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Abstract

Naming and discovery are two critical issues of a wide-
area network computing system. The rising popularity of
wide-area systems have resulted in the development of a
variety of naming and discovery systems that are centered
on a “descriptive” paradigm, where resources and services
are described by a set of attribute-value tuples. This pa-
per presents new evidence to suggest that descriptive nam-
ing systems of large-scale computing systems have special
properties that can be exploited to construct very efficient
and scalable implementations. We present the empirical
evidence and perform simulations comparing a stock de-
scriptive naming system with an enhanced naming system.
Our simulation results indicate that the overhead caused by
the naming system can be significantly reduced without any
perceivable decline in performance.

1 Introduction

A naming system plays a crucial role in the success of the
network computing(NC) system that is built on it. IP ad-
dresses, domain names, and uniform resource locators are
example naming schemes that have successfully supported
widely deployed NC systems. The development of various
large-scale systems such Grid computing, utility comput-
ing, and pervasive computing are warranting another look
at this well-studied topic. The major reason being their re-
quirement for flexible, efficient, and scalable naming sys-
tems that can support resource and service discovery.

Existing naming systems can be classified into two
major classes:label-based systems anddescription-based
systems. Label-based systems affix a label, say a DNS
name, with an object and use it to locate and access the
object. The labels can be derived in different ways (for ex-
ample, several peer-to-peer systems derive them from the
contents of the object). Description-based systems, on the
other hand, use a set of attribute-value tuples to name or
to describean object. Even though it provides flexibility
in answering resource queries, it comes at the cost of ad-
ditional overhead. Most part of the overhead is associated
with maintaining databases of the attribute-value tuples, en-
forcing consistency among a network of such databases, re-
solving queries using values within these databases. Often

the overhead increases dramatically with increasing size of
the network [1].

Another significant difference between the two
classes of systems is that the label-based systems normally
result in unique names for the objects. The description-
based system can result in non-unique names because the
name is essentially a description of the object and the
uniqueness is determined by the attributes used for descrip-
tion. The two classes of names are used for different pur-
poses. The label-based names are used for locating and
accessing a specific object. Whereas, description-based
names are used for locating and accessing an object be-
longing to a given family of objects. Usually, this is an
extension of a resource, data, or service discovery mecha-
nism.

This paper proposes a new naming strategy called the
profile-based naming that attempts to combine the bene-
fits of description-based and label-based naming systems.
In simple terms, profile-based naming considers the set of
attribute-value pairs describing an object to be the profile
of the object. The profiles are labeled withtype IDsthat
become the name of the corresponding objects.

Although resources and queries are free to choose any
combinations of attribute-value tuples, the profile-based
naming is based on the argument that only a small sub-
set of all possible combinations will be used disproportion-
ately more than the rest. Such phenomena is observed in
many different types of computer systems such as Internet
topology [3], Weblogs [4], and webpages [5]. In Internet
topology, this behavior is due to the fact that a newly join-
ing node is likely to prefer adjacencies with already popular
nodes. This rationale can be extended to naming systems as
well. Clients of an NC system form their queries based on
the requirements of the applications they want to execute
and the feedback from previous users on the appropriate-
ness of different resources. This makes certain attribute-
value tuples to appear in a disproportionately large number
of queries. The profile-based naming attempts to exploit
this popularity skewness to select a minimal set of profiles
while maximizing the fraction of queries that can be han-
dled.

Section 2 presents a study onCNET.com database
to support the argument behind the profile-based naming.
Section 3 presents a conceptual view of naming systems



and introduces a profile-based naming system. Section 4
describes the simulation studies and the results obtained.
Some related works are presented in Section 5 and the
difference between existing work and our work is high-
lighted.

