
VIRTUAL CLUSTERS: A DYNAMIC RESOURCE COALLOCATION
STRATEGY FOR COMPUTING UTILITIES

Balasubramaneyam Maniymaran
Dept. of Electrical and Computer Engineering,

McGill University,
Montreal, QC, Canada.

Email: bmaniy@cs.mcgill.ca

Muthucumaru Maheswaran,
School of Computer Science,

McGill University,
Montreal, QC, Canada

Email: maheswar@cs.mcgill.ca

Abstract

This paper presents a concept called virtual clusters (VCs)
to allocate the required resources for an application from a
computing utility that can have a geographically distributed
resource base. The VC creation process is modeled as a
facility location problem and an efficient heuristic is de-
vised to solve it. We extend the model to include an “over-
load partition” to a VC that can efficiently handle the loads
surges. Extensive simulations have been conducted to ex-
amine the performance of VCs under different scenarios
and to compare it with a fully dynamic scheme called the
Service Grid. The results indicate that VC is more cost-
effective and robust than Service Grid.

1 Introduction

Constant improvement in computer communication and
microprocessor technology are finally making computing
utilities (CUs) a reality. The core idea of a CU is to connect
resources belonging to various organizations into a single
system such that clients can get necessary resources for
their computing needs in an on-demand basis. The major
motivation for CUs is the opportunity it offers to the clients
to outsource their computing and data processing activities
to the utility provider. Several CUs have been created in the
recent past using the Grid technology [1] for both research
and commercial purposes. Since the CUs pool resources
belonging to multiple geographically distributed organiza-
tions, clients of the CUs can acquire resources placed at
different network localities. For example, a data archiving
application might want to allocate storage from different
geographical areas to prevent data losses due to natural dis-
asters; Or a content service provider might want to allocate
storage and processing capacities at different network loca-
tions so that data could be staged closer to the consumers.

In this paper, we assume that a CU already exists and
it provides primitive mechanisms to allocate resources one-
at-a-time. Assuming such a CU, we develop a mechanism
to allocate resource collections for an application. This
mechanism is referred to as the Virtual Cluster (VC). The
VC is a co-allocated set of resources that meets some min-
imum performance expectations of a client. We model the
VC resource allocation process as a facility location prob-

lem which optimizes the resource allocation (minimize the
allocation cost) while satisfying the performance require-
ment. The dynamic variations in the demand for the service
hosted on a VC poses a serious challenge to the idea of pre-
allocating a set of resources to the VC. To address this is-
sue, the concept of overload partition (OLP) is introduced.
This is another optimized collection of resources that is
shared among the different VCs such that those VCs can
use these resources to handle the above normal demands.
An extensive simulation study was carried out to exam-
ine the performance of VCs with and without the OLPs.
The performance of the VCs were compared with a fully
dynamic resource management scheme called the Service
Grid.

Section 2 describes the VC concept in detail. In Sec-
tion 3, the VC creation problem is formulated as a capaci-
tated fixed charged facility location problem and its practi-
cal validity is discussed. Section 4 examines the ideas for
solving the model and presents a heuristic. The details of
a simulation study and the results are presented in Section
5. Section 6 provides some related works and Section 7
concludes this paper.

2 Virtual Clusters

Clusters are a popular model for high-performance compu-
tation and other variety of applications including web host-
ing and multi-media streaming. Nevertheless, one of their
drawbacks is that they should be designed for worst-case
demand conditions that leads to significant resource under
utilization during off-peak hours. The VC concept presents
the idea of a dynamic cluster where the resources are al-
located on-demand from a base pool. It has a significant
benefit over the traditional cluster as VCs can be resized
dynamically or relocated to a different network locality in
response to migrating service demands, thus maximizing
resource utilization.

