bound of t1,
which is provided by its argument of type SN(t1,m).

Lemma 4.8 If for all reducible t at type τ1, Rτ2(t1[t/x]), then Rτ1→τ2(λx.t1).

Proof. Assume Rτ1(t). By CR 1, we know there is n1 such that SNn1(t1[c/x]) (and
therefore SNn1(t1)) and n2 such that SNn2(t). We now proceed by induction on
n1 + n2 to prove that Rτ2((λx.t1) t). We will show that (λx.t1) t −→ t′ implies
Rτ2(t

′) for every t′. There are three possibilities.

• (λx.t1) t reduces to t1[t/x], which is reducible by the hypothesis of the lemma.
• (λx.t1) t reduces to (λx.t1) t′ with t −→ t′. By CR 2, Rτ1(t

′) and by Lemma 4.2
there is n′ < n with SNn′(t′), and thus we have Rτ2((λx.t1) t′) by induction.

• (λx.t1) t reduces to (λx.t′1) t with t1 −→ t′1. By CR 2, t′1[t/x] is reducible for any
reducible t and the strong normalization bound of (λx.t′1) is less than (λx.t1). So
(λx.t′1) t is reducible by induction.

106

Donnelly and Xi

Note that (λx.t1) t is neutral. By CR 3, we have Rτ2((λx.t1) t). Since Rτ2((λx.t1) t)
holds for every t satisfying Rτ1(t), we have Rτ1→τ2(λx.t1) by definition. 2

The formalization of this proof in ATS/LF is a total recursive function with the
type:

absSound : ∀f : tm → tm.∀T1 : tp.∀T2 : tp.

(TP0(T1),TP0(T2),∀t : tm.R(t, T1) → R(f t, T2)) →
R(TMlam f,TPfun(T1, T2))

The proof closely follows the informal one given above, taking additional arguments
of types TP0(T1) and TP0(T2), which are needed in calls to cr2 and cr3. It also
makes a call to the proof function reduceFun to perform the inner induction on the
sum of the normalization bounds (n1 + n2 in the informal proof).

Now we can prove the main reducibility lemma which states that, given a term
t, with a typing Γ ` t : T and a substitution Θ such that for x ∈ dom(Γ), Θ(x) is
reducible at type Γ(x), then t[Θ], the result of applying Θ to t, is reducible at type
T .

Lemma 4.9 Let t be a term with x1 : τ1, . . . , xn : τn ` t : τ . If t1, . . . , tn are terms
such that Rτi(ti) (for 1 ≤ i ≤ n) then Rτ (t[t1/x1, . . . , tn/xn]).

Proof. By induction on the derivation of x1 : τ1, . . . , xn : τn ` t : τ . We write
t[t/x] for t[t1/x1, . . . , tn/xn].

t = xi: Then t[t/x] = ti and τ = τi and by hypothesis Rτi(ti).

t = t′ t′′: Then, by induction hypothesis, Rτ ′→τ (t′[t/x]) and Rτ ′(t′′[t/x]). By the
definition of Rτ ((t′[t/x]) (t′′[t/x])) and (t′[t/x]) (t′′[t/x]) = (t′ t′′)[t/x].

t = λx.t′: (assume x is fresh with respect to x1, . . . , xn and t1, . . . , tn) Then τ is of
the form τ ′′ → τ ′. Fix t′′ such that Rτ ′′(t′′). By induction hypothesis, Rτ ′(t′[t/x, t′′/x]).
By Lemma 4.8, Rτ ′′→τ ′(λx.t′[t/x]), and by the freshness of x, (λx.t′[t/x]) =
(λx.t′)[t/x].

2

When we prove this lemma in ATS/LF, the higher-order encoding buys us quite
a bit over a first-order encoding. Because of HOAS, we do not have to think about
freshness of variables nor do we have to explicitly prove that the substitution com-
mutes with the lambda binding when handling the lambda case. Lemma 4.9 is
encoded in ATS/LF as a total function, which we omit for brevity:

reduceLemma : ∀G : ctx.∀t : tm.∀T : tp.∀n : nat. (DER(G, t, T, n),RS0(G)) → R(t, T)

Note that RS0(G) is a datatype that associates with each (ti, Ti) in G, a proof
of the reducibility predicate R(ti, Ti). Also note that we take advantage of the
representation of contexts as typed substitutions to state the lemma. It is now a
simple matter to prove strong normalization for closed terms using Lemma 4.9 and
CR 1.

normalize : ∀t : tm.∀T : tp. DER0(CTXnil, t, T) → SN0(t)

It is easy to see that this implies strong normalization for open terms as well, because
any reduction on a term with free variables corresponds to a reduction in the closed
term formed by abstracting these variables.

107

Donnelly and Xi

5 Strong Normalization for System F

We have also formalized a proof of strong normalization for (the Curry-style version
of) System F, which can be found on-line:

http://www.cs.bu.edu/~hwxi/ATS/EXAMPLE/LF/F-SN-hoas.dats

The terms and reduction rules for the language are the same as for STLC. The
types of System F are given by:

τ ::= α | τ1 → τ2 | ∀α.τ

The types are encoded with a first-order representation using de Bruijn indices:

TPvar : int → tp TPfun : (tp, tp) → tp TPall : tp → tp

This representation means that we have to spend a great deal of effort proving
lemmas about renumbering and substitution. However, we do not know if it is
possible to prove strong normalization using a higher-order representation for types.

We extend the type well-formedness judgment ` τ type to include a context:
∆ ` τ type, and list the new rules as follows:

α ∈ ∆
∆ ` α type

(TPvar)
∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type
(TPfun)

∆, α ` τ type

∆ ` ∀α. τ type
(TPall)

Typing judgments are extended to include the extra context and there are also two
additional typing rules for handing type abstraction and application:

∆, α; Γ ` t : τ

∆; Γ ` t : ∀α.τ
(DERtabs)

∆; Γ ` t : ∀α.τ ∆ ` τ1 type

∆; Γ ` t : τ [τ1/α]
(DERtapp)

where DERtabs has the side condition that α is not free in Γ.
The approach of directly defining reducibility does not work for System F be-

cause we cannot make the argument that the datatype representing reducibility is
inductive on the tp index. For this reason we need to generalize to reducibility
candidates which are all the predicates satisfying CR 1, CR 2 and CR 3. We en-
code predicates as static terms of sort tm → prop (we define rc ≡ tm → prop for
convenience) and we define propositions:

CR1(R) ≡ ∀t : tm. R(t) → SN0(t)
CR2(R) ≡ ∀t : tm.∀t′ : tm. (R(t), RED0(t, t′)) → R(t′)
CR3(R) ≡ ∀t : tm. (NEU(t), ∀t′ : tm.RED0(t, t′) → R(t′)) → R(t)
RC(R) ≡ (CR1(R), CR2(R), CR3(R))

Strong normalization (SN0) is defined just as before. It is straightforward to show
that SN0 meets the three conditions:

sn is rc : RC(SN0)

As a consequence of CR3, any reducibility candidate holds for the constant:

cr cst : ∀R : rc. RC(R) → R(TMcst)

The crux of the reducibility candidates is to define interpretations for types as
reducibility candidates and to show that whenever a term t can be given a type τ ,
it is in the reducibility candidate that interprets τ . The fact that a term is strongly
normalizing if it is in a reducibility candidate gives us the final result.

108

Donnelly and Xi

In order to interpret types as candidates, we define the arrow and universal
quantification constructors for reducibility candidates:

RCFUN0(R1, R2)(t) ≡ ∀t1 : tm. R1(t1) → R2(TMapp(t, t1))
RCALL0(RF)(t) ≡ ∀R : rc. RC(R) → (RF (R))(t)

And we prove that these constructors preserve candidates:

rcfun is rc : ∀R1 : rc.∀R2 : rc. (RC(R1),RC(R2)) → RC(RCFUN0(R1, R2))
rcall is rc : ∀RF : rc → rc. (∀R : rc.RC(R) → RC(RF (R))) → RC(RCALL0(RF))

It is an important property that the typing rule for lambda is sound with respect
to the arrow on candidates:
abs lemma : ∀R1 : rc.∀R2 : rc.∀f : tm → tm.

(RC(R1),RC(R2),∀t : tm. R1(t) → R2(f t)) → RCFUN0(R1, R2)(TMlamf)

To provide a context for parameters in reducibility candidates, we define the sort
rcs for lists of reducibility candidates:

RCSnil : rcs RCScons : (rc, rcs) → rcs

In order to lookup parameters in the list we use a datatype (similar to INCTX)
with type constructor RCSI : (rcs, rc, int) → prop and term constructors:

RCSIone : ∀R : rc.∀C : rcs. RCSI(RCScons(R,C), R, 0)
RCSIshi : ∀R : rc.∀R′ : rc.∀C : rcs.∀n : nat.

RCSI(C,R, n) → RCSI(RCScons(R′, C), R, n + 1)

We actually use rcs to represent ∆ in typing derivations, which have type construc-
tor DER : (rcs, ctx, tm, tp, int) → prop. Only the length of the rcs term matters in
derivations (the actual predicates in the list are not reflected in the dynamic rep-
resentation), and derivations with an empty Γ and any ∆ are adequately encoded.
The use of rcs in DER (rather than simply a natural number bound on the indices)
makes some of the lemmas easier to state.

