
Heuristics for Enforcing Service Level Agreements in a
Public Computing Utility

by

Balasubramaneyam Maniymaran

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba
Winnipeg, Manitoba, Canada

c
�

Balasubramaneyam Maniymaran, November 2002

ii

“To my father and mother

who sacrificed their pleasant days
to build my future pleasant”

iii

Abstract

With the increasing popularity of consumer and research oriented wide-area applications,

there arises a need for a robust and efficient wide-area resource management system. Even

though there exists number of systems for wide area resource management, they fail to

couple the QoS management with cost management, which is the key issue in pushing such

a system to be commercially successful. Further, the lack of IT skills within the companies

arouses the need of decoupling service management from the underlying complex wide-

area resource management. A public computing utility (PCU) addresses both these issues,

and, in addition, it creates a market place for the selling idling computing resources.

This work proposes a PCU model addressing the above mentioned issues and devel-

ops heuristics to enforce QoS in that model. A new concept called virtual clusters (VCs)

is introduced as semi-dynamic, service specific resource partitions of a PCU, optimizing

cost, QoS, and resource utilization. This thesis describes the methodology of VC creation,

analyses the formulation of a VC creation into an optimization problem, and develops so-

lution heuristics. The concept of VC is supported by two other concepts introduced here

namely anchor point (AP) and overload partition (OLP). The concept of AP is used to

represent the demand distribution in a network that assists the problem formulation of the

VC creation and SLA management. The concept of overload partition is used to handle the

demand spikes in a VC.

In a PCU, the VC management is implemented in two phases: the first is an off-line

phase of creating a VC that selects the appropriate resources and allocates them for the

particular service; and the second phase employs on-line scheduling heuristic to distribute

the jobs/requests from the APs among the VC nodes to achieve load balancing. A detailed

simulation study is conducted to analyze the performance of different VC configurations

iv

for different load conditions and scheduling schemes and this performance is compared

with a fully dynamic resource allocation scheme called Service Grid. The results verify the

novelty of the VC concept.

v

Acknowledgement

First of all, I would like to thank my advisor Dr. Muthucumaru Maheswaran for his

continuous patience, guidance, and support in the completion of this thesis. Also my thanks

goes to Dr. Sylvanus A. Ehikioya and Dr. Bob McLeod for their valuable time spent in

being part of my examination committee.

Also, I would like thank University of Manitoba and its Department of Computer

Science and Department of Electrical and Computer Engineering for the opportunity

and the resources they provided to my research. In addition, I would like to convey my grat-

itude to TRLabs, Winnipeg for the ample facilities it provided, without which my research

would not have been a reality. Especially I am thankful to all the staff and colleagues at

TRLabs for the direct and indirect support they gave towards my research.

I would like to thank also my friends Kumaran and Vasee for their valuable feedbacks

on this thesis.

At last, but not least, I convey my heartiest thanks to all my family members and

friends for their continuous moral support in my entire life and career.