Figure 1 illustrates the steps involved in creating a
VC. The VC creation process begins when a service origi-
nator (SO) makes a request to the CU manager. SOs are the
clients of CU that lease resources from CU to host their ser-
vices so that the ultimate end users (i.e., clients of the SOs)
can easily access them. The request for a VC initiates a
negotiation between the SO and CU manager that results in

VCM instantiation

VCM

resource partition

virtual cluster

SO

CU manager

SLA

client
domains

anchor points

dynamic

static
negotiation

2
SLA creation

3

VC creation
4d

4a

4e

3

4c

4c

4c

SO-VC interaction
5

1

4b

Figure 1. Example VC creation process on a PCU system.

a service level agreement (SLA). As introduced in [2], this
SLA describes the agreed performance level, tolerance, im-
plementation cost, and other metrics of performance. The
CU manager creates a VC based on this SLA. This creation
is constrained by both the SLA and the anchor points (APs)
specified by the SO. APs are the “centroids” of the end-
user demand concentration. For example, the gateway of
an university network can be considered as the AP for the
end-users in the university. Each AP is defined with a loca-
tion and a load. The resources in the VCs are placed close
to the APs to enable edge-delivery. The SO is provided
with a virtual view of the VC that hides the dynamism and
makes the VC look like a traditional cluster. It simplifies
SO-level VC management. A software agent called virtual
cluster manager (VCM) instantiated at the SO is used to
manage this view. Depending on the SLA the VC is sub-
jected to reallocations that can be triggered periodically or
as demand levels change by predefined thresholds.

The VC creation is optimized for selecting a mini-
mal set of resources that can support the expected demand
for the services to be hosted. Therefore a VC is suscep-
tible to overload conditions. Even though the a VC can
dynamically change size to cater increasing demand, such
reconfigurations are slow to handle demand spikes and can
incur significant overhead when launched frequently. We
introduce overload partitions (OLPs) to handle this situa-
tion. An OLP is a superset of resources that includes the
resources currently in the VC. It is created with the same
VC creation mechanism, but for a hypothetically higher de-
mand level. While the resources in a VC are dedicated to
the VC, the resources in the OLP are shared among mul-
tiple VCs. This is to reduce the potential resource under-
utilization problem.

3 Mathematical Model

We model the VC creation problem as a facility location
problem (FLP) [3]. FLP is an optimization problem that
tries to allocate facilities to demand points minimizing the

total facility–demand allocation cost. In VC creation re-
sources are considered as facilities, APs as demand points,
and the QoS metric (for example, network delay) between
resources and APs as the facility–demand allocation cost.
There are many variations of FLPs and the VC creation al-
gorithm uses the capacitated fixed-charge location problem
(CFCLP). The CFCLP assumes a fixed cost for using each
facility and each has limited capacity towards covering the
demands. This model exactly matches the VC problem as
allocation of resources incur a fixed cost (resource rental)
and capacity of each resource is always limited.

We model the CU system as a graph with the servers
and APs as the nodes and the network links as the edges.
Let Vc be the set of potential server nodes and Va be the
set of APs. In addition, we define the following parame-
ters: (a) dij : network delay between nodes i and j, (b) bij :
bandwidth between nodes i and j, (c) mj : capability of
server j denoted by attributes such as processor architec-
ture, (d) kj : capacity of server j that denotes the maximum
number of concurrent requests it can handle, (e) cij : cost of
covering node i in Va by node j in Vc as defined as below,
(f) fj : fixed cost for allocating node j as a facility, (g) hi:
demand at node i, (h) M : required capability of a suitable
resource, and (i) B: intra-VC bandwidth. The covering
cost cij is defined as cij =

(
αdij + β

bij

)
where α and β

are VC specific and are given by the SO. For example, by
making α = 0, we can ignore the inter-node delay and just
consider inter-node bandwidth. The covering cost cij can
be considered as the inverse of the delivered QoS.
The decision variables are defined as follows:

sj =

{
1 if node j is part of the VC
0 otherwise

aij =

{
1 if node j ∈ Vc covers node i ∈ Va
0 otherwise

With these parameters, the optimization problem for creat-
ing a VC becomes (with i ∈ Va and j, k ∈ Vc):

minimize
∑

j

fjsj +
∑

i

∑

j

hicijaij (1)

Subject to
mj ≥ Msj ∀j (2)

sj + sk ≤ 1 ∀{j, k|bjk < B} (3)
aij ≤ sj ∀i, j (4)

∑

j

aij ≥ 1 ∀i (5)

∑

i

hiaij ≤ kjsj ∀j (6)

sj = 0, 1 (7)
aij = 0, 1 (8)

The objective function given in (1) tries to minimize the
number of servers (with sj) in the VC while maximizing
the delivered QoS (with cij). Using demand-weighted cost
(hicij) places the server closer to the APs with high de-
mand.