2 A Case for Reconsidering Naming

To proof the conjecture that the attribute-value tuple space
for resource descriptions and queries in a description-based
naming system is power-law distributed, we require signif-
icant amounts of trace data with appropriate levels of de-
tail from existing naming systems. Unfortunately, existing
trace data on current computing utilities, Grid computing
systems, multi-cluster computing centers do not provide
sufficient insights. For example, an examination of the
resource characteristics of large-scale Grid deployments
show that the resources have highly correlated attribute-
value tuple descriptions [6, 7]. Most resources in these en-
vironments tend to have the same processor architecture to
improve portability of code among the different resources
to ease the resource management. Similarly, a review of the
queries submitted to high-performance computing centers
reveal that many requests leave a significant portion of the
attributes as “don’t care.” This is partly because the com-
puting centers have resources that are roughly equivalent
[8]. Although these observations hint to a smaller attribute-
value tuple subspace that is highly popular, the data is in-
sufficient to draw any conclusions.

The lack of useful trace data from computing utilities
prompted us to investigate other potential sources of infor-
mation. One such source isCNET.com [2], which is an
online computer system review site. We use this site to ex-
amine the resource diversity, which is one of the factors
that determine the flexibility requirement of the naming
systems. Our rationale for using data fromCNET.com to
examine resource diversity is as follows. TheCNET.com
review database has more reviews for systems that are ex-
pected to be popular among its clients. We assume that
CNET.com would have gauged the relative popularity of
the systems and populate their review database to maxi-
mize the information needs of their clientle. Extending this
argument, we can even say that the popularity profile of a
review database can foreshadow the popularity profile we
can expect in a future population of computer systems.

The CNET review database uses many attributes to
characterize a desktop of which four attributes are selected
in this analysis. They are processor class, clock speed,
memory size, and hard disk size. Others are deemed less
important from the perspective of a computing utility or
large-scale NC. The processor class attribute can have thir-
teen possible values and six values are possible for other
attributes. This gives a total of2808 possible types for the
systems reviewed by CNET. The frequency of each type in
those systems is counted and the resulting cumulative his-
togram is shown in Figure 1.

Several interesting numbers can be noted from the
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Figure 1. Cumulative histogram of desktops over number
of types.

above figure. Only110 types (3.6% of total types) are re-
quired to describe90% of the total systems and only383
types (13.6% of total types) are populated by the whole
database (which has more than10, 000 systems). These ob-
servations suggest that a smaller subspace of the attribute-
value tuple space is popular. This could be exploited by a
description-based naming system to improve its efficiency.
One way of improving the efficiency by exploiting this
property and the resulting benefits is the topic of the rest
of this paper.

3 A New Naming Architecture

3.1 A Conceptual Look at Naming

An important component of a naming system is thename
space. If we consider a description-based system with a
bounded number of attributes and bounded distinct possible
values for each attribute, the name space will be bounded.
We refer to this name space as thepossible spacebecause
all name specifiers should fall into this space. For ex-
ample a description-based system with five attributes each
having five possible values produces a possible space with
55 = 3125 names. In general, with attributes that have con-
tinuous values, the possible space can be unbounded. The
populated spacerefers to a sub space of possible space that
consists of the names of resources that are actually present
in the system. Thepopular spaceis a sub space made of the
names that are referred to by the popular queries for some
arbitrary popularity threshold. We introduce another sub
space called theperceived spacethat is actively maintained
by the discovery and dissemination system associated with
the naming system. The nested organization of the different
sub spaces is shown in Figure 2.

Although the popular space should be contained
within the populated space, the perceived space is a design
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Figure 2. Nested organization of the different sub name
spaces.

parameter and can be placed differently. The overhead in
the system can be controlled with the expanse of the per-
ceived space: (a) a naming system can immediately reject
a query that lies outside the perceived space, which pre-
vents the associated message and processing overhead and
(b) when the perceived space is designed smaller than the
populated space, message and processing overheads can be
further reduced by preventing the dissemination of status
information for unpopular resources.

3.2 A Profile-Based Naming System

Figure 3 illustrates the overall architecture of theprofile-
based namingsystem. Incoming resources are presented
to the resource profiling module which tags them with
type IDs appropriately. Once a resource is profiled, it is
accepted by the profile-based naming system. Similarly,
when queries arrive at the system, they are also profiled
based on the same profile repository. Depending on the
number of recognized profiles in the repository, a portion
of incoming resources and queries will fail to be profiled
into a type.
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Figure 3. Architecture of a profile-based naming system.