vi

Contents

Abstract iv

Acknowledgement vi

1 Introduction 1

2 Literature Survey 5

2.1 PCU Related Projects . 5

2.1.1 Condor . 5

2.1.2 Legion . 6

2.1.3 Océano . 7

2.1.4 Shared Hosting Platforms . 7

2.1.5 Cluster-on-demand . 8

2.1.6 Virtual Data Center . 9

2.1.7 Grid . 10

2.2 Service Level Agreements . 12

2.3 Other Related Works . 14

2.3.1 WebOS . 14

2.3.2 Service Grid . 15

2.3.3 Self-Organizing Network Services 16

2.3.4 Spawning Networks . 17

2.3.5 Cluster Reserves . 17

2.4 Optimization Techniques in Wide-Area Networks 19

vii

3 Public Computing Utility Model 20

4 Virtual Clusters 23

5 Heuristics for Enforcing the SLAs in PCUs 26

5.1 Mathematical Formulation . 26

5.1.1 Practical Validity of the Formulation 29

5.2 Solution Methods and the Drop Heuristic 30

5.3 VC Creation – An Example . 32

5.4 Request Scheduling . 36

6 Simulation, Results, and Discussions 38

6.1 Assumptions . 38

6.2 Simulation Setup . 39

6.3 Load Prediction and Active Capacity . 41

6.4 Results and Discussions . 42

7 Conclusion 52

7.1 Contributions . 52

7.2 Limitations . 53

7.3 Future Works . 53

A Abbreviations 55

Bibliography 56

viii

List of Tables

5.1 The preferred server list headed by the “home servers”. 35

6.1 Performance of the Service Grid with mean request interval. 43

6.2 Performance of the VC without OLP with mean request interval using

greedy server acquisition. 44

6.3 Performance of the VC without OLP with mean request interval using prob-

abilistic server acquisition. 44

6.4 Performance of the Service Grid with mean request length. 45

6.5 Performance of the VC without OLP with mean request length using greedy

scheduling. 45

6.6 Performance of the VC without OLP with mean request length using prob-

abilistic scheduling. 46

6.7 Performance of the VC with OLP with mean request interval. 46

6.8 Performance of the VC with OLP with mean request length. 47

6.9 Performance of the Service Grid for windowed loading. 47

6.10 Performance of the VC without OLP for windowed loading. 47

6.11 Performance of the VC with OLP for windowed loading. 47

6.12 Performance of the Service Grid for asymmetrical loading. 48

6.13 Performance of the VC without OLP for asymmetrical loading. 49

6.14 Performance of the VC with OLP for asymmetrical loading. 49

ix

List of Figures

3.1 Resource management in a PCU . 20

3.2 An overall picture of PCU operation . 21

4.1 VC creation process on a PCU system. 23

5.1 The modified drop heuristic. 31

5.2 The initial network. 33

5.3 The created VC with OLP . 34

6.1 Resource utilization within a cluster. 50

6.2 Unit utilization cost of a cluster. 51

x

1
Introduction

Tremendous cut down in the cost of the IT appliances has increased the availability of

powerful appliances to average consumers. Further, mobile devices have become popular

and web-enabled, creating a pervasive Internet. Following these observations, Wide-area

applications, whether they are commercial services like video-on-demand or scientific ap-

plications like distributed computing, have started exploiting the Internet to reach a large

consumer audience. As a result, Internet population has increased to hundreds of million

that mostly enjoy the services through the Internet than telneting remote servers. Through

these changes, the Internet that has been viewed as a network to connect computers across

the world, has become a “service network” that is a base of varieties of wide-area services.

In addition, with state-of-the-art devices easily available to the end-users, the users expect

much higher quality of service (QoS) from those services. These observations impose a

number of challenges on a wide-area service management infrastructure.

Wide-area services have to consume a large amount of resources to satisfy the cus-

tomer population that spans the globe. Often the resources to build the services need to be

distributed globally to reach the target population with required QoS. Generally the service

originators (SOs) of the services buy and organize their own resources in local area or wide

area clusters. But, this is a costly option and often those resources are underutilized since

the clusters are generally designed for near worst case scenarios and demand fluctuations

in wide-area services are very high.

Guaranteeing performance over a wide-area is a difficult task, mainly because the In-

ternet is not designed to consider QoS aspects, but just to provide connectivity. In the

Internet achieving QoS is hindered by number of aspects: (a) first mile bandwidth problem

1

1. Introduction 2

(generally the link from end-user to the edge of the Internet is of low bandwidth); (b) unre-

liable peer-to-peer links causing congestion providing varying performances for different

customers; (c) the back bone switches and routers getting overloaded causing content loses;

and (d) lack of fault tolerance deteriorating the service.

Another interesting observation in the field of wide-area services is the lack of technical

skill within organizations. The service originators have the service and capital but not the

technical skill to manage a complex resource base beneath. Therefore, generally SOs want

to manage just the services but hand over the responsibility of managing the resources to a

third party.