The Constraint (2) restricts the VC membership to
nodes with given capabilities. This constraint is satisfied
by the CU’s resource discovery mechanism and hence need
not be considered in the FLP solution procedure. The intra-
VC bandwidth requirement is defined by the Constraint (3).
The Constraint (4) denotes that a server can cover an AP
only if it is part of VC. The Constraint (5) makes sure that
every AP is covered. Finally, the Constraint (6) ensures that
each server is serving within its capacity.

In this formulation, we assume that the QoS of a ser-
vice is decided by the network bandwidth and the delay.
This assumption is valid in most cases where the the re-
sponse time and the throughput represents the QoS. Even
in other cases, this formulation can be still used with cij
redefined to suit the given scenario. The above formula-
tion maximizes the delivered QoS, but does not guarantee
a given QoS level. This becomes an issue when a value
for QoS is agreed upon on the SLA. Nevertheless, it can
be addressed by preprocessing the cij matrix such that, the
cij elements that fail to meet the required QoS bound are
replaced by a very large number. This transformation will
make the model to converge to a solution that satisfies the
stipulated bound.

In general, a FLP is formulated with aij ≥ 0 instead
of the Constraint (8). When the integer constraint is relaxed
as such, the demand at an AP becomes splittable and can be
served by multiple servers. It generally results in a tighter
solution. However, with the integer constraint, each AP is
provided with a “home server” and the unused capacity on
the home servers naturally provides a safety margin in the
system.

4 VC Allocation Heuristic

Solving CFCLPs is known to be NP-hard [4, 3]. Several
algorithms have been proposed in the literature including
local search and Lagrangian relaxation that provide near-
optimal solutions [4, 3]. However, we need a solution
technique that need not result in well optimized solution

but provides a solution fast. Although a VC is relatively
long-lived, a fast VC creation procedure is necessary be-
cause a CU can be creating, destroying, and modifying VCs
in a continuous manner in response to varying demand.
This paper presents a centralized heuristic algorithm that
is based on the drop heuristic given in [3], using a local
search technique [4].

Our heuristic works in two phases. In the first phase,
a feasible configuration is found for a VC that includes all
available servers satisfying the Constraint 2 and each AP
is greedily assigned to a server minimizing the covering
cost cij . Once the feasible allocation is found, the sec-
ond phase is initiated to drop excess serving capacity and
reduce the cost of the VC. The dropping phase considers
dropping each of the already selected servers and computes
the resultant change in the objective function value. The
value can increase or decrease. It may decrease because
as servers are dropped, the first part of the objective func-
tion (1) decreases. On the other hand, it may increase be-
cause the covering cost making up the second part of the
objective function can increase. Once the changes in the
objective function value for dropping each server are calcu-
lated, the server producing the largest reduction is marked
for removal from the VC. However, before this server is re-
moved, the APs earlier covered by the leaving server need
to be reallocated to other servers. The result of this reallo-
cation has three possibilities: (1) reallocation is infeasible
due to the capacity overflow a the other servers; (2) it is
feasible, but the resulting objective function value is larger
than the previous one due to the increase in the covering
cost; or (3) it is feasible with a reduced objective func-
tion value. For the first two cases the algorithm terminates
without removing the selected server; for the third case, the
selected server is removed and the algorithm goes into an-
other drop phase.

The intra-bandwidth constraint in Constraint (3) is ap-
plied prior to the drop heuristic to produce a connected set
of resources on which the heuristic can be applied. The
application of this constraint can yield several connected
components and the minimum cost VC produced among
these connected components is taken as the final VC.

5 Performance Evaluation

5.1 Simulation Setup

This simulation study compares the performances of the
VC configurations (with and without OLP) with another
fully dynamic scheme called Service Grid [5]. A web con-
tent serving application is assumed as the hosted service
where the demand is posed in the form of document re-
quests from various network localities. Sufficient band-
width between the resources and clients is assumed so that
no performance bottlenecks are encountered in the net-
work. The requests arrivals at the APs are assumed to
follow Poisson distributions and the request lengths are
Gamma distributed. The request length is defined as the

time a server will be busy with that request. The aver-
age demand for the service is defined as the mean request
length divided by the mean request interval. The mean
request intervals and lengths are varied in the range of
1 . . . 10 and 100 . . . 500 seconds respectively. Because the
Service Grid does not allow specifying internal connectiv-
ity constraints, the Constraint 3 (Section 3) is neglected.
The simulations are carried out for a fixed duration of time.