Next, we define the interpretation of types as reducibility candidates with pa-
rameters. For this, we use a dependent datatype with type constructor TPI :
(rcs, tp, rc, int) → prop, and term constructors:

TPIvar : ∀C : rcs.∀T : tp.∀R : rc.∀n : nat. RCSI(C,R, n) → TPI(C,TPvar n, R, 0)
TPIfun : ∀C : rcs.∀T1 : tp.∀T2 : tp.∀R1 : rc.∀R2 : rc.∀n1 : nat.∀n2 : nat.

(TPI(C, T1, R1, n1),TPI(C, T2, R2, n2)) →
TPI(C,TPfun(T1, T2),RCFUN0(R1, R2), n1 + n2 + 1)

TPIall : ∀C : rcs.∀T : tp.∀RF : rc → rc.∀n : nat.

(∀R : rc.TPI(RCScons(R,C), T, RF (R), n)) →
TPI(C,TPall(T),RCALL0(RF), n + 1)

For convenience we define TPI0(C, T,R) ≡ ∃n : nat.TPI(C, T,R, n). In order to
prove that the interpretation of a type is a reducibility candidate if all the free
variables are interpreted by reducibility candidates, we introduce a datatype RCS :
(rcs, int) → prop such that RCS(C, n) is a sequence of proofs of RC(R) for each R
in C. We can then prove the desired lemma:

tpi is rc : ∀C : rcs.∀T : tp.∀R : rc.∀n : nat. (RCS0 C,TPI(C, T,R, n)) → RC(R)

where RCS0(C) ≡ ∃n : nat.RCS(C, n).

109

Donnelly and Xi

The last major lemma we need is a substitution lemma on interpretations of
types, which we omit for brevity. In order to state the main lemma, we need
to define an environment mapping terms to proofs showing that the terms in the
appropriate candidates. For this we use the datatype ETA : (rcs, ctx, int) → prop
where ETA(C,G, m) is a sequence of pairs of (TPI0(C, T,R), R(t)) for each (t, T)
in G. The main lemma is:

der rc lemma : ∀G : ctx.∀t : tm.∀T : tp.∀n : nat.∀C : rcs.∀m : nat.

(DER(C,G, t, T, n),ETA(C,G, m),RCS0 C) →
∃R : rc. (TPI0(C, T,R), R(t))

The proof of this lemma is quite involved, mostly due to manipulations of de Bruijn
indices. The final theorem is then easy to prove:

der sn : ∀t : tm.∀T : tp.DER0(RCSnil,CTXnil, t, T) → SN0(t)

This simply means that every well-typed expression in System F is strongly nor-
malizing.

6 Related Work

There have been several formalizations of proofs of normalization for STLC in the
past. Abel [1] encodes a proof of weak normalization for STLC in Twelf. As in
our proof, the object language is represented using HOAS. However, normaliza-
tion is proved using an inductive characterization of the weakly normalizing terms,
following Joachimski and Matthes [8], rather than Tait’s method of reducibility
predicates. Sarnat and Schürmann [11] have recently given a proof of weak normal-
ization directly in Twelf using a logical relation. They encode minimal first-order
logic which is then used in the definition of the logical relation. It is not clear
whether their technique would allow a similar encoding of strong normalization.
Berger, Berghofer, Letouzy and Schwichtenberg [3] give proofs of strong normal-
ization for STLC using Tait’s method in three systems: Isabelle/HOL, Coq, and
Minilog. They also analyze the programs that can be extracted from the formal
proofs. However, the formalizations described all make use of first-order represen-
tations (using either de Bruijn indices or names for variables) rather than HOAS
and also start from a large number of unproven axioms (eleven).

Strong normalization for System F has previously been formalized by Altenkirch [2]
using the Lego system. His formalization uses the de Bruijn encoding for both terms
and types, and because of this, is significantly longer and more complicated than
our proof. Even though our formalization contains full proof terms, rather than
tactic-based scripts, it is shorter by about a factor of two.

7 Conclusion

We have presented formalizations of proofs of strong normalization for STLC and
System F which use HOAS and Tait’s and Girard’s methods (respectively). The
unique features of ATS/LF (in particular the separation between statics and dynam-
ics) allow for the encoding of powerful logical relations arguments over the simple
and elegant language encodings enabled by HOAS. In these proofs we found that
HOAS made it much easier to deal with the mundane details of naming and sub-

110

Donnelly and Xi

stitution, which often take the majority of the effort in first-order encoding. 4 As
a result, we are able to define the syntax and semantics of STLC and prove strong
normalization as described, all in less than 300 lines of commented ATS/LF code!
For System F, the proof is likewise short, under 900 lines.

References

[1] Abel, A., Weak normalization for the simply-typed lambda-calculus in Twelf, in: Logical Frameworks
and Metalanguages (LFM 04), IJCAR, Cork, Ireland, 2004.

[2] Altenkirch, T., A Formalization of the Strong Normalization Proof for System F in LEGO, in:
M. Bezem and J. F. Groote, editors, Proceedings of the International Conference on Typed Lambda
Calculi and Applications (1993), pp. 13–28.

[3] Berger, U., S. Berghofer, P. Letouzey and H. Schwichtenberg, Program extraction from normalization
proofs, Studia Logica (2005), special issue, to appear.

[4] Chen, C. and H. Xi, Combining Programming with Theorem Proving, in: Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programming, Tallinn, Estonia, 2005, pp. 66–77.

[5] Donnelly, K. and H. Xi, Combining higher-order abstract syntax with first-order abstract syntax in
ATS, in: MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN workshop on Mechanized reasoning
about languages with variable binding (2005), pp. 58–63.

[6] Girard, J.-Y., Une Extension de l’Interprétation de Gödel à l’Analyse, et son Application à

l’Élimination des Coupures dans l’Analyse et la Théorie des Types, in: J. E. Fenstad, editor, Proceedings
of the Second Scandinavian Logic Symposium, Studies in Logic and the Foundations of Mathematics
63 (1971), pp. 63–92.

[7] Girard, J.-Y., Y. Lafont and P. Taylor, “Proofs and Types,” Cambridge Tracts in Theoretical Computer
Science 7, Cambridge University Press, Cambridge, England, 1989, xi+176 pp.

[8] Joachimski, F. and R. Matthes, Short proofs of normalization for the simply-typed lambda-calculus,
permutative conversions and Gödel’s T, Arch. Math. Log. 42 (2003), pp. 59–87.

[9] Pfenning, F. and C. Elliott, Higher-order abstract syntax, in: Proceedings of the ACM SIGPLAN ’88
Symposium on Language Design and Implementation, Atlanta, Georgia, 1988, pp. 199–208.

[10] Pfenning, F. and C. Schürmann, System description: Twelf - a meta-logical framework for deductive
systems, in: H. Ganzinger, editor, Proceedings of the 16th International Conference on Automated
Deduction (CADE-16) (1999), pp. 202–206.

[11] Sarnat, J. and C. Schürmann, On the Representation of Logical Relations, Yale University Technical
Report, YaleU/DCS/TR1362 (2006).

[12] Tait, W. W., Intensional Interpretations of Functionals of Finite Type I, Journal of Symbolic Logic 32
(1967), pp. 198–212.

[13] Xi, H., Dependent Types for Program Termination Verification, Journal of Higher-Order and Symbolic
Computation 15 (2002), pp. 91–132.

[14] Xi, H., Dependently Typed Pattern Matching, Journal of Universal Computer Science 9 (2003), pp. 851–
872.

[15] Xi, H., Applied Type System (2005), available at:
http://www.cs.bu.edu/~hwxi/ATS.

4 Actually, we have also formalized a strong normalization proof of STLC that uses FOAS to represent
lambda-terms:

http://www.cs.bu.edu/~hwxi/ATS/EXAMPLE/LF/STLC-SN-foas.dats

There are several unproven lemmas in this formalization, which can certainly be finished but require some
effort on handling substitution that is uninspiring and tedious.

111

Donnelly and Xi

A ATS/LF proof of final lemmas and theorem

...

// application reducibility lemma
prfun reduceFun
{f:tm->tm, t:tm, T1:tp, T2:tp, n1:nat, n2:nat} .<n1+n2>.
(tp1: TP0 T1, tp2: TP0 T2,
sn1: SN(TMlam f, n1), sn2:SN(t, n2), r1:R(t, T1),
fr2: {t:tm} R(t, T1) -> R(f t, T2)): R(TMapp(TMlam f, t), T2) = let

prval r1’ = fr2 r1
prfn fr {t’:tm} (red:RED0(TMapp(TMlam f, t), t’)) : R(t’, T2) = case* red of
| REDapp1(red’) =>
let

prval REDlam {f, f’,_} fred’ = red’
prfn fr2’ {t:tm} (r: R(t, T1)): R(f’ t, T2) =
cr2(tp2, fr2 r, fred’{t})

in
reduceFun(tp1, tp2, forwardSN(sn1, red’), sn2, r1, fr2’)

end
| REDapp2(red’) =>
reduceFun(tp1, tp2, sn1, forwardSN(sn2, red’), cr2(tp1, r1, red’), fr2)

| REDapp3() => r1’
in

cr3(NEUapp, tp2, fr)
end

// the abstraction rule is sound with respect to redicible terms
prfn absSound {f:tm->tm, T1:tp, T2:tp}
(tp1: TP0 T1, tp2: TP0 T2,
frr : {t:tm} R(t, T1) -> R(f t, T2)) : R(TMlam f, TPfun(T1, T2)) =
let

prfn fr {t:tm} (rt: R(t, T1)) : R(TMapp(TMlam f, t), T2) =
let

prval snt = cr1(tp1, rt)
prval snf = lamSN(cr1 (tp2, frr {TMcst} (cr4 tp1)))

in
reduceFun (tp1, tp2, snf, snt, rt, frr)

end
in

Rfun(fr)
end

// pick specified reducibility predicate from the sequence
prfun rGet {t:tm, T:tp, G:ctx, n:nat} .<n>.
(i:INCTX(t,T,G,n),rs: RS0(G)) : R(t,T) = case* i of
| INCTXone() => (case* rs of RScons(r,_) => r)
| INCTXshi i => (case* rs of RScons(_,rs) => rGet(i, rs))