There exists number of solutions that address the above mentioned issues. Content and

application outsourcing is a solution for acquiring enough resources to host a wide-area

service and it is becoming almost a norm for web-hosting. Outsourcing works by an SO

handing over the service content and the responsibility of hosting the service on the Internet

to a third party and pay the money for that service. The hosting agent uses its abundance of

widely distributed resources to host multiple services. Akamai [Aka02] is a popular exam-

ple for this which hosts number of famous web sites such as Yahoo, MTV, AOL, Victoria’s

Secret, and many more. Outsourcing is also a solution for alleviating the lack of IT skills

in a company. Another approach to gain a large resource pool is to use the idling resources

in the Internet. Condor [Con02] and Internet computing like SETI@home [SET02] are

examples for this. This is motivated by the observation of a huge amount of computa-

tional power idling on the Internet while some applications suffering from the scarcity of

enough computing power. Projects like Legion [LeV02] are dedicated to metacomputing

which orchestrate resources over a wide geographical span to perform distributed comput-

ing. Akamai’s edge delivery system promises a QoS guaranteed deployment of a service.

Edge delivery is a technique of moving the service and content to the “edge” of the Inter-

net avoiding the in-network loses and congestion. Grid architecture collectively addresses

some of the issues in wide-area resource management such as aggregating multi-owner

resources, resource dissemination and discovery, providing metacomputing functionality,

and supporting wide-area services. Projects like Océano [ApF01] handle the large demand

fluctuations in wide-area services with dynamically varying resource allocation.

1. Introduction 3

Even though the above mentioned solutions address a number of issues towards realiz-

ing a QoS-centric wide-area resource management, each of them alone could not provide

an efficient commercial infrastructure that can host various types of wide-area services,

because they are narrowly focused, research or academic based, or lacking number of com-

ponents to realize them as commercial solutions. Further, these solutions fail to consider

the trade-off between the cost of service instantiation and the QoS provision, that decides

the practical feasibility of a solution. In this thesis a public computing utility (PCU) model

is proposed as an infrastructure to host various wide-area services considering cost and

QoS aspects.

A public computing utility is like any other public utility such as water supply or elec-

tricity. A PCU aggregates computing power from various owners and, on the other hand,

the consumers subscribe the PCU service provider and pay for the service based on us-

age. The computing power from a PCU can be used in various ways such as to build up

a web-server cluster, to perform distributed computing, or to setup a storage area network.

The transfer of computing power from owner to consumer is transparent, hiding the origin

and the destination. This high level abstraction simplifies the resource management for the

consumers.

The vision of a PCU is not new, but dates back to early 1980s. A number of projects

such as IBM’s Océano and HP’s virtual data center are moving in that direction. However,

the PCU architecture proposed in this work has its unique aspects towards providing a

QoS guaranteed, cost effective, and service specific resource management infrastructure.

In summary, in this work:

1. A unique PCU model is introduced that can be the resource management substrate

for the wide-area services of the future.

2. New concepts called anchor points (APs), virtual cluster (VC), and overload parti-

tion (OLP) are introduced to facilitate the above concepts. Anchor points provides

an abstraction of demand intensity in a network; virtual cluster is the QoS abiding

resource collection for a service; and overload partition is the protection layer of the

virtual cluster to handle demand spikes.

3. An optimization based mathematical model is presented for VC creation. Also a

1. Introduction 4

solution heuristic is developed, that results in a cost effective and the same time QoS

guaranteed resource partition.

4. Two different request scheduling schemes are analyzed to balance the load among

VC nodes.

5. A simulation study has been carried out to validate the solution heuristic and to com-

pare the performance of the VC concept with another concept called Service Grid

[LeW01].

The purpose of this research work is not to implement a complete PCU model, but to

establish the concept of such a PCU model and to develop some heuristics that enforce QoS

in such a model. I took this research direction because I strongly felt that enforcing QoS

measures is the primary key for such a model to be commercially successful.

This thesis is organized as follows: Chapter 2 provides concise descriptions of related

research works and presents the uniqueness of the ideas presented here compared to the

existing work. The proposed PCU model is further described in Chapter 3 and Chapter 4

presents the concept of virtual cluster. The Chapter 5 formulates the mathematical model

for the creation of a virtual cluster, discusses its practical validity, and presents the solution

heuristic. It also discusses two scheduling schemes for load balancing. The details of the

simulation study and the results obtained are given in Chapter 6 with detailed discussion.

The Chapter 7 concludes this thesis. In Appendix A, a list of abbreviations used in this

thesis is given.