The contents of the profile repository is tuned by the
profile adaptationmodule such that the names within the
most popular sub space are included in the repository. It
can add new profiles and retire old profiles. Profile adap-
tation is basically a feedback system which monitors the
incoming queries and their fate and increase the number of
recognized types only to keep the number of failed queries
below a design specified threshold. Profile adaptation does
not take resource profiling failures into account because it
is only the fate of queries that determines the performance

of the system. However, as mentioned earlier, query pat-
terns have an influence on the resource types that already
have specific profiles. Therefore, if the query profiling fail-
ure is low, the resource profiling failure will be low as well.
Removing an existing profile can be an involved process
because all resources matching that profile need to be in-
formed. One approach is to expire a profile after a given
time and re-profile all resources with expired profiles.

Tagging resources and queries with type IDs reduces
the system overhead in many ways: (a) compact resource
dissemination messages; (b) compact query messages; (c)
avoidance of information loss due to aggregation or sum-
marization of resource descriptions; and (d) possibility of
using peer-to-peer lookup services such as Pastry [9] in
the resource discovery process as they can map labels ef-
ficiently.

With the restricted number of recognized profiles,
there is always a possibility of failure of resource queries
even though there are resources in the system that match
the description. This is where the trade-off between perfor-
mance and overhead comes in. However, the performance
can be increased with a hybrid system where the profile-
based system is implemented in a distributed manner with
a centralized (small scale) description-based system to cap-
ture the resources and queries that are not profiled.

4 Simulation

4.1 Simulation Setup

The objective of the simulation study is to evaluate the per-
formance differences between the description-based and
profile-based naming systems. In the simulations, we as-
sume that a resource can be described by five attributes and
each attribute can have five values. The naming system
is implemented by the name resolvers that are distributed
across the wide-area network and interconnect using a peer-
to-peer overlay. A resource connects to a particular name
resolver to which it advertises itself and also submits nam-
ing queries. Thefloodingprotocol is used for inter-resolver
dissemination. To reduce the inter-resolver message sizes,
the resolvers summarize the local information and dissem-
inate only the digests. When a resolver determines that an
incoming query cannot be satisfied by resources associated
with the resolver, the resolver searches through summaries
received from other resolvers to decide to which resolver(s)
it should forward the query. The home resolver chooses the
first reply it receives and ignores the rest. The queries are
assumed to arrive in a Poisson distribution. One major dif-
ference between query and resource specifications is that
in query specifications wild cards can be present. Attribute
values are generated for the queries using a power-law like
distribution. No correlation is assumed between the differ-
ent attributes of a query.

Performance of the description-based and profile-
based naming systems are simulated against the following
parameters: (a) network size as (measured in number of



nodes), (b) number of resolvers, and (c) number of queries
arriving at the system.
Description-based naming system:

This system identifies a resource by a set of attribute-
value tuples. A resolver in this system receives a query
that specifies either partially or completely the attribute-
value pairs that should hold for the target resource. The re-
solver returns the address of one such target resource. The
resolvers are uniformly distributed over the network such
that a resource attaches to the closest resolver it could find.
Because the resolvers disseminate the digest of the local re-
source characteristics, remote resolvers can forward some
queries that cannot be satisfied locally due to false posi-
tives.
Profile-based naming system:

In this system, resource type IDs are used for dis-
semination as well as queries. Because a query can be ex-
pressed using wild-card attributes, a query can match mul-
tiple types. Profile-based system allows one resolver for
each recognized type. However, when all the recognized
types are populated by the resources in the system, the ac-
tual number of resolvers in the system will be low than the
allowed number.

4.2 Simulation Results

4.2.1 Message overhead with number of re-
solvers

The inter-resolver dissemination and query forward-
ing/reply are main sources of message overhead in both
systems. Figure 4 compares the message overhead for
the two systems for100, 000 queries and network sizes of
5, 000 and10, 000 nodes for varying number of resolvers.
They-axis in the figure is in log scale. The results shows
that the message overhead rises with the increasing num-
ber of resolvers. However, the increase is much low in the
profile-based system. In Figure 5 shows the loading of the
resolvers as messages per resolver. The loading is much
less in the profile-based system.