// The assigned type can be extracted from a derivation
prfun der2tp {G:ctx, t:tm, T:tp, n:nat} .<n>. (der: DER(G,t,T,n)): TP0 T =
case* der of
| DERvar (_, tp) => tp
| DERlam (tp1, derf) => let prval tp2 = der2tp derf in TPfun (tp1,tp2) end
| DERapp (der1, der2) => let prval TPfun (_, tp2) = der2tp der1 in tp2 end

// main lemma
prfun reduceLemma {G:ctx, t:tm, T:tp, n:nat} .<n>.
(der: DER(G,t,T,n), rs: RS0 G): R (t, T) =
case* der of

112

Donnelly and Xi

| DERvar (i,_) => rGet (i, rs)
| DERlam {_,f,T1,T2,_} (_, derf) =>
let

prval TPfun{T1, T2, s1, s2} (tp1, tp2) = der2tp der
prfn gr {t:tm} (r: R(t,T1)): R(f t, T2) = let
prval rs’ = RScons (r, rs)
prval r’ = reduceLemma (derf{t}, rs’)

in
r’

end
prfn fr {t:tm} (r: R(t,T1))
: R(TMapp(TMlam f, t), T2) = let
prval lamf_red = absSound(tp1, tp2, gr)
prval Rfun(red_imp) = lamf_red

in
red_imp r

end
in

Rfun fr
end

| DERapp (der1, der2) =>
let

prval r1 = reduceLemma(der1, rs)
prval Rfun fr = r1
prval r2 = reduceLemma(der2, rs)

in
fr r2

end

// all typable terms are reducible
prfn reduce {t:tm, T:tp} (der: DER0 (CTXnil,t,T)): R (t,T) =
reduceLemma(der, RSnil())

// the final theorem
prfn normalize {t:tm, T:tp} (der: DER0 (CTXnil,t,T)): SN0 t =
cr1(der2tp der, reduce der)

113

LFMTP 2006

Encoding Functional Relations in Scunak

Chad E. Brown1

Universität des Saarlandes
Saarbrücken, Germany

Abstract

We describe how a set-theoretic foundation for mathematics can be encoded in the new system Scunak.
We then discuss an encoding of the construction of functions as functional relations in untyped set theory.
Using the dependent type theory of Scunak, we can define object level application and lambda abstraction
operators (in the spirit of higher-order abstract syntax) mediating between functions in the (meta-level)
type theory and (object-level) functional relations. The encoding has also been exported to Automath and
Twelf.

Keywords: Set Theory, Dependent Type Theory, Proof Irrelevance, Formal Mathematics

1 Introduction

Untyped set theory is often considered a foundation for mathematics because most of
the usual mathematical objects of interest can be constructed as sets. For instance,
certain sets can be considered pairs, and certain sets of pairs can be considered
functions. In textbooks, this construction is described informally, as carrying out
such a construction in standard first-order formulations of set theory is tedious. In
this paper, we will describe how such a construction can be carried out in a natural,
but fully formal, manner by encoding the construction in a dependent type theory.
(Of course, such constructions have been formalized before in other systems [7,3,6].)

The construction can be carried out using the type theories implemented in
Twelf [8] or Automath [9]. However, we will show how the encoding becomes easier
and arguably more natural using the system Scunak. We then export the signature
to Twelf and Automath.

There are essentially two reasons why the encoding is natural in Scunak. First,
Scunak includes “class types.” Second, the concrete syntax for types and terms
includes some syntactic sugar for set theory notation.

Type-theoretically, class types are particular instances of Σ-types for pairs of
the form 〈x, p〉 where x is an object and p is a proof of a property of the object.

1 Email: cebrown@ags.uni-sb.de

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Brown

Scunak also includes proof irrelevance, so that the Σ-types behave in some ways as
subset types rather than types of pairs. The reason for calling these “class” types
is set theoretic. Assuming all mathematical objects are sets (a common assumption
in axiomatic set theory), predicates correspond to classes. For each predicate φ, the
class type for φ in Scunak is essentially

{〈x, p〉|x is an object and p is a proof of φ(x)}

This set corresponds to the class {x|φ(x)} if there is at most one proof of φ(x) for
each x (i.e., if one has proof irrelevance). Without proof irrelevance, such Σ-types do
not correspond to classes since elements in the class may have several representatives
in the Σ-type. While class types play an important role in the construction described
in this paper, proof irrelevance can be avoided. Consequently, we will for the most
part avoid discussing proof irrelevance.

We refer to three systems throughout the paper: Scunak, Twelf, and Automath.
Each of these refers to an implemented system which includes, at least, a type
checker for some type theory. Twelf [8] includes a checker for the LF type theory [5]
(as well as various other important features). Simply referring to “Automath” is
ambiguous, since there have been a number of type theories in the Automath family
which have been implemented More than once [4]. When we refer to “Automath”
as a type theory, we are referring to AUT-68. When we refer to “Automath” as a
system, we are referring to Freek Wiedijk’s C implementation of a checker for the
AUT-68 and AUT-QE type theories [9].

The new system we discuss in this paper is Scunak [2,1]. Scunak includes a
type checker for what we will call the “Scunak type theory.” Within this type
theory, one can specify foundations for mathematics by giving a signature. We
will demonstrate this in the paper by describing an axiomatic set theory and a
construction of functions as functional relations. Of course, Scunak includes a
concrete syntax (the pam syntax) for specifying types and terms. The pam syntax
provides syntactic sugar for set theoretic constructions. For instance, notation such
as {x:A|x::B} can be used where {x ∈ A|x ∈ B} is intended. The parser expands
this into a term in the Scunak type theory.

2 Syntax

We begin by briefly describing the Scunak type theory. We use x, y, z, x1, . . . to
denote variables and c, d, c1, . . . to denote constants. For terms, we take untyped
λ-terms with constants and pairing. The basic types are as follows:

• obj is the type of all mathematical objects. In set theory, objects are sets.
• prop is the type of all propositions.
• pf P is the type of all proofs of the proposition P .
• class φ, where φ is a property, is the type of pairs 〈M,N〉 where M is an object

and N is a proof that M satisfies the property φ.

For types, we take the dependent types generated starting from these basic types.
In other words, we have:

115

Brown

Terms M,N,P, φ, . . . := x|c|(λx.M)|(M N)|〈M,N〉|π1(M)|π2(M)

Types A,B,C, . . . := obj|prop|(pf P)|(class φ)|(Πx : A.B)

We use A→ B to denote Πx : A.B when x does not occur free in B.
We use [M/x] to denote substitution of M for x. We assume familiarity with

β-reduction and the following pairing reductions:

(π1) : π1(〈M,N〉) →π1 M (π2) : π2(〈M,N〉) →π2 N

When type-checking, we restrict to βπ1π2-normal terms. If such a normal term M

is neither of the form (λx.M1) nor 〈M1,M2〉, we say M is an extraction. We use
E, F , E1, E2, . . . to denote extractions. We could optionally include η-reduction
and a surjective pairing reduction reducing 〈π1(M), π2(M)〉 to M , but these are not
needed for type checking the signature considered in this paper. (One can enable
or disable such reductions in Scunak using flags.)

As usual, Σ denotes a signature c1 : A1, . . . , cn : An. Similarly, Γ denotes a
context x1 : B1, . . . , xm : Bm. We assume (but do not discuss) validity of signatures
and contexts.

In order to account for proof irrelevance, the main judgments in the Scunak type
theory are Γ `M ∼ N ↑ A (checking normal terms M and N are equal at type A)
and Γ ` E ∼ F ↓ A (extracting a type A at which extractions E and F are equal).
Rules for such judgments are given in [1]. Since we will not need proof irrelevance in
this paper, we can give a simplified typing judgment and rely on structure equality
of normal forms of terms. We let M↓ and A↓ denote the normal form of types and
terms, respectively. Since terms are untyped, normal forms do not always exist. In
the cases we consider in this paper, normal forms exist. The type judgments we
consider here are the following:

• Γ `Σ M ↑ A (Check normal term M has type A.)
• Γ `Σ E ↓ A (Extract type A for extraction E.)
• Γ `Σ A : Type (Check A is a valid type.)

The corresponding rules are given in Figures 1 and 2.
It is important to note that this is a simplification of the actual type-

checking performed in Scunak. The term (λPλφλuλvλw.w) can be checked to
inhabit type (ΠP : prop.Πφ : (pf P → prop).Πu : (pf P).Πv : (pf P).Πw :
(pf (φu)).pf (φ v)) by making use of proof irrelevance. (In particular, the proofs
u and v can be considered the same.) However, the term does not inhabit the
type using the simplified form of typing presented here. While semantically proof
irrelevance is vital for class types to correspond to classes, in the Scunak signa-
tures considered so far, proof irrelevance has rarely actually been used during type
checking. Even when proof irrelevance is used, its use can often be eliminated fairly
easily. In the first construction of functions from sets in Scunak, proof irrelevance
was used a few times, but these occurrences were eliminated by slightly modifying
a few declarations.