2
Literature Survey

This chapter provides brief descriptions of different research works in the field related to

my work and highlights the unique aspects of my work from the existing ideas. The first

section discusses some projects that have direct connection with or share the vision of our

PCU concept. The Section 2.2 talks about the service level agreement and relevant projects.

Number of other projects that share some ideas of our PCU infrastructure (even though they

do not fall into the utility computing category) are given in Section 2.3. The final section

of this chapter talks about some existing approaches that uses optimization techniques for

the wide-area resource management in computer networks.

2.1 PCU Related Projects

A number of research efforts have been put forwards in addressing various issues towards

implementing various visions of a computing utility. The following sections describes

some of the research works that try to implement a multi-service, multi-ownership resource

management infrastructures.

2.1.1 Condor

Condor [Con02] is the earliest project that had a vision towards a PCU. It was introduced

[LiL88] as a mechanism for high throughput computing which can exploit the idling com-

puting powers of different owners in a cluster of an organization to increase the overall

computing throughput of that cluster. Hence, Condor is the first in the history to address

5

2. Literature Survey 6

resource sharing specifically among multiple autonomous owners. Thus, Condor is de-

signed with the three principles: (1) Condor jobs should have no impact on the availability

and QoS to the owner of the resources; (2) Condor job execution should be transparent to

the users; and (3) Condor should require no special programming and preserve the operat-

ing environment of the machines.

To obey these principles, the Condor’s system design includes the following compo-

nents:

Scheduling structure: The scheduling structure of Condor is a hybrid of centralized and

distributed approaches. While a central manager is responsible for resource dis-

covery and notifications, localized daemons are responsible for scheduling locally

generated jobs in the Condor system and executing the submitted Condor jobs lo-

cally.

Remote Unix facility: Remote Unix (RU) turns idle workstations into cycle servers. When

RU is running on a workstation, it can fork shadow processes which can do the

scheduling or execution of the Condor jobs.

Checkpointing: Since Condor always gives priority to the owners of the workstations,

any remote Condor job can be preempted any time. Condor enforces a checkpointing

mechanism to avoid data loss at the time of preemption

The Condor system that is originally designed for achieving high throughput within an

organization expands its idea to span over multiple autonomous organizations through the

flocks of Condors project [EpL96]. Flocks of Condors provides different level of access

rights of computing power in an intra-organization and inter-organization levels.

2.1.2 Legion

Legion [LeV02, GrW94] is another project similar to Condor (section 2.1.1) but truly im-

plementing a metacomputing system. It identifies eight areas of developments to develop

a nationwide virtual computer : achieving high performance via parallelism, managing

and exploiting component heterogeneity, resource management, file and data access, fault-

tolerance, ease-of-use and user interfaces, protection and authentication, and exploitation

2. Literature Survey 7

of high-performance protocols. Legion differentiates itself from Condor mainly by provid-

ing facilities to job parallelization and parallel execution. Also, Legion’s implementation

structure differs from Condors being completely object oriented.

2.1.3 Océano

IBM’s Océano project [ApF01] is the one among the few that incorporate management of

service level agreements (Section 2.2) into the design. But, it deviates from perception of

PCU described in this thesis (even though they categorize it as a computing utility) in such

a way that it does not provide an infrastructure to collect resources from multiple owners,

but to maintain a shared server farm to host multiple services.

Océano infrastructure consists of three tiers: (1) front-end IP sprayers for load balanc-

ing among the selected servers; (2) a large pool of “dolphin” servers; and (3) a small pool

of “whale” servers. Whale servers are permanently allocated to services to guarantee the

minimum level of agreed QoS, while dolphin servers are dynamically included into and

expelled from the service-specific server pools depending on the load conditions of the

services. SLAs are observed by event driven mechanisms. Whenever a SLA is breached,

monitoring agents trigger a violation events and a correlation engine will analyze the root-

course for the event and notifies the resource director to carry out corrective measures.

IBM further expands their idea on computing utilities by invoking self-managing ser-

vices and considering virtualization of resources [ApE02]. The configuration policy com-

ponent can change the functionality of a resource dynamically (for example from a web-

server to a fire-wall node) which helps the virtualization of resources.