The network topology for the simulation is generated
using the Tiers [6] Internet topology generator. It creates
a network with WAN-MAN-LAN topology. The APs are
placed at randomly chosen LAN nodes and the rest of the
nodes are assumed to be potential VC servers. The created
topology had 56 nodes with 29 APs. The created VC had
8 servers in the dedicated partition and 4 more in the OLP.
Once the VC configuration is determined, a discrete event
simulator that simulate the arrival and processing events is
used to measure the performance metrics. Currently, our
simulator handles only discrete document transfers. A fu-
ture study will extend the simulator to handle persistent
connections that represent streaming media transfers.

5.2 Service Grid

The resource management in Service Grid is two-tiered
with a set of group managers (GMs) and a resource man-
ager (RM). RM assigns resources to GMs from the global
pool based in response to the requests from GMs. Each GM
maintains a set of servers to serve the requests originate
within its locale. Each request is assigned to a server that
gives the minimum hicij value. The GM monitors these
request bindings for capacity and/or QoS breaches. When
these breaches exceed a predefined threshold, the GM re-
quests an additional server from the RM. Similarly, the
GM releases a server if it idles for more than a predefined
threshold. The threshold values are set such that there are
no oscillations. This one-by-one server addition/removal
makes the Service Grid more dynamic than the VC.

5.3 Results and Discussions

The performance metric response time (Tr) is defined as the
time taken from the origination of the request to the receipt
of the service completion acknowledgment at the client.
The response time is comprised of (a) binding time: the
time taken for a request to be assigned to a server; (b) com-
munication time (Tc): the time spent on transport and wait;
and (c) service time = request length. To isolate the effect
of service time, Tc is considered as a performance metric
as well. When a request is assigned to a server that is over
its capacity, the request is queued at the server increasing
the communication time and thus the response time. Even
though the request is assigned to a server with a satisfying
hicij value, the actual QoS might be poor due to the queu-
ing. Therefore, the percentage of queued requests (Pq) is
considered as another performance metric. Additionally,

the percentage of QoS failed requests (PQoS) is used as an-
other performance metric in Service Grid as there is always
a possibility of some requests served under acceptable QoS.
The maximum hicij among all the AP–home server assign-
ments in the corresponding VC is considered as the mini-
mum acceptable QoS. Further, because the Service Grid,
not like the VC, utilizes as many resources as needed and
available, the number of servers used is also used to com-
pare the performances. All the values presented in the rows
of the tables are averages of at least five runs.

Tables 1 and 2 show the performances of the Service
Grid and the VC (without OLP) with varying normalized
mean request intervals. The normalized request interval of
1 denotes the nominal load condition for which the VC was
created. The smaller the mean request interval, the higher
the load as tabulated in the normalized load column. From
the tables we can make following observations: (a) the per-
formance of the Service Grid in terms of PQoS and Pq is
fairly steady; (b) the VC outperforms Service Grid at un-
derload or nominal conditions, while the reverse is true at
overload conditions; (c) Service Grid consumes more than
double the number of serving resources compared to VC;
and (d) even with that many resources consumed, a frac-
tion of requests are always served with poor QoS. A similar
performance is observed with the varying load in terms of
request lengths.

Table 2 also shows the vulnerability of the VC to over-
load conditions. Because a VC operates with a limited set
of resources, when it is overloaded even by a small amount,
the requests quickly start queuing at the resources, dramati-
cally degrading the performance. Table 3 shows the perfor-
mance improvement when an OLP is added to the VC. The
OLP is created for a hypothetical 1.5x overload condition.
Even with the OLP, the VC uses only 12 servers in total.
Therefore, the performance improvement comes without a
dramatic increase in the cost of creating and maintaining
the VC.