Naturally, there are several important meta-theoretic questions one could inves-
tigate regarding the Scunak type theory. Is it possible that a type is inhabited by
a non-normal term, but inhabited by no normal term? The answer to this question

116

Brown

x : A ∈ Γ

Γ ` x ↓ A

c : A ∈ Σ

Γ ` c ↓ A

Γ ` E ↓ (Πx : A.B) Γ ` M ↑ A

Γ ` (EM) ↓ ([M/x]B)

Γ ` E ↓ class φ

Γ ` π2(E) ↓ pf (φ π1(E))

Γ ` E ↓ class φ

Γ ` π1(E) ↓ obj

Γ ` E ↓ B B ∈ {obj, prop}

Γ ` E ↑ B

Γ ` E ↓ pf M M↓ = N

Γ ` E ↑ pf N

Γ, z : A ` [z/u]M ↑ [z/x]B z ∈ V fresh

Γ ` (λuM) ↑ (Πx : A.B)

Γ, z : A ` (Ez) ↑ [z/x]B z ∈ V fresh

Γ ` E ↑ (Πx : A.B)

Γ `Σ M1 ↑ obj Γ `Σ M2 ↑ pf (φ M1)

Γ `Σ 〈M1, M2〉 ↑ class φ

Γ `Σ π1(E) ↑ obj Γ `Σ π2(E) ↑ pf (φ π1(E))

Γ `Σ E ↑ class φ

Fig. 1. Rules for Typing Judgments without Proof Irrelevance

Γ ` A : Type Γ, z : A ` [z/x]B : Type z ∈ V fresh

Γ ` (Πx : A.B) : Type Γ ` obj : Type

Γ ` prop : Type

Γ ` M ↑ prop

Γ ` pf M : Type

Γ ` M ↑ (obj → prop)

Γ ` class M : Type

Fig. 2. Simplified Rules for Valid Types

is trivially “no”, since only normal terms can be judged to inhabit a type given the
algorithmic typing rules in Figure 2. Meta-theoretic issues such as normalization
and subject reduction become interesting once one considers a typing judgment for
arbitrary terms. One can then consider whether the algorithmic typing judgment
is complete with respect to the more general judgment. One can also consider se-
mantics for types and terms. We leave such issues for future work. At the moment
the emphasis of the research is on investigating the naturality of encoding formal
mathematics in the Scunak type theory.

A Scunak signature can be translated into a Twelf or Automath signature. In
both Twelf and Automath, one begins by declaring three basic type families cor-
responding to obj, prop and pf. When translating to Twelf or Automath, any
occurrences of class types are removed by Currying. So long as the Scunak sig-
nature can be type-checked using the simplified typing system above (i.e., proof
irrelevance is not needed), the resulting Twelf and Automath files should be well-
typed. In the signature described below, we have managed to remove all essential
uses of proof irrelevance so that the corresponding Twelf and Automath files do type
check. (Actually, one must explicitly add %abbrev to some Twelf abbreviations by
hand, but this is a separate issue.)

117

Brown

3 Specifying a Set Theory

One can give a signature of constants and abbreviations for Scunak in pam files.
The pam syntax allows a mixture of set theoretic and type theoretic notations.
(pam stands for “pseudo-Automath” since some of the notation is similar to Au-
tomath. However, the pam syntax is also significantly different from Automath.) To
demonstrate the pam syntax, we describe a pam file for a form of set theory starting
from certain axioms and ending with a definition of functions as functional rela-
tions. We begin by describing the constants in the signature which correspond to
the axiomatic kernel of the set theory. Similar encodings of a variety of foundational
systems for mathematics in Automath are discussed in [10].

Throughout a pam file, one can specify local parameters. For example,

[M:prop][N:prop][y:obj][z:obj][A:set][B:set][C:set]

Intuitively, this declaration of parameters means: “Let M and N be propositions, y
and z be objects, and A, B and C be sets.” (Note that obj and set are synonyms,
standing for the same basic type obj.)

The declaration

(not M):prop.

introduces a new constant not of type prop → prop into the signature. (Note the
use of the parameter M of type prop as an argument.)

In order to obtain classical logic, we can declare an excluded middle proof by
cases rule as follows:

[case1:|- M -> |- N]
[case2:|- (not M) -> |- N]
(xmcases M N case1 case2):|- N.

The parameters case1 and case2 correspond to the two premises of the rule. Note
that |- N is the pam syntax for the type (pf N). The type of xmcases is

ΠM : prop.ΠN : prop.(pf M → pf N) → (pf (notM) → pf N) → pf N

We also declare the usual elimination rule for negation.

(notE M N):|- M -> |- (not M) -> |- N.

The usual introduction rule for negation, as well as the proof by contradiction rule,
can be derived using xmcases and notE.

Negation and the two rules above translate into the following Twelf code

not : prop -> prop.
xmcases : {M:prop} {N:prop} (pf M -> pf N)

-> (pf (not M) -> pf N) -> pf N.
notE : {M:prop} {N:prop} pf M -> pf (not M) -> pf N.

as well as corresponding Automath code. Since class types have not yet been used,
the Scunak, Twelf, and Automath versions are very similar.

One may expect to see more propositional connectives (such as conjunction or
implication) in the signature. However, once we include the set theory constructors

118

Brown

and axioms, we can actually define these connectives. We will show such definitions
later.

The basic relations in set theory are equality and membership.

(eq y z):prop.
(in A z):prop.

In pam syntax, one can write (y==z) for (eq y z) and (z::A) for (in A z). Note
that (in A z) intuitively represents the proposition z ∈ A. The reason the ar-
guments are reversed is so that the η-short form (in A), an extraction of type
obj → prop, represents the “class” of all members of A.

An equality elimination rule corresponding to replacing equals by equals is in-
cluded in the signature. We omit this here.

The rule for set extensionality is declared as follows.

[AsubB:{x:obj}{u:|- (x::A)}|- (x::B)]
[BsubA:{x:obj}{u:|- (x::B)}|- (x::A)]
(setext A B AsubB BsubA):|- (A==B).

The type of the parameter BsubA is Πx : obj.Πu : pf (in B x).pf (in Ax). Intu-
itively, this corresponds to a premise stating that every element of B is an element
of A. That is, B is a subset of A. However, note that this represents the assertion
that B is a subset of A at the type level, not at the level of propositions. We will
reuse the parameter BsubA when declaring the rules for powerset.

At this point, we can begin describing the basic set constructors and the rules
(or axioms) corresponding to each such constructor.

There is an empty set. We encode this axiom simply by declaring a constant
emptyset of type obj.

emptyset:obj.

In pam syntax, one can write {} for emptyset. If some y is in the empty set, then
every proposition M holds.

[yinempty:|- (y::{})]
(emptysetE y yinempty M):|- M.

We can adjoin y to the set A to obtain the set y;A (or, {y} ∪A).

(setadjoin y A):obj.

In pam syntax, (y;A) represents (setadjoin y A). There is special pam syntax for
finite enumerated sets which expands into emptyset and setadjoin. One can
use {x1,...,xn} (intuitively, the finite set {x1, . . . , xn}) to represent the term
(setadjoin x1 ... (setadjoin xn emptyset)). In particular, {y} and {y,z}
correspond to the terms (setadjoin y emptyset) and
(setadjoin y (setadjoin z emptyset)), respectively. We omit the three rules
for introducing and eliminating setadjoin.

The power set of A is a set. There are two rules for introducing and eliminating
the powerset. (Note the reuse of the parameter BsubA declared above.)

(powerset A):obj.
(powersetI A B BsubA):|- (B::(powerset A)).

119

Brown

(powersetE A B z):|- (B::(powerset A)) -> |- (z::B) -> |- (z::A).

The union of A (intuitively,
⋃
A) is a set. There are two corresponding rules,

omitted here.

(setunion A):obj.

Finally, we come to the most interesting axiom: separation. We can state this
as follows. For any property ψ(x) of elements x ∈ A, there is a set {x ∈ A|ψ(x)}.

[psi:A -> prop]
(dsetconstr A psi):obj.

We have declared the parameter psi to have type A -> prop. However, technically,
A is a term, not a type. In pam syntax one is allowed to use an extraction as a type,
so long as the extraction has type obj or obj → prop. In this case, A has type
obj. So, Scunak assumes the intention is for A to be the class type class (inA). 2

Technically, the type of psi is (class (inA)) → prop and the type of dsetconstr
is ΠA : obj.((class (inA)) → prop) → obj.

In pam syntax, we write {x:A|M} for (dsetconstr A (\x.M)), where a back-
slash is pam syntax for a λ binder.

Note that dsetconstr makes explicit use of a class type. Consequently, in the
translations to Twelf and Automath, ψ becomes a function of two arguments: an
object x1 and a proof x2 that x1 is in A. In Twelf, we have

dsetconstr : {A:obj} ({x1:obj} pf (in A x1) -> prop) -> obj.

We omit the proof rules for dsetconstr.
It is important that in the set construction above, ψ(x) can make use of the fact

that x ∈ A (as opposed to x being simply an object). This allows one to specify sets
such as {x ∈ (R \ {0})|x2−1

x = 0} where one must know x 6= 0 in order to construct
the term representing x2−1

x .
These axioms are sufficient to describe all hereditary finite sets. If one adds an

axiom of infinity, one essentially obtains a form of Mac Lane set theory (Zermelo
set theory with bounded quantifiers).

4 From Set Theory Axioms to Binary Relations

Starting from the axioms of set theory described above, one can define the usual
propositional connectives as well as bounded quantification. Also, one can construct
pairs and define binary relations as certain sets of pairs. This provides the infras-
tructure for defining functions (at the object level). We describe this infrastructure
below.