2.1.4 Shared Hosting Platforms

The work [UrS02] presents another shared server farm (the authors call it as shared hosting

platform) infrastructure similar to the Océano’s (Section 2.1.3), but it differs from Océano

in number of ways. It fails to address the SLA management directly as Océano does,

however, it provides other novel features such as (a) a method for automatic derivation of

QoS requirements; (b) a notion of overbooking to increase the revenue per resource; and

2. Literature Survey 8

(c) algorithms for partitioning of a single resource to gain performance guarantee in finer

granularity.

The overbooking mechanism is one of the important features this work proposes: the

authors prove that provisioning cluster partitions with a slight yield-off factor in QoS guar-

antee will enable many times larger number of services that can be hosted in a fixed

resource pool, than provisioning partitions with 100% performance guarantee. Not like

Océano, the granularity of resource sharing is smaller here making multiple services shar-

ing individual resources. Performance guarantee within a resource is assumed to be achieved

by resource reservation mechanisms such as sand-boxing provided by the operating sys-

tems. The amount of share (named capsule) each service should enjoy in every resource

node is found by a placement algorithm.

2.1.5 Cluster-on-demand

Cluster-on-demand (COD) [MoC02] is another shared cluster solution. The authors use the

same phrase virtual cluster as I do in my work (Chapter 3). However, here a virtual cluster

implies an isolated and secure collection of resources, but not any actual virtualization as

my work defines for the same term.

COD provides a mechanism to create virtual clusters for services according to the cus-

tomer defined node configuration templates. When a node is included in a virtual cluster,

the COD system configures it according to this template. Virtual clusters are dynamic, in

the sense that the number of nodes it contains can change with time depending on the de-

mand. In addition to the computing power the virtual cluster provides, a common storage

layer below the cluster pool facilitates a persistent storage pool for the customers. The

resource selection for a virtual cluster is made solving a constraint satisfaction problem,

which just match the requested node classes onto the available resources and selecting the

resources by their desirability (combination of hardware specification, current usage, and

priority information).

2. Literature Survey 9

2.1.6 Virtual Data Center

Hewlett-Packard’s concepts of virtual data center [Kot01], planetary-scale computing [AnG02],

and service-centric system organization [VaK01] share our vision of PCU (Chapter 3) in

a number of ways. Importantly, the virtual data center realizes the need of virtualization

of resources to achieve both the scalable and simplified system manageability and high

resource utilization. This virtualization enables services to be hosted transparently on the

underlying computer architectures, which is a step towards the next-generation service-

centric Internet.

HP’s general approach to facilitate such a system is divided into a number of directions:

� Usage of control layers – resource layer manages the physical resources providing

virtual resources while service layer allocates the virtual resources to the groups of

applications.

� Providing higher granularity of the control resources – underlying details are hidden

and abstractions are given at higher levels to reduce the number of resources to be

managed.

� Using uniform recursive structure – both the control and controlled infrastructure

share the same type of hierarchical structure which enables a service to spawn mul-

tiple services or a virtual resource to be built up from multiple virtual resources,

eventually enabling a easy way of building up a complex system.

� Providing self-control – flexible mechanisms and algorithms in the participating en-

tities provide autonomous self-analysis and self-governing of system parameters and

states.

Similar to the approach proposed in my work (Chapter 3 and 4), HP’s infrastructure

also uses optimization techniques to utilize the resources economically, prevent overload-

ing, achieve high resource utilization, and provide high-availability and fault-tolerance.

However, the parameters it tries to optimize differs from my work; their objectives are to

balance the server load keeping the utilization within desired range, to keep the communi-

cation demands between services within the capacity of the links between the servers, and

2. Literature Survey 10

to minimize the overall network traffic. It uses an distributed optimization technique using

an agent-based control infrastructure. Here, small software components called ants walk

through servers collecting the informations on the way. Upon the completions of the walks

the managing agent takes decision of server selection based on the informations the ants

sent.

