
COMP 523: Language-based security

Assignment 4 (100 points total)

Prof. B. Pientka
McGill University

Due: Wednesday, Oct 6, 2010 at 2:35pm

1 Implementing proofs in Beluga (40 points)

(45pts): In HW 2, we extend the language for booleans and arithmetic expressions we have seen in

class (see also Ch 3, CH 8 in Pierce) with an expression leq t t ′ which allows us to check whether

t is less than or equal to t’, and we proved that the rules were deterministic, that types were

preserved and that we have progress.

10 points Implement small-step evaluation rules for leq t t ′ in Beluga; extend the representation of the

small-step rules in small-step.bel.

10 points Implement the proof of determinacy for the cases covering leq (see file det.bel).

20 points Add the typing rule for leq t t ′ and implement the progress and type preservation proof (see

file tps.bel for preservation proof and see file progress.bel for progress proof).).

2 Case-statement(60 points)

An alternative definition for numbers is as follows:

Terms t ::= x | z | succ t | (case t of z ⇒ t1 | succ x ⇒ t2)

Types T ::= NAT

Here we can analyze numbers using a case-expression where we pattern match against the

possible shapes of numbers. So, if the subject t of the case-expression case t of z ⇒ t1 | succ x ⇒ t2

evaluates to z then we choose the first branch t1. Otherwise t must evaluate to some value of the

form succ v. In this case we match succ x against succ v which will yield the instantiation of x

to v. We then proceed to evaluate the second branch t2 under this instantiation by applying the

substitution [v/x] to t2. The evaluation for these terms can be then defined as follows:

z ⇓ z

t ⇓ v

succ t ⇓ succ v

t ⇓ z t1 ⇓ v

case t of z ⇒ t1 | succ x ⇒ t2 ⇓ v

t ⇓ succ v2 [v2/x]t2 ⇓ v

case t of z ⇒ t1 | succ x ⇒ t2 ⇓ v

1. (10pts) Assuming we also have functions, function application, and booleans, show how we

can define functions for predecessor and iszero as abbreviations.

2. (10pts) Define the appropriate typing rule for the case-expression.

1

3. (10pts) Show that type preservation holds for this rule.

4. (15pts) Give the corresponding small-step evaluation rules.

5. (15 pts) Show progress holds for the small step semantics you propose.

2