First, we can define true and false as ∅ ∈ {∅} and ∅ ∈ ∅, respectively.

true:prop=({}::{{}}).
false:prop=({}::{}).

The important properties of true and false hold. Namely, there are terms inhab-
iting pf true and ΠP : prop.pf false → pf P .

2 This is a concrete example justifying reversing the usual order of arguments of in.

120

Brown

For any proposition M , {x ∈ {∅}|M} is {∅} if M is true and ∅ if M is false.
Using this set, we can embed the type of propositions into the type of objects.

(prop2set M):obj={x:{{}}|M}.

Using prop2set, we can define disjunction, implication and conjunction. The types
corresponding to the usual natural deduction rules for these connectives are inhab-
ited.

(or M N):prop=({{}}::{prop2set M,prop2set N}).
(imp M N):prop=((not M) | N).
(and M N):prop=(not (M => (not N))).

In pam syntax, we can write (M | N), (M => N), and (M & N) for (or M N),
(imp M N), and (and M N), respectively.

If A is a set and ψ(x) is a property of elements of A, then {x ∈ A|ψ(x)} = A

iff ψ(x) holds for all x ∈ A. Similarly, {x ∈ A|ψ(x)} 6= ∅ iff ψ(x) holds for some
x ∈ A. We use these facts to define bounded quantifiers.

(dall A psi):prop=({x:A|psi x}==A).
(dex A psi):prop=(not ({x:A|psi x}=={})).

In pam syntax, we write (forall x:A . M) and (exists x:A . M) as syntactic
sugar for (dall A (\x.M)) and (dex A (\x.M)), respectively.

In fact, dall and dex are bounded, dependent quantifiers. We can use the fact
that x is in the set A in the construction of the proposition x ∈ A. Thus, we can
sensibly represent a proposition such as ∃x ∈ (R \ {0}).x2−1

x = 0.
Using bounded quantification, we can define subset.

(subset A B):prop=(forall x:A . (x::B)).

In pam syntax, we can write (A <= B) for (subset A B).
Binary union A ∪B is defined as

⋃
{A,B}.

(binunion A B)=(setunion {A,B}).

In pam syntax, we can write (A \cup B) for (binunion A B).
A set A is a singleton if there is some x such that A = {x}. Since we only have

bounded quantification, we must give a set in which that x must live. That is, we
do not have a term corresponding to the proposition ∃x.(A = {x}). Instead we
must use an appropriate set B and represent the proposition as ∃x ∈ B.(A = {x}).
In this case, an appropriate choice of B is obvious: A.

(singleton A):prop=(exists x:A . (A=={x})).

Since singleton has type obj → prop, class singleton is a valid class type.
In the pam syntax, we can simply use the extraction singleton as a type:

[S:singleton]

Note that if S be a member of this class, then π1(S) has type obj and π2(S) has
type pf (singleton π1(S)). In pam syntax, one never explicitly writes π1 and
π2 operators. If S is used where a term of type obj is expected, Scunak recon-
structs the term π1(S). If S is used where a term of type pf (singleton π1(S))
is expected, Scunak reconstructs π2(S). In particular, we write the proposition

121

Brown

(
⋃
S) ∈ S as ((setunion S)::S) in pam syntax. The reconstructed term is

(in π1(S) (setunion π1(S))). We can declare a claim (i.e., a signature element
for which a definition will be declared) called theprop of this proof type.

(theprop S):|- ((setunion S)::S)?

There is a term inhabiting this type, which we omit here. Once one gives the term
as the definition (i.e., proof) of theprop, then theprop is an abbreviation and no
longer a claim.

Using theprop, we can define a dependently typed description operator the as
follows:

(the S):(in S)=<(setunion S),theprop S>.

Once the type and term are reconstructed, the has type

ΠS : (class singleton).class (in π1(S))

and is defined by the term (λS.〈(setunion π1(S)), (theprop S)〉). With the typing
rules in Figure 1 and the given types of setunion and theprop, one can easily verify
that the term indeed inhabits the type. Intuitively, given a singleton set S, (theS)
is the unique member of S.

We can define a quantifier for unique existence using the singleton predicate..

(ex1 A psi):prop=(singleton {x:A|psi x}).

In pam syntax, we write (exists1 x:A . M) for (ex1 A (\x.M)).
A set A is a Kuratowski pair if there exist u and v such that A = {{u}, {u, v}}.

To define this notion using bounded quantification, we make use of
⋃
A as a bound.

One can prove that if any such u and v exist, they must inhabit
⋃
A.

(iskpair A):prop=(exists u:(setunion A) .
(exists v:(setunion A) . (A=={{u},{u,v}}))).

Given any objects y and z, {{y}, {y, z}} is a Kuratowski pair. We can prove this
and form an abbreviation kpairiskpair. Using such an abbreviation, we can define
an operation kpair which takes two objects y and z and returns a member of the
class type of Kuratowski pairs.

(kpair y z):iskpair=<{{y},{y,z}},kpairiskpair y z>.

In pam syntax, we write <<y,z>> for the Kuratowski pair of y and z.
Using Kuratowski pairs, we can define the Cartesian product A×B of two sets

A and B as follows:

(cartprod A B):obj
={x:powerset (powerset (A \cup B))|

(exists u:A . (exists v:B . (x==<<u,v>>)))}.

In pam syntax we write (A \times B) for (cartprod A B).
We have already used the notation {x:A|psi x} for denoting {x ∈ A|ψ(x)}

in pam syntax. When working with functions, we will need to consider sets of
pairs. Informally, we can write {(u, v) ∈ A × B|φ(u, v)}. In order to support a
corresponding pam notation, we define a dependent set of pairs constructor.

122

Brown

[phi:A -> B -> prop]
(dpsetconstr A B phi):obj
={x:(A \times B)|

(exists u:A . (exists v:B . ((phi u v) & (x==<<u,v>>))))}.

In pam syntax, we write {<<u,v>>:A \times B|M} as syntactic sugar equivalent to
(dpsetconstr A B (\u v.M)). (A single backslash in pam notation binds a list of
variables.)

Finally, we define the notion of a binary relation on two sets A and B in the
usual way.

[R:obj]
(breln A B R):prop=(R<=(A \times B)).

This gives all the infrastructure necessary to define set-theoretic functions.

5 Representing Functions as Objects

Let A, B, and R be sets. We say R is a function from A to B if R is a binary
relation on A and B and forall x ∈ A there is a unique y ∈ B such that the pair of
x and y is in R. In pam syntax, we can make this abbreviation as follows.

[A:set][B:set][R:obj]
(func A B R):prop
=((breln A B R)&(forall x:A . (exists1 y:B . (<<x,y>>::R)))).

As before, Scunak reconstructs the π1 operations. Note that (<<x,y>>::R) is pam

syntax for the term (in R π1(kpair π1(x)π1(y))).
Since (func A B) has type obj → prop, class (func A B) is a valid class

type. Let f have this type and let x have type A.

[f:(func A B)]
[x:A]

Using the definition of func, we can prove the set represented in pam notation as
{y:B|<<x,y>>::f} is a singleton. In the signature, funcImageSingleton is an
abbreviation corresponding to this fact. Hence, the pair (in pam syntax)

<{y:B|<<x,y>>::f},(funcImageSingleton A B f x)>

is of class type class singleton. Applying the description operator the, we
obtain a member of {y:B|<<x,y>>::f}. One can prove the first component of
(the <{y:B|<<x,y>>::f},(funcImageSingleton A B f x)>) is in B. In the sig-
nature, apProp abbreviates such a proof. Given this information, we can define an
object level application as follows:

(ap A B f x):B
=<(the <{y:B|<<x,y>>::f},(funcImageSingleton A B f x)>),
(apProp A B f x)>.

The type of ap is

ΠA : obj.ΠB : obj. (class (funcAB)) → (class (in A)) → class (in B)

123

Brown

It is perhaps instructive to compare this to the Twelf version of ap ob-
tain by translating from Scunak. Since ap returns a member of the class type
class (in B), there are two corresponding Twelf abbreviations. (Due to a use
of %abbrev, the description operator the is expanded in terms of setunion in the
Twelf version.)

%abbrev
ap : {A:obj} {B:obj} {f:obj}

pf (func A B f) -> ({x:obj} pf (in A x) -> obj)
= [A:obj] [B:obj] [f:obj] [fp:pf (func A B f)]
[x:obj] [xp:pf (in A x)]

(setunion
(dsetconstr B ([y:obj] [yp:pf (in B y)] in f (kpair x y)))).

ap_pf :
{A:obj} {B:obj} {f:obj} pf (func A B f)
-> ({x:obj} pf (in A x)

-> pf (in B (setunion (dsetconstr B
([y:obj] [yp:pf (in B y)]
in f (kpair x y))))))

= [A:obj] [B:obj] [f:obj] [fp:pf (func A B f)]
[x:obj] [xp:pf (in A x)] apProp A B f fp x xp.

Note that in Twelf, ap is a function of six arguments instead of four. In particular,
the object f is separated from the proof fp that f is a function from A to B. Likewise,
the object x is separated from the proof xp that x is a member of A. Intuitively,
the Twelf abbreviation ap returns the object corresponding to f(x) and the Twelf
abbreviation ap_pf returns the proof that f(x) is in B.