2.1.7 Grid

Grid [FoK01, KrB02], in a way, is the present day standard for utility computing. The goal

of a Grid is to provide a highly flexible resource sharing relationship among multiple au-

tonomous entities to create virtual organizations (VO). Creating a VO from resources gov-

erned by different autonomous policies requires an excellent interoperability, and hence,

the design of the Grid is centered around this issue. Grid proposes three different compo-

nents to provide an efficient interoperability: (a) protocols to provide standard rules for the

interactions of heterogeneous, multi-owner resources; (b) services that enhances the pro-

tocol operations by providing some functions like access to computation, access to data,

and resource discovery; (c) application programming interfaces (APIs) and software de-

velopment kits (SDKs) to enable high level programming that exploits the underlying grid

infrastructure.

Grid is basically a protocol architecture. Protocols simplifies the interoperability of

various components by providing standards. Grid architecture is composed of four protocol

layers:

Fabric layer: This layer provides a standard low level access to the underlying resources

such as computing resources, storage resources, network resources, catalogs, and

sensors. The resources can also be logical entities such as a distributed file system or

a computer cluster.

Connectivity layer: It defines the communication and authentication protocols required

for Grid-specific transactions. Grid communications require services like naming

and routing. Authentication protocols requires security services.

2. Literature Survey 11

Resource layer: The resource layer protocols provide the functionalities to manage in-

dividual resources. They can include (a) information protocols to obtain resource

informations such as status, load level, and policy informations; and (b) management

protocols to specify resource requirements, launch jobs, or access data.

Collective layer: The protocols in this layer helps to orchestrate multiple resources for

a single application or a VO. They provide services for co-allocation, scheduling,

brokering, monitoring, and many more.

Above these layers, the Grid application layer launches the Grid applications exploiting the

APIs and SDKs the layers below provide.

A number of implementations of this Grid architecture are available at present. Among

them, the Globus toolkit [FoK99] is the most popular one partially because it is created

by the pioneers of the Grid concept. Globus provides tools for each of the above layers:

GARA for fabric layer, GSI for connectivity layer, GRAM for resource layer, and GIIS,

GRIS, and GRRP for collective layer.

The above view of Grid is mainly intended for implementing it as a resource manage-

ment infrastructure for scientific or technical applications. Later, with the vivid potential

of such infrastructure in commercial applications, the Grid technology is now evolving in

another axis as Open Grid Service Architecture (OGSA) [FoK02]. As the name implies,

this is an architecture for orchestrating wide area services using the Grid infrastructure. As

the underlying Grid is mainly concerned about providing standard protocols for resource

sharing, OGSA provides standard interfaces to access wide area services. Interfaces vir-

tualize the underlying resources enabling efficient service management. In addition to the

base Grid protocols, OGSA also borrows a number of tools from web services [Kre01] for

interface management. OGSA architecture consists of GridServices, Factories that gener-

ate services, Registries where Factories register themselves, and HandleMaps which map

the services to the resources.

The above mentioned projects shares a number of aspects with the PCU infrastruc-

ture proposed in this thesis. Condor addresses the policy management aspect of a PCU.

2. Literature Survey 12

And with Legion, they address wide-area resource discovery mechanism that is similar

to a PCU. However, these are only dedicated to the metacomputing applications, not for

a service-based infrastructure. Océano addresses such service-centric structure and even

provides SLA management aspects, but fails to address the multi-ownership of a shared-

resource base. Further, it did not specifically address the issues of managing a shared pool

distributed over a wide geographical span. Shared hosting platforms shares the same view

of Océano failing to address multi-ownership of resources and wide-area distribution of re-

sources. However it employ some algorithm to increase the number of services to be hosted

to increase the revenue. Cluster-on-demand just provides some mechanism to partition re-

sources in a shared pool. It also have the same set-backs as the other above mentioned

shared-hosting platform solutions have. HP’s virtual data center closely resembles our idea

of virtualization and resource partition, but fails to cover other aspects such as SLA man-

agement, cost of service, and resource utilization. Grid technology with OGSA also shares

a number of functionalities of a PCU. But, I feel that the need of manual interactions while

using a Grid, failure to provide the true virtualization as needed by a PCU, lack of SLA

management infrastructure, and lack revenue-driven structure are some major issues in the

Grid technology for it to be a true PCU.

This thesis addresses some important issues in a PCU, that the above existing projects

failed to consider:� The concept of true virtualization of resources (HP’s virtual data center in a way

addresses this).