Tables 4 and 5 shows the performances when the de-
mands are not uniform across the APs. Here the load in-
jected by each AP is randomly assigned from a range. The
width and the center of this range is varied and the results
are shown in the tables. The results clearly shows that the
VC performs much better in this real-world like conditions.

The Figure 2 shows the variation of total unused
capacity in both Service Grid and VC with time. The
lesser the unused capacity the better the resource utiliza-
tion. From the figure it is clear that VC without OLP has
the best resource utilization. The resource utilization in VC
with OLP is comparatively low, but it still outperforms the
Service Grid. In VC with OLP, the utilization of the dedi-
cated VC resources is higher than the OLP resources. It is
an outcome of the design, as the OLP resources are to be
shared among multiple VCs.

The systems were compared with another metric
called unit utilization cost. It is defined as total resource
acquisition cost divided by used capacity of the resources.
Figure 3 compares the systems based on this metric. Opti-

Norm. Total Max.
request Norm. Tr Tc No. of PQoS Pq servers servers
interval load (sec.) (sec.) requests (%) (%) used at a time

1.5 0.7 462 1.319 283 972 0.01 10.9 15 12
1.1 0.9 461 1.350 398 176 0.01 13.4 21 18
1 1 462 1.359 404 119 0.01 13.6 21 19

0.9 1.1 463 1.914 528 964 0.01 28.4 26 26
0.7 1.5 462 2.091 670 002 0.05 34.1 26 26

Table 1. Performance of the Service Grid with mean request interval.

Norm.
request Norm. Tr Tc No. of Pq
interval load (sec.) (sec.) requests (%)

1.5 0.7 461 0.643 267 996 0
1.1 0.9 461 0.655 370 873 0
1 1 460 0.655 376 761 0.00

0.9 1.1 9 452 8 991 486 472 99.4
0.7 1.5 20 058 23 597 583 872 99.6

Table 2. Performance of the VC without OLP with mean
request interval.

Norm.
request Norm. Tr Tc No. of Pq
interval load (sec.) (sec.) requests (%)

1 1 461 0.666 376 967 0
0.8 1.2 461 0.676 454 031 0
0.7 1.5 461 0.697 564 569 0.00
0.6 1.6 461 0.704 602 798 0.00
0.5 2 5 700 5 240 753 214 96.4

Table 3. Performance of the VC with OLP with mean
request interval.

Norm. Norm. Total Max.
range range Tr Tc No. of PQoS Pq servers servers
size center (sec.) (sec.) requests (%) (%) used at a time

0 1 922 2.940 212 930 0.01 27.4 20 16
1 1 889 2.893 213 217 0.01 25.2 19 15

1.5 1.25 1 038 4.478 213 241 0.02 41.1 21 17

Table 4. Performance of the Service Grid for nonuniform loading.

Norm. Norm.
range range Tr Tc No. of Pq
size center (sec.) (sec.) requests (%)

0 1 461 0.666 377 042 0
1 1 513 0.672 376 769 0

1.5 1.25 729 86.5 376 260 16.2

Table 5. Performance of the VC with OLP for nonuniform loading.

mized resource acquisition in VC both cuts down the sys-
tem cost and increases the utilization and therefore outper-
forms the Service Grid. Also it can be observed that the
VC configurations hold this metric steady while the Ser-
vice Grid shows significant oscillations due to the continu-
ous inclusion and deletion of serving resources.

6 Related Work

As described in Section 5.2, Service Grid [5] is a fully dy-
namic resource allocation scheme that allocates resources
with required QoS on a per request basis to meet the de-
mand conditions. Although its performance is found to be
stable over a range of loading condition, our study shows
that it is less cost-effective.

Océano [2] is a resource management system for a
utility that manages resources at a single site. Océano has

two types of servers allocated for a service: a fixed num-
ber of “whale” servers and a varying number of “dolphin”
servers. Because the VC spans multiple geographical lo-
cations, its FLP based allocation process is different from
that of Océano which uses a simple event driven system to
decide when it is appropriate or essential to add or delete
a server from a service. Océano also is aware of QoS con-
straints.

Cluster on demand (COD) [7] is an architecture that
shares our views of the global resource pool and service
specific resource collections. However, the constraint sat-
isfaction problem algorithm used by COD for resource
scheduling considers only the capabilities of the resources.
In COD, it is the SO’s responsibility to determine the num-
ber and locations of the resources needed to satisfy the QoS
requirements.