Similarly, we can define an object-level λ-abstraction operator. Intuitively, this
reifies a meta-level function g from A to B to be an object-level function from A

to B. Let g have type (class (in A)) → (class (in B)). In pam syntax, we
write [g:A -> B]. We can prove the set of pairs represented in pam syntax by
{<<x,y>>:A \times B|((g x)==y)} is a function from A to B. We abbreviate
this proof as lamProp. Using this, we can define the abstraction operator lam as
follows.

(lam A B g):(func A B)
=<{<<x,y>>:A \times B|((g x)==y)},(lamProp A B g)>.

The type of lam is

ΠA : obj.ΠB : obj.(class (inA) → class (inB)) → class (funcAB)

Note that the types of ap and lam have the form one expects when cod-
ing simply typed λ-calculus using higher-order abstract syntax. In particular,
ap takes an object-level function in class (func A B) to a meta-level function
class A → class B and lam takes such a meta-level function to such an object-
level function. However, the intention is quite different. We are not encoding syntax
of simply typed λ-terms, but the standard set theoretic semantics of simply typed

124

Brown

λ-terms. Consequently, we can prove properties which hold in such standard mod-
els. For example, we can prove functional extensionality and soundness of β- and
η-conversion.

Functional extensionality states that two functions f, k : A → B are equal if
they return the same value on all x ∈ A.q We can declare functional extensionality
as a claim funcext in pam syntax.

[k:(func A B)]
[eqfkx:{x:A}|- ((ap A B f x)==(ap A B k x))]
(funcext A B f k eqfkx):|- (f==k)?

In the pam file, the proof (i.e., definition) is given following the declaration of the
claim. We omit this proof term here.

Finally, we can prove the object-level versions of β-equality and η-equality. We
omit the proof terms and only show the declarations of the claims.

(beta1 A B g x):|- ((ap A B (lam A B g) x)==(g x))?
(eta1 A B f):|- ((lam A B (ap A B f))==f)?

6 Comparing the Signatures

The construction of functions starting from the given axioms of set theory can be
encoded in Scunak by giving a signature of 23 constants and 112 abbreviations.
By Currying, one obtains corresponding Twelf and Automath signatures. Each of
these signatures contains 3 declarations for the type families, 23 constants and 116
abbreviations. In particular, 4 of the Scunak abbreviations (the, kpair, ap, and
lam) return a class type and therefore correspond to 8 abbreviations in Twelf and
Automath. In Twelf, 11 abbreviations must be declared using %abbrev since there
is no strict occurrence of some argument. Each of the three systems can type check
the signature in less than a second.

7 Conclusion

Scunak provides a convenient way to specify a set theory and represent mathemat-
ics within the set theory. Two of the reasons for the naturality of mathematics
represented in Scunak are class types and the pam syntax. Class types allow one
to treat arbitrary predicates (set-theoretic classes) as subtypes of the type of (un-
typed) mathematical objects. The pam syntax allows one to give types and terms
in a reasonably natural way.

References

[1] Brown, C. E., Combining Type Theory and Untyped Set Theory, in: IJCAR 2006, Seattle, Washington,
2006, to appear.

[2] Brown, C. E., Verifying and Invalidating Textbook Proofs using Scunak, in: Mathematical Knowledge
Management, MKM 2006, Wokingham, England, 2006, to appear.

[3] Byliński, C., Functions and their basic properties, Journal of Formalized Mathematics 1 (1989),
http://mizar.org/JFM/Vol1/funct_1.html.

125

Brown

[4] de Bruijn, N. G., A survey of the project AUTOMATH, in: J. P. Seldin and J. R. Hindley, editors, To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, Academic Press, 1980
pp. 579–606.

[5] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, Journal of the Association for
Computing Machinery 40 (1993), pp. 143–184.

[6] Megill, N., Metamath Home Page, http://au.metamath.org/index.html.

[7] Paulson, L. C., Set Theory for Verification: I. From Foundations to Functions, Journal of Automated
Reasoning 11 (1993), pp. 353–389.

[8] Pfenning, F. and C. Schürmann, System Description: Twelf–A Meta-Logical Framework for Deductive
Systems, in: H. Ganzinger, editor, Proceedings of the 16th International Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence 1632 (1999), pp. 202–206.

[9] Wiedijk, F., A new implementation of Automath, J. Autom. Reasoning 29 (2002), pp. 365–387.

[10] Wiedijk, F., Is ZF a hack? Comparing the complexity of some (formalist interpretations of)
foundational systems for mathematics, Journal of Applied Logic 4 (2006), to appear.

126

LFMTP 2006

Synthesis of moduli of uniform continuity by
the Monotone Dialectica Interpretation

in the proof-system MinLog

Mircea-Dan Hernest1,2

Laboratoire d’Informatique (LIX)

École Polytechnique
F-91128 Palaiseau - FRANCE

Abstract

We extract on the computer a number of moduli of uniform continuity for the first few elements of a
sequence of closed terms t of Gödel’s T of type (N→N)→(N→N). The generic solution may then be
quickly inferred by the human. The automated synthesis of such moduli proceeds from a proof of the
hereditarily extensional equality (≈) of t to itself, hence a proof in a weakly extensional variant of Berger-
Buch-holz-Schwichtenberg’s system Z of t ≈(N→N)→(N→N) t. We use an implementation on the machine, in
Schwichtenberg’s MinLog proof-system, of a non-literal adaptation to Natural Deduction of Kohlenbach’s
monotone functional interpretation. This new version of the Monotone Dialectica produces terms in NbE-
normal form by means of a recurrent partial NbE-normalization. Such partial evaluation is strictly necessary.

Keywords: Program extraction from (classical) proofs, Complexity of extracted programs, Monotone
Dialectica Interpretation, Proof- and program-extraction system MinLog,
Gödel’s functional interpretation, Proof Mining, Partial Evaluation.

1 The monotone functional Dialectica interpretation

Kohlenbach’s monotone variant of Gödel’s functional (aka “Dialectica”) interpre-
tation was introduced in [18] as an optimization of Gödel’s original term extraction
technique 3 from [8]. The main feature of this “monotone Dialectica interpretation”
is the extraction of Howard majorants [14] (or, equally, Bezem strong majorants
[6]) 4 for some exact realizers 5 . In the mathematical practice this operation turns
out to be much simpler 6 than the synthesis of some actual exact realizers by the
pure Gödel’s Dialectica interpretation from [8,1].

1 Project LogiCal - Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École
Polytechnique, INRIA et Université Paris-Sud - FRANCE
2 Email: danher@lix.polytechnique.fr
3 Paper [1] provides a nice survey in English which includes the extensions to full Analysis.
4 In this paper we actively use only Howard’s variant of majorization, originally introduced in [14] (see also
[20,21]), which is presented in Definition 1.3 below.
5 Which are not effectively produced, but their strong existence is ensured intuitionistically.
6 See, e.g., [21] and [22] for two comprehensive surveys of the wide range of mathematical application of
this purely proof-theoretical technique.

This paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hernest

Definition 1.1 [Base Arithmetic for Monotone Dialectica program-extraction] We
denote by WeZ∃m the weakly extensional variant (see [10]) of Berger-Buchholz-Schwichtenberg’s
system Z (introduced in [2], see also [24]) to which the strong ∃ quantifier was added
(together with its defining axioms, see [10,24]) and also all the necessary monotonic
elements were added, namely the functional inequality constant ≥ together with
the axioms governing its usual behaviour 7 .

Note that the system WeZ∃ , i.e., WeZ∃m without the monotonic elements (which
was denoted WE−Z− in [10]) is a Natural Deduction formulation of the weakly
extensional Heyting Arithmetic in all finite types WE−HAω from Section 1.6.12 of
[26].

Definition 1.2 [Extended Arithmetic for extraction by Monotone Dialectica] We
denote by WeZ∃+m the extension of WeZ∃m with the Axiom of Choice, the Independence
of Premises for universal premises and Markov’s Principle (axiom) 8 .

Definition 1.3 [Section 2 of [14], adapted to the T presentation from [10] 9] Howard’s
majorizability relation � is defined over the T type structure by

x �N y :≡ at(≥ xy)

x �ρτ y :≡ ∀zρ
1 , zρ

2 (z1 �ρ z2 → xz1 �τ yz2) ,

where ≥ is the usual inequality boolean function on N× N defined in [10] and “at”
is the boolean, unary and unique predicate of WeZ∃m , also defined in [10].

The monotone Dialectica interpretation (abbreviated “MD-interpretation” and
even shorter, MDI) is a recursive syntactic translation from proofs in WeZ∃+m

10 to
proofs in WeZ∃m such that the positive occurrences of the strong ∃ and the negative
occurrences of ∀ in the proof’s conclusion formula get effectively (either Howard or
Bezem) majorized at each of the proof-recursion steps 11 by terms in Gödel’s T.
These majorizing terms are also called “the programs extracted by” the MDI and
(if only the extracted terms are wanted) this translation process is also referred to
as “Monotone Dialectica program-extraction”.

Definition 1.4 [Association of boolean terms to quantifier-free formulas] By quantifier-
free formula we understand a formula built from prime formulas at(tbool) and ⊥ by
means of ∧, → and, if ∃ is available, also ∨. Such formulas are decidable in WeZ∃m .

There exists a unique bijective association of boolean terms to quantifier-free for-
mulas A0 7→ tA0 such that WeZ∃m ` A0 ↔ at(tA0) .

The MD-interpretation of proofs includes the following translation of formulas:

7 See Section 3.1 of [10] for details - our system WeZ∃m here was there denoted by WE−Z−m .
8 See, e.g., Section 2.3 of [10] for the detailed definitions of these axioms (plus comments).
9 Please beware of the typo in the corresponding definition from Section 3.1 of [10].
10This can be extended to fully classical proofs, modulo some double-negation translation.
11This is exactly the point of Kohlenbach’s MD-interpretation from [18], in contrast to his precursor of the
MDI from [16] which first extracts the effective Gödel’s Dialectica exact realizers and subsequently majorizes
them via the algorithms of either Howard [14] or Bezem [6].