Also the figures shows that the actual number of re-
solvers in the system in the profile-based system always
stops growing beyond a certain limit (in this case3%). It
reflects the skewness in the popularity of the resource types.
The interesting point here is that even with a fewer number
of resolvers in the profile-based system, loading of the re-
solver is much less in this system than the other.

4.2.2 System performance with Network
Size and Queries

In this section, we examine the variation of different perfor-
mance measures with network sizes and queries. Figure 6
shows the variation of message overhead with different net-
work sizes. For this experimentation, the number of queries

is kept constant at100, 000 and the number of resolvers is
kept at3% of the number of nodes in the network.

The low message overhead of profile-based system is
due to two major reasons: (i) reduction of needless for-
warding of queries and (ii) reduction in dissemination due
to reduction in the number of resolvers. The query forward-
ing is more inefficient in description-base system because
there can be a lot of false query forwards to unsuitable re-
solvers due to aggregation of resource description.

A message generated by a resolver in response to a
query is consideredwastedif it fails to find a resource that
is not busy and satisfies the query constraints. Figure 7
shows the percentage of the forwarded messages that are
wasted on either system. The large number of wasted for-
warded messages in the description-based system is the re-
sult of both false positive forwarding and busy resources.
On the contrary, in profile-based system it is only due to
the busy resources.

Because a resolver generates several message in re-
sponse to a query, wasted messages do not directly relate
to the actual query success rate. In Figure 8, we mea-
sure the percentage of failed queries with network size.
The figure shows that for larger network sizes the two
schemes are equally successful and for smaller networks
the description-based system outperforms the profile-based
system by a small margin. In a profile-based system, a
query can fail due to two reasons: (a) unable to resolve
the query into one or more of the recognized types, and (b)
all the resources of the corresponding type are busy.

We repeated the experiment with varying number of
queries and fixed network size of5, 000 nodes and fixed
number of resolvers at200. The results for overhead and
wasted forwarded messages follow the similar trend as the
results with varying network size. Figure 9 shows the result
for percentage of failed queries. Even though the flexibil-
ity of description-based system satisfies more queries, the
performance different is very small (≈0.1%)

4.3 Scalability Analysis

A distributed system is considered scalable if it could scale
up while maintaining high productivity per unit overhead
[10]. Here we use(message overhead)/(success rate)as a
measure of scalability. The message overhead is the total
messages that are exchanged in the system. The success
rate gives the rate at which the naming system is able to
successfully resolve naming queries. In this experiment,
the network size is increased and simultaneously the num-
ber of queries is increased. The number of queries is always
ten times the number of nodes. The number of resolvers is
kept at5% of the number of nodes. The results shown in
Figure 10 are normalized to the result of500-node network
and plotted against the normalized network size. From the
figure it is evident that the scalability of the description-
based system is much worse than that of the profile-based
system. The scalability measure shown in Figure 10 is
based on a flooding protocol. With a more efficient dis-
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semination algorithm, the scalability of both protocols can
be improved.
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5 Related Work

The meta-directory services(MDS-1) [11] was the back-
bone of Globus toolkit version 1.x [12]. MDS-1 extends
LDAP so that multiple information sources can update a
particular entry in the system. In Globus toolkit version 2,
themonitoring and discovery services(MDS-2) [13] takes
over the functionality of MDS-1 to address some of the per-
formance bottlenecks associated with MDS-1 that were in-
herited from LDAP. In MDS-2, flexibility in discovery is
achieved usingaggregate directory serviceswhich can pro-
duce customized resource views/collections from the infor-
mation received from low-levelinformation providersthat
are analogous to the LDAP servers. The aggregate direc-
tory servers arevirtual organization(VO) specific, a design
aspect that increases scalability. The idea of having aggre-
gate services supports our concept of profiling: aggregate
services are designed to handle popular query types. In
MDS-2, the indirection between aggregate services and in-
formation providers, reduces the responsiveness of the sys-
tem, which is addressed by introducing resource informa-
tion caching at the aggregate servers [14]. When up-to-
date information is required, it should be pulled from the
information providers on a query-by-query basis [13]. Our
approach differs fundamentally from MDS. Where MDS
uses aggregation to make a pure description-based system
scalable and flexible, we take a different approach of con-
verting a description-based system to label-based system.
As network sizes scale up to include millions of resources
(merger of peer-to-peer and Grids), our approach has sig-
nificant advantages.

