COMP 426:Automated Reasoning
Advanced undergraduate course

Brigitte Pientka

School of Computer Science
McGill University



» Motivation

« Administrative issues



- Hardware and software is pervasively used in
many (safety-critical) applications.



- Hardware and software is pervasively used in
many (safety-critical) applications.

» We need to understand how to
— formally characterize and prove important invariants
— Increase the confidence in software



- Hardware and software is pervasively used in
many (safety-critical) applications.

» We need to understand how to
— formally characterize and prove important invariants

— Increase the confidence in software

- We need tools to
- specify and verify formal statements
— catch flaws early in the development



Human costs of bugs

» Software failure can cause loss of lifes.



Human costs of bugs

» Software failure can cause loss of lifes.

- Bugs in medical software

- 1985: Software-design flaws lead to radiation overdosis in
US. and Canadian patients (Therac-25)

- 1997: Software-logic error causes infusion pump to
deliver lethal doses of morphine sulfate

— 2001: Panamian cancer patients die following overdosis of
radiation due to faulty software



Economic costs of bugs

- Software bugs cost north-american economy over
10 billion US Dollars per year.



Economic costs of bugs

- Software bugs cost north-american economy over
10 billion US Dollars per year.

- Bugs in hardware and software systems

- 1994: FDIV bug (floating point arithmetic) in Intel Pentium
processor
Cost: US 500 million



Economic costs of bugs

- Software bugs cost north-american economy over
10 billion US Dollars per year.

- Bugs in hardware and software systems

- 1994: FDIV bug (floating point arithmetic) in Intel Pentium
processor
Cost: US 500 million

- 1996: Ariane 5 space craft crashes 40 sec after take-off
due to floating point conversion error
Cost: US 500 million



Economic costs of bugs

- Software bugs cost north-american economy over
10 billion US Dollars per year.

- Bugs in hardware and software systems

- 1994: FDIV bug (floating point arithmetic) in Intel Pentium
processor
Cost: US 500 million

- 1996: Ariane 5 space craft crashes 40 sec after take-off
due to floating point conversion error
Cost: US 500 million

— 2004: Mars Rover is paralyzed for 5 days. After
communication breakdown, it starts continuously



Limits of testing

» Testing is good, but not good enough.



Limits of testing

- Testing is good, but not good enough.

- Slow

» Too many possibilities
2160 possible input pairs for floating point adder
even higher number of states for more complex
architectures

- Sometimes even a huge weight of empirical
evidence is misleading.

Reasoning —p.

6/18



Industrial efforts in automated reasoning

» Hardware verification: IBM, Intel, Motorolla, Bell
Laboratories, Saab Ericsson, etc

- Software verification examples:
— Active Missile Decoy 'Nulka’ system
- Hong Kong Mass Transit Railway Corporation
- Safety analysis for Queensland Rail.
- Smart Card Verification



Future of software

« Correctness = major concern for all software
producers.

 Especially for providers of platform software.

 Today: Microsoft employs a variety of reasoning tools
- theorem provers, model checkers, type inference engines,
static analysis tools

- Since 2001: annotate legacy code and verify important
properties

— Today: Every code developed must pass certain checks
before it can be committed to repository

- Every computer has these tools installed!



Academic efforts: Verified Software

- Neglected aspect: language we write programs in

- We need tools to
* Model and specify programming languages
* Experiment easily with language extensions
* Mechanically check their meta-theoretic properties

- POPLmark Challenge [Pierce et al 05]
“Mechanically check every POPL paper by 2010!”

Logical framework allows us to represent,
execute, and reason about formal systems.




Academic efforts: Flyspeck

« Verity Kepler Conjecture

* QOldest problem in discrete geometry
* Part of Hilbert’s 18th problem

* Proven in 1989 by Thomas Hales
It is one of the most complicated mathematical proofs!

» After 4 years of refereeing, 12 referees stated they
are 99% certain of the correctnes of the proof



Verified Mathematics ?

“The news from the referees is bad, from my
perspective. They have not been able to certify the
correctness of the proof, and will not be able to certify it
In the future, because they have run out of energy to
devote to the problem. This is not what | had hoped for.”

Robert MacPherson, editor of the Annals of Mathematics

* These situations will occur more often.
* What level of correctness do we want”?

* No computer proof will be accepted.



This course

A thorough introduction to modern constructive
ogic and its properties.

_ogic Is the foundation for specitying formal systems, and
nas numerous numerous applications in automated
reasoning, formal software and hardware verification,

programming languages, mathematics etc.

« Centerpiece : Design and implementation of a
succession of different theorem provers

- Fundamental principles which lead to efficient
iImplementations



» Speed is not everything!

- | am not interested in performance tuning.

» | am interested In
— transferrable techniques.
— correctness.
— completeness.
— deep fundamental principles.
— elegant proofs.



Learning outcome

- Good working knowledge of logic
- Connection between logic and computation

— Prove statements!

— Recognize a proof and know how to do it!

- Fundamental principles underlying logic

- Understand fundamental techniques for designing
and implementing automated theorem provers

- Be able to transfer technigues to different logics



» Natural deduction

» Sequent calculus

» Curry-Howard Isomorphism
 Propositional theorem proving
- First-order theorem proving

» Logic and functional programming



Prof Brigitte Pientka
e-mail bp@cs.mcgill.ca
office 107N McConnell

office hours Wed, 2:00pm — 3:00pm

TA David Xi Li
e-mail xli53@cs.mcqill.ca
office hours tba.



Course web-page

http://www.cs.mcqill.ca/ bpientka/courses/atp



Acknowledgements

Part of this course material is based on material
which was mainly developed by

Frank Pfenning, Carnegie Mellon University



	Outline
	Motivation
	Human costs of bugs
	Economic costs of bugs
	Limits of testing
	Industrial efforts in automated reasoning
	Future of software
	Academic efforts: Verified Software
	Academic efforts: Flyspeck 
	Verified Mathematics ?
	This course
	Warning:
	Learning outcome
	Topics
	Coordinates
	Course web-page
	Acknowledgements