128

Hernest

Definition 1.5 [The MD-interpretation of formulas] Recursively defined:

AMD :≡ AMD :≡ at(tA) for quantifier-free formulas A

(A ∧B)MD :≡ ∃x, u ∀y, v [(A ∧B)MD :≡AMD(x; y; a) ∧BMD(u; v; b)]

(∃zA(z, a))MD :≡ ∃z†, x∀y [(∃zA(z, a))MD(z†, x; y; a):≡AMD(x; y; z†, a)]

(∀zA(z, a))MD :≡ ∃X ∀z†, y [(∀zA(z, a))MD(X; z†, y; a):≡AMD(X(z†); y; z†, a)]

(A → B)MD :≡ ∃Y ,U ∀x, v [(A → B)MD :≡AMD(x;Y (x, v)) → BMD(U(x); v)]

where · 7→ ·† is a mapping which assigns to every given variable z a completely new
variable z† which has the same type of z. The free variables of AMD are exactly the
free variables of A.

Theorem 1.6 (Majorant realizer synthesis by the MD-interpretation) 12 There
exists an algorithm which, given at input a Natural Deduction proof P : {Ci(ai)}n

i=1 ` A(a)
[hence of the conclusion formula A, whose free variables form the tuple a, from the
undischarged assumption formulas {Ci}n

i=1] in WeZ∃+m , it produces at output the
following (below let a :≡ a1, . . . , an, a):

(i) the tuples of terms {Ti[a]}n
i=1 and T [a], whose free variables are among a

(ii) the tuples of variables {xi}n
i=1 and y, all together with

(iii) the following verifying proof in WeZ∃m (below let x :≡ x1, . . . , xn):

PMD : ∅ ` ∃Y1, . . . Yn, X [
∧n

i=1 (λa. Ti) � Yi ∧ (λa. T) � X ∧

∀a, x, y ({
∧n

i=1 Ci
MD(xi;Yi(a, x, y); ai)} → AMD(X(a, x); y; a))]

Moreover, variables x and y do not occur in P (they are all completely new). Hence
x and y also do not occur free in the extracted terms {Ti}n

i=1 and T .

Proof: See [11] for a sketch of the proof (in Natural Deduction) or [18,21] for full
proofs of the equivalent original formulations in the Hilbert-style setting. 2

Remark 1.7 The MD-translated proof PMD is also called the verifying proof since
it arithmetically verifies the fact that the MD-extracted programs actually majorize
some (strong, intuitionistically proven to exist) realizers of the MD-interpretation of
the conclusion formula of the proof at input.

Gödel’s Dialectica interpretation becomes far more complicated when it has
to face Contraction, which in Natural Deduction amounts to the discharging of
more than one copy of an un-cancelled assumption in an Implication Intro- duction

[A] . . . /B

A → B
. This is because, for the contractions which are relevant

12This theorem was conjectured (in a weaker form) already in Section 3.1 of [10].

129

Hernest

to Dialectica 13 , the contraction formula A becomes 14 part of the raw (not yet nor-
malized) realizing term. A number of such D-relevant contraction formulas, which
would not be part of the executed finally strongly normalized extracted term, can
be eliminated already at the extraction stage, see [12] for such an example. Un-
fortunately, such an a priori elimination during extraction of some of the contrac-
tions (which we named “redundant” in [12]) is not always possible, see also [12] for
such a negative example. The MD-interpretation simplifies the Dialectica treatment
of all non-redundant relevant contractions and therefore represents an important
complexity improvement of the extracted program whenever such “persistent” con-
tractions occur in the proof at input.

2 The minimal arithmetic HeExtEq proof in MinLog

MinLog is an interactive proof- and program-extraction system developed by H.
Schwichtenberg and members of the logic group at the University of Munich. It
is based on first order Natural Deduction calculus and uses as primitive minimal
rather than classical or intuitionistic logic. See [9,25] for full details.

The hereditarily-extensional-equality test-case (abbreviated HeExtEq) was sug-
gested by U. Kohlenbach as an interesting example for the application of the Mono-
tone Dialectica program extraction from proofs, see Chapter 8 of [21]. In fact it
had been carried out at a theoretical level already in Chapter 5 of [20] by means
of the precursor of the Monotone Dialectica introduced in [16]. The treatment in
[21] is even more platonic, by means of a good number of meta-theorems. We took
the challenge to use a machine extraction in order to analyze on the computer a
number of concrete instances of the HeExtEq example.

Definition 2.1 [[26], Section 2.7.2, adapted to the T presentation from [10]] The
extensional equality at type σ ≡ σ1 . . . σnN, denoted =σ , is defined by

x =N y :≡ at(= xy)

x =σ y :≡ ∀zσ1
1 . . . zσn

n (xz1 . . . zn =N yz1 . . . zn) ,

where = is defined in [10] as the usual equality boolean function on N× N. It is
immediate that x =ρτ y ≡ ∀zρ(xz =τ yz). As a parallel with the majorizability
relation (see Definition 1.3), the hereditarily extensional equality is defined over the
T type structure by

x ≈N y :≡ x =N y

x ≈ρτ y :≡ ∀zρ
1 , zρ

2 (z1 ≈ρ z2 → xz1 ≈τ yz2) ,

Definition 2.2 [Minimal Arithmetic] We denote by WeZm the system WeZ∃ without
the strong ∃ and also without the Ex-Falso-Quodlibet axiom ⊥ → F , hence with
an underlying Minimal Logic (in the sense of [15]) substructure.

13Not all logical contractions are relevant for the Dialectica interpretations, see [12] for a short account of
this issue or [11] for full details.
14Via the boolean term associated (see Definition 1.4) to the MD-radical formula AMD (a quantifier-free
formula) which is at its turn associated to the formula A via Definition 1.5.

130

Hernest

Proposition 2.3 ([20] - 5.13 or [21] - 8.17 , adapted)
Let tρ be a closed term of Gödel’s T. Then WeZm ` t ≈ρ t .

Proof: By induction on the combinatorial structure of t, since closed terms
of Gödel’s T can be expressed 15 as built by application only (i.e., without λ-
abstraction) from 0, Suc, Gödel’s recursor R and combinators Σ and Π. 2

Corollary 2.4 ([20,21]) Let t(N→N)→(N→N) be a closed T-term. Since

WeZm ` ∀xN→N, yN→N [x =N→N y ↔ x ≈N→N y]

it immediately follows that

WeZm ` ∀xN→N, yN→N [x =N→N y → t(x) =N→N t(y)] .

Proposition 2.5 ([20] - 5.15 or [21] - 8.19 , adapted) Let t(N→N)→(N→N) be
a closed term of Gödel’s T. Then t is uniformly continuous on every ball By :≡ {xN→N | ∀zN. y(z) �N
x(z)} with a modulus of uniform continuity which is effectively synthesizable (uni-
formly in yN→N) as a closed term t̃(y)N→N of T, i.e., one can extract (by MD-
interpretation) a closed T-term t̃ (N→N)→(N→N) s.t.:

WeZm ` ∀y ∀x1, x2 ∈ By ∀kN [
et(y)(k)∧

i=0

x1(i) =N x2(i) →
k∧

j=0

t(x1)(j) =N t(x2)(j)]

Proof: Straightforward from Corollary 2.4 and Theorem 1.6, see [20,21] for details
(in the Hilbert-style setting) of the proof originally introduced in [17]. 2

The HeExtEq example was implemented in MinLog [9] in the sense that a minimal
arithmetic MinLog proof of

∀xN→N, yN→N [x =N→N y → t(x) =N→N t(y)]

is mechanically generated for each particular T-term t(N→N)→(N→N) by a Scheme
[23] procedure which takes as argument such a concrete MinLog T-term t.

3 The light Monotone Dialectica interpretation

Our approach for the MinLog extraction of the generic modulus of uniform con-
tinuity t̃, given the concrete MinLog term t is different from the letter of Proposi-
tion 2.5. It amounts in fact to the design of a new variant of the MD-interpretation,
which combines those features of the pre-existing versions due to Kohlenbach 16

which turn out to be useful on the machine.

15Lemma 2.6 of [20] gives such a syntactic translation from λ-terms to combinatorial terms.
16We distinguish three such variants of the Monotone Dialectica interpretation, which were introduced in
(chronologically ordered) [16], [18] and finally [19]. See also Zucker’s chapter VI in [26], particularly its
sections 8 . 3 - 6 , for a raw, unformalized and quite primitive form of MD-interpretation.

131

Hernest

We here name light Monotone Dialectica (abbreviated LMD-interpretation and
even shorter, LMDI) this optimization of Kohlenbach’s MD-interpretation for the ex-
traction of majorants in NbE-normal form 17 . Hence the particularity of the new
light MD-interpretation is the production of terms in normal form, which is the goal
of the automated, machine program-extraction.

The key features of this novel form of MD-interpretation are the following:

(i) The terms extracted at each step of the recursion over the input proof structure
are neither exact realizers, nor majorants, but partial majorants, in the sense
that only the persistent contractions are treated like in [18].