� Cost driven resource allocation – instantiation and removal of services at a node

result in a service cost, which all the above schemes fail to address.

� demand-driven resource allocation – the allocation process should consider the de-

mand locality of the services to provide the required delivered performance.

2.2 Service Level Agreements

When a service originator (SO) outsources its service or content to a third party (a hosting

service), both the parties have to negotiate and come to an agreement on the terms of

2. Literature Survey 13

delivered performance level, cost of outsourcing, duration of service, acceptable demand

conditions, and so on. This negotiation generally results in a service level agreement (SLA)

which, there onwards, controls the business relationship between the SO and the hosting

service.

The notion of SLA came into the field from the service hosting business. At present,

the SLAs are generally static, negotiated off-line, and mostly used as a high-level busi-

ness relationship in the area of content/application outsourcing. But, SLA is an important

component of business for any resource sharing systems, and so for a PCU. In a PCU

like structure, the only way an SO can control the underlying resource base is through the

SLA. Therefore, SLA management in a PCU is not only a business issue, but importantly

a technical issue. SLA management in a PCU is much complicated due to (a) multi-owner

resources; (b) wide-area deployment; and (c) dynamic behavior of the resources (they can

be up and down in a ad-hoc fashion). Until now a little work have been done in the SLA

management perspective. Below I am briefly commenting on some works on the SLA

management.

Bouillet et al, in their work [BoM02], try to enforce SLA in the managed network,

especially by controlling the traffic in the network links. It provides a complete SLA man-

agement infrastructure from the off-line design and crafting algorithms to real-time route

selection, measurement, and monitoring algorithms. Its monitoring includes revenue and

penalty functions; revenue function provides the incentive to accommodate more traffic in

the system, while penalty function discouraging the system violating the SLA.

[FuV02] is a similar work that enforcing revenue and penalty functions, but the re-

sources it manages are the server bandwidths. While [BoM02] makes the dynamic de-

cisions on selecting different routes to manage the bandwidths, [FuV02] implements a

squeeze algorithm to distribute the available server bandwidth among the assigned services

attaining maximum profit depending on the revenues and penalties.

The SNAP protocol and related framework proposed in [CzF02] tries to address the

SLA issue in a shared resource infrastructure in a more composite manner. The authors

allow the resources to be managed be any computing resources from CPU cycles to band-

width. The SLA is subdivided into (1) task service level agreement that negotiates for the

performance of an activity or task; (2) resource service level agreement that negotiates for

2. Literature Survey 14

the right to consume a resource; and (3) binding service level agreement that negotiates for

the mapping of an task to a resource. The composite of these three parts nicely fits into a

PCU service infrastructure and virtualization.

Other than these works, the Océano project (section 2.1.3) also can be quoted here for

its work on SLA management.

My work does not specifically deal with SLA management, but I assume that there are

mechanisms to build the SLA and convert it to input arguments to be fed into my solution

heuristics (Chapter 5.2). Once the input parameters are provided according to the SLA, the

proposed algorithm guarantees required performance.

2.3 Other Related Works

Here, I discuss some related works that do not directly fall into the PCU vision but share

some common research issues such as dynamic resource allocation, load balancing, move-

ment of resource allocation, and virtualization of resources.

2.3.1 WebOS

WebOS [Web02, VaA98] is a mechanism for wide area resource management having some

PCU functionality such as dynamic resource allocation, high availability, and capability to

find best resources. As the name implies, WebOS provides an illusion of single operating

system spanning over wide area resource and hence issuing a job in a WebOS enabled

remote machine becomes as easy as issuing the job locally.

The WebOS includes various mechanisms towards its final goal:

Global naming: This component includes algorithms for mapping a service name to servers

and load balancing and maintains enough state to perform fail-over if a server be-

comes unavailable. These operations are performed through Smart Clients which are

basically Java applets that can be downloaded from service-specific servers.

Wide area file system: WebFS is the underlying wide-area file system of WebOS. It is a

cache coherent file system, and, for the backward compatibility, uses URLs as the

global name space and HTTP for file system transactions.

2. Literature Survey 15

Security and authentication: WebOS enforces security guarantee and authentication through

its security model called CRISIS. It uses certificates signed and counter-signed by

authorities trusted by both parties in communication.