The relational grid information services(RGIS) [15,
1] is an implementation of a Grid information service us-
ing relational database technology, where resource adver-
tisements are considered as record insertions and resource

requests as database queries. The focus of this research
is to develop efficient strategies to use relational database
technologies towards achieving a high performance naming
system.

The intentional naming system(INS) [16] is a nam-
ing system that is based on the “intent” of the applications
rather than the network locations. The names in INS are
formed as a list of attribute-value tuples, where the se-
quence of attribute appearance determines the search pro-
cess for the resources. INS allows wild-cards values in
queries. Twine [17] is the dissemination/discovery archi-
tecture based on INS for pervasive computing applications.

The lightweight directory access protocol(LDAP)
[18] is one of the early works in naming for resource dis-
covery systems. It is a client–server based directory ser-
vice where the name entries are distributed among hier-
archically organized name servers. The name entries are
made up of a set of attribute-value tuples that can be used
to name entities ranging from people to computers. The
read-optimized nature of the LDAP directories restricts its
applicability in a highly dynamic wide-area system.

6 Conclusions and Future Work

This paper proposes a new naming strategy called the
profile-based naming that attempts to combine the bene-
fits of description-based and label-based naming systems.
In simple terms, profile-based naming considers the set of
attribute-value pairs describing an object to be the profile of
the object. The profiles are labeled with type IDs that be-
come the name of the corresponding objects. We presented
empirical data that suggests a description-based naming
system might have a smaller subset of names that form a
popular sub space of the whole possible naming space. Sig-
nificant amount of data from operational description-based
naming systems is necessary to conclusively proof or dis-
prove this theory.

Assuming that some form of power-law relationship
holds for the description-based naming systems, we per-
formed large-scale simulation studies to compare profile-
based and description-based naming systems. The simula-
tion results indicate that profile-based naming can signifi-
cantly reduce the message and processing overheads with-
out adversely impacting the success rate of the name reso-
lution process. One of the major reasons for the overhead
reduction in the profile-based naming is the elimination
of erroneous query message forwarding. This happens in
description-based systems because the query messages are
forwarded based on the resource aggregates disseminated
by the different resolvers in the description-based system.
Other sources of message overhead reduction include re-
ductions in status dissemination messages due to the exclu-
sion of unpopular resources.

In summary, the work presented in this paper is novel
and significant for the following reasons:

• It provides the first known evidence that a descriptive



name space can potentially have a popular sub space
that is used by a disproportionately large number of
name queries. Although it might seem that caching
already exploits this property, it does not fully exploit
it. For instance, caching remembers a particular bind-
ing that is obtained from the resolution process for a
given name specifier. In contrast, profile-based nam-
ing identifies the popular name specifiers and builds
a lean and efficient naming system that obviates the
necessity for caching. This also makes the profile-
based naming “friendly” towards dynamic parameters
because the name query is resolved at real-time with-
out depending on cached values.

• It presents a profiling process that turns a description-
based name specifier into a label. With the advent
of highly scalable self-organizing peer-to-peer lookup
services such as Pastry and Chord, a label based name
specifier can be handled efficiently in a scalable man-
ner. Further, P2P lookup services such as Pastry al-
ready handle network proximity, which could be ex-
ploited by the profile-based naming system.

• It describes an architecture for deploying profile-
based naming system in conjunction with an existing
description-based naming system.

• It shows the significant performance differences that
exist between description-based and profile-based
naming systems.

We are continuing this study by examining various as-
pects of profile-based naming. Some of them include: (a)
introducing multiple profiling agents and (b) context spe-
cific profiling.
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