(ii) An NbE-normalization (see [3,4,5] for the original NbE) of such extracted partial
majorants is carried out for optimization purposes after the proof mining of the
conclusion at each Implication Elimination (aka Modus Ponens) application.
This recurrent form of partial normalization turns out to bring a huge improve-
ment w.r.t. the one single final call-by-value NbE normalization process in situ-
ations of long sequences of nested Modus Ponens. We named this technique 18

“Normalization during Extraction” (abbreviated “NdE”), see [13] for a short ac-
count. The HeExtEq proof (described in Section 2 above) does actually contain
quite long sequences of nested Modus Ponens.

(iii) The final such extracted partial majorant is NbE-normalized and then its ma-
jorant is built like in [16], but using the majorant for Gödel’s recursor R from
[19].

4 Machine results for the HeExtEq case-study in MinLog

We used our light Monotone Dialectica MinLog extraction modules which are
available within the special 19 MinLog distribution [9]. We applied the LMDI extrac-
tion on the MinLog HeExtEq proof for the following concrete instances of the term
t:

• The simple sum: f, k 7→ f(0) + · · ·+ f(k) .

• The double sum: f, k 7→ f(f(0)) + · · ·+ f(f(k)) .

• The triple sum: f, k 7→ f(f(f(0))) + · · ·+ f(f(f(k))) .

In the case of the simple sum, the machine output is, as expected, the identity
function, regardless of the actual f , hence the functional f, k 7→ k . Also for the
double sum, the outcome is the expected one, namely

f, k 7→ max{k , f(0) , . . . , f(k)} .

17 Here “NbE” is the usual acronym for “Normalization by Evaluation”. See [3,4,5] for the original call-by-
value NbE normalization technique.
18Which is a recurrent form of Partial Evaluation. See the volume [7] for accounts of the partial evaluation
programming methodology.
19 Our Dialectica modules are for the moment not compatible with the official MinLog distribution from
[25].

132

Hernest

On the contrary, for the triple sum, the mathematician needs to work a good
number of minutes to produce the following optimal result

f, k 7→ max{k , f(0) , f(1) , . . . , f(max{k , f(0) , f(1) , . . . , f(k)})} (1)

The machine produces in less than one minute an output which can be isomor-
phically adapted for display as follows:

f, k 7→ max{k , f(0) , . . . , f(k) ,

max{f(0) , . . . , f(max{f(0) , . . . , f(k)})}} (2)

It is easy to notice that the machine-yielded expression (2) is immediately equiv-
alent to the more human expression (1). Note also that in the context of a pointwise
continuity demand, the optimal answer would be

f, g, k 7→ max{k , f(0) , f(1) , . . . , f(k) , max{f(f(0)) , f(f(1)) , . . . , f(f(k))}}

which is strictly lower than the machine (or human) optimal output for the case of
uniform continuity. In fact, while first trying to solve by brain the triple sum prob-
lem, we first erroneously thought that this were a modulus of uniform continuity,
which is not the case. We later produced (1) by simplifying the machine outcome
(2) and after some checks we realized the error. Hence we could produce a correct
answer only with the help of the computer extraction.

Notwithstanding, right now a pattern can be noticed by the human in the
solution of the HeExtEq problem for terms tl :≡ λf, k. f (l)(0) + · · ·+ f (l)(k) , with
f (l)(i) :≡ f(f . . . (f(i))) , where f appears l times on the right-hand side. We write
again the above moduli of uniform continuity for tl , with l := 1, 2, 3:

t̃1(f, k) ≡ k

t̃2(f, k) ≡ max{k, f(0), . . . , f(t̃1(f, k))}

t̃3(f, k) ≡ max{k, f(0), . . . , f(t̃2(f, k))}

· ·

We thus immediately infer the generic (recursive) solution for every l ∈ N :

t̃l+1(f, k) ≡ max{k, f(0), . . . , f(t̃l(f, k))}

The verification that t̃l is the optimal modulus of uniform continuity for tl is now
an easy exercise, which we leave to the reader (see [11] for the solution).

5 Conclusions and future work

More such MinLog extractions of moduli of uniform continuity for other various
concrete instances of the input term t can and ought to be performed. The light
MD-interpretation should be mathematically formalized, in synthesis with the light
optimization of Gödel’s Dialectica from [10]. It might be that the latter improve-
ment applies also in the case of the HeExtEq proof. This issue should be researched

133

Hernest

with high priority. Also a complete mathematical formulation of the Normalization
during Extraction (NdE) ought to be given.

Acknowledgement

We would like to thank Prof. U. Kohlenbach for having suggested to us that
the HeExtEq example may produce interesting results on the Computer. We also
thank Prof. H. Schwichtenberg for having suggested to us that the already available
formulations of the Monotone (or Bounded) Dialectica may not be satisfying enough
from the computer-applied viewpoint.

References

[1] Avigad, J. and S. Feferman, Gödel’s functional (‘Dialectica’) interpretation, in: S. Buss, editor,
Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics 137, Elsevier, 1998,
pp. 337–405.

[2] Berger, U., W. Buchholz and H. Schwichtenberg, Refined program extraction from classical proofs,
Annals of Pure and Applied Logic 114 (2002), pp. 3–25.

[3] Berger, U. and H. Schwichtenberg, An inverse of the evaluation functional for typed λ–calculus, in:
R. Vemuri, editor, Proceedings of the Sixth IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press, Los Alamitos, 1991, pp. 203–211.

[4] Berger, U., M. Eberl and H. Schwichtenberg, Normalization by Evaluation, in: B. Möller and J. Tucker,
editors, Prospects for Hardware Foundations, LNCS 1546, Springer Verlag, 1998, pp. 117–137.

[5] Berger, U., M. Eberl and H. Schwichtenberg, Term rewriting for normalization by evaluation,
Information and Computation 183 (2003), pp. 19–42, International Workshop on Implicit
Computational Complexity (ICC’99).

[6] Bezem, M., Strongly majorizable functionals of finite type: A model for bar-recursion containing
discontinuous functionals, J. of Symb. Logic 50 (1985), pp. 652–660.

[7] Danvy, O., R. Glück and P. Thiemann, editors, “Partial Evaluation. Dagstuhl Castle, Germany,
February 1996”, LNCS 1110, Springer Verlag, 1996.

[8] Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica 12
(1958), pp. 280–287.

[9] Hernest, M.-D., MinLog for Dialectica program-extraction, Free software - code source @
http://www.brics.dk/edanher/MinLogForDialectica, For the official MinLog see [25].

[10] Hernest, M.-D., Light Functional Interpretation, LNCS 3634, Springer Verlag, 2005, pp. 477 – 492,
Computer Science Logic - CSL’2005.

[11] Hernest, M.-D., Feasible programs from (non-constructive) proofs by the light (mono-

tone) Dialectica interpretation, PhD Thesis, École Polytechnique and University of Munich (2006), In
preparation, draft available @ http://www.brics.dk/edanher/teza/.

[12] Hernest, M.-D., Light Dialectica program extraction from a classical Fibonacci proof, in: Proceedings
of DCM’06 at ICALP’06, Electronic Notes in Theoretical Computer Science (ENTCS, 2007), 10pp.,
Accepted for publication, Downloadable @ http://www.brics.dk/edanher/.

[13] Hernest, M.-D., NdE - Normalization during Extraction, Regular Abstract, Local Proceedings of CiE’06
(Computability in Europe 2006), available in the author’s web-page, see http://www.brics.dk/edanher/.
Full paper in preparation.

[14] Howard, W., Hereditarily majorizable functionals of finite type, In [26], appendix chapter, pages 454–
461.

[15] Johansson, I., Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio
Matematica 4 (1936), pp. 119–136.

[16] Kohlenbach, U., Effective bounds from ineffective proofs in analysis: an application of functional
interpretation and majorization, J. of Symb. Logic 57 (1992), pp. 1239–1273.

134

Hernest

[17] Kohlenbach, U., Pointwise hereditary majorization and some applications, Archive for Mathematical
Logic 31 (1992), pp. 227–241.

[18] Kohlenbach, U., Analysing proofs in Analysis, in: W. Hodges, M. Hyland, C. Steinhorn and J. Truss,
editors, Logic: from Foundations to Applications, Keele, 1993, European Logic Colloquium (1996), pp.
225–260.

[19] Kohlenbach, U., Mathematically strong subsystems of analysis with low rate of growth of provably
recursive functionals, Archive for Mathematical Logic 36 (1996), pp. 31–71.

[20] Kohlenbach, U., Proof interpretations, Technical report BRICS LS-98-1, DAIMI, Department
of Computer Science, University of Aarhus, Aarhus, Denmark (1998), Free downloadble @
http://www.brics.dk/LS/Abs/BRICS-LS-Abs/BRICS-LS-Abs.html.

[21] Kohlenbach, U., Proof Interpretations and the Computational Content of Proofs, Latest version in the
author’s web page (April 2006), vii + 420pp.

[22] Kohlenbach, U. and P. Oliva, Proof mining: a systematic way of analysing proofs in Mathematics,
Proc. of the Steklov Institute of Mathematics 242 (2003), pp. 136–164.

[23] Cadence Research Systems, (Petite) Chez Scheme, http://www.scheme.com (2006).

[24] Schwichtenberg, H., Minimal logic for computable functions, Lecture course on program-extraction from
(classical) proofs. Available in the MinLog distribution [25].

[25] Schwichtenberg, H. and Others, Proof- and program-extraction system MinLog, Free software - code
source and documentation @ http://www.minlog-system.de/.

[26] Troelstra, A., editor, “Metamathematical investigation of intuitionistic Arithmetic and Analysis”,
Lecture Notes in Mathematics (LNM) 344, Springer-Verlag, 1973.

135