Cluster reserves [8] is a scheme for providing perfor-
mance isolation among wide area services. Unlike the other

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 to

ta
l a

ct
iv

e
ca

pa
ci

ty

scaled simulation time

Service Grid
VC with OLP

pure VC nodes in VC with OLP
VC without OLP

Figure 2. Resource utilization within a cluster.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

un
it

ut
ili

za
tio

n
co

st
 (i

n
th

ou
sa

nd
s)

scaled simulation time

Service Grid
VC with OLP

VC without OLP

Figure 3. Unit utilization cost of a cluster.

architectures where the granularity of resources allocations
is at a resource level, granularity in cluster reserves is finer
allowing multiple services to share a single resource. It
uses collections of OS level resource containers to provide
performance isolation. Optimization algorithms are used
to determine the portion of a node that a service should oc-
cupy to maximize the total resource utilization.

There are number of projects in the literature [9, 10,
11] that approach the placement of web server replicas and
caches as facility location problems. In general, these ap-
proaches consider hop distance as the parameter of perfor-
mance. Their formulations differ from ours in a number of
ways, since our problem has to deal with capabilities, ca-
pacities, and different QoS metrics. Further, the concept of
anchor point is unique in our work.

7 Conclusion

This paper presents a new mechanism called Virtual clus-
ter (VC) for “soft” wiring a cluster from pool of resources
maintained by computing utilities. Generally clusters are
designed for maximum demand conditions resulting in
poor overall resource utilization. Here, we present an al-
ternative approach, where each VC has a dedicated and a
shared set of resources. The dedicated portion guarantees
a minimal level of service with the shared partition adding
robustness to withstand the demand variations. Also this
paper presents an optimization based algorithm for VC cre-
ation that produces minimum cost resource collection that
satisfies the performance requirements.

Our simulation study compared the VC approach with
a fully dynamic approach called Service Grid. The VC was
able to improve the performance of Service Grid by about
40% while consuming 33% fewer serving resources. In a
CU environment this is very significant because VCs will
be able to guarantee a minimal level of service while con-
suming less resources. Conversely, the CU will be able to
host more applications and increase its revenue for a fixed
global capacity.

Acknowledgements
We would like to thank Mohammad Rashid and Blake

Podaima for their valuable feedbacks on this paper.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, “The
anatomy of the Grid: Enabling scalable virtual orga-
nizations,” International Journal on Supercomputer
Applications, 2001.

[2] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and
et al., “Océano – SLA based management of a com-
puting utility,” in IEEE/IFIP International Sympo-
sium on Integrated Network Management, May 2001.

[3] M.S. Daskin, Network and Discrete Location: Mod-
els, Algorithms, and Applications, John Wiley &
Sons, Inc., New York, NY, 1995.

[4] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman,
“Analysis of a local search heuristic for facility loca-
tion problems,” in Journal of Algorithms, 2000.

[5] Byoung Lee and Jon B. Weissman, “Dynamic replica
management in the Service Grid,” in IEEE 2nd Inter-
national Workshop on Grid Computing, Nov. 2001.

[6] M. B. Doar, “A better model for generating test net-
works,” in IEEE Globecom, Nov. 1996, pp. 86–93.

[7] Justin Moore and Jeff Chase, “Technical report: Clus-
ter on demand,” Tech. Rep., Department of Computer
Science, Duke University, May 2002.

[8] Mohit Aron, Peter Druschel, and Willy Zwaenepoel,
“Cluster reserves: A mechanism for resource man-
agement in cluster-based network servers,” in ACM
Sigmetrics 2000 International Conference on Mea-
surement and Modeling of Computer Systems, June
2000.

[9] Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny
Raz, and Yuval Shavitt, “Constrained mirror place-
ment on the Internet,” in INFOCOM, 2001, pp. 31–
40.

[10] Israel Cidon, Shay Kutten, and Ran Soffer, “Optimal
allocation of electronic content,” in INFOCOM, 2001,
pp. 1773–1780.

[11] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M.
Voelker, “On the placement of web server replicas,”
in INFOCOM, 2001, pp. 1587–1596.