Process control: It is responsible for the job performance and fairness in executing tasks.

Resource managers guarantees performance isolation between various jobs in a sin-

gle machine by creating virtual machines for each job with the physical machine.

The paper [VaA98] explains number of potential applications that can be benefitted

from WebOS and also a new concept called rent-a-server. Rent-a-server is a concept that

uses the Smart Clients to process the load and locational informations within transaction

headers for finding the best suitable new server to be included to the service cluster when

it experience high load condition.

2.3.2 Service Grid

The Service Grid [LeW01] is an online resource allocation approach. It assumes a shared

resource pool which it names as Grid, but this Grid need not be exactly in the same context

discussed in Section 2.1.7. Since I am comparing the performance of my work with that of

Service Grid, the operational description of the Service Grid is given below.

Service Grid has the following major entities:

Clients: These are the consumers of the resources available in the Grid.

Servers: These are the resources of the Grid.

Group manager (GM): It is responsible for allocating servers to the client requests; every

client is assigned to a GM. In addition to allocating servers to user requests, the

GM is responsible for monitoring the service quality and acquiring new resources or

releasing surplus resources.

Resource manager (RM): It is responsible for the complete pool of resources; it allocates

parts of the resources to GMs upon request.

2. Literature Survey 16

When a service is instantiated in Serive Grid, the GM requests a server from the RM.

The RM assigns a random server from the global pool of resources. Therefore, at the initial

state of the service, all the client requests are directed towards that allocated server by the

GM. The GM monitors the request bindings for capacity and/or QoS breaches. When the

number of requests receiving poor QoS or serviced under capacity exceeded the predefined

thresholds, the GM requests an additional server from the RM. When the GM is already

allocated with multiple servers for a service, the GM selects the server that can provide the

maximum QoS. The GM also monitors the allocated set of servers and releases a server if

it is found out to be idling for more than a predefined threshold. The threshold values are

set to avoid oscillations.

From the above description, we can see that Service Grid is a fully on-line resource

allocation mechanism. In [LeW01], the authors analyze different QoS metrics, but in my

simulation, I use the network distance and response time as the QoS metric.

2.3.3 Self-Organizing Network Services

Self-organizing network services [JaJ99] have the ability to replicate and remove instances

of themselves based on dynamically fluctuating demand. The framework proposed in this

work is called Sortie, and it addresses three issues: (1) adaptability to the demand shifts; (2)

prevention of oscillation when the usage pattern is not in equilibrium; and (3) maintenance

of stability when the demands are in equilibrium.

This work assumes that all the participating nodes are installed with Sortie-installed so

that they can make autonomous decisions based on the usage patterns. When a service is

primed in the system, it resides in a home server. The existence of the service is dissem-

inated to other nodes. If a demand at a point increases for the service, the node at that

point considers replicating the service in itself. Similarly the service is removed from the

node if the demand is found out to be low . Oscillation between replication and removal

is avoided by using different high and low watermarks (thresholds). These watermarks are

adjusted dynamically considering the demand patterns for the other services in the system,

in anticipation of achieving high resource utilization.

2. Literature Survey 17

2.3.4 Spawning Networks

Spawning networks [CaK99] are evolved from the programmable network paradigm to

completely replace the existing network architectures. The authors found that the existing

architectures do not have the flexibility in adapting to new user needs and hinder realization

and deployment of new network structures, and therefore proposes spawning networks

as the alternative. Spawning networks provides the flexibility of creating virtual network

structures incorporating different node types and network types. Further, it provides a

mechanism to spawn child networks that inherits the capabilities of the parents, but have

their own network structure.

Genesis kernel is the enabling virtual network operating system of spawning networks.

It helps automating a virtual network’s life cycles: profiling, spawning, and managing. Pro-

filing captures the blueprint of the intended network architecture, spawning actually sets up

the topology, and the managing phase supports the virtual network resource management.

2.3.5 Cluster Reserves

Cluster reserve [ArD00] is a mechanism to enforce performance isolation among service

classes that share resources in a cluster. A service class is a set of requests to a web-server

cluster that requires a particular set of resources to be served. Typically, in a web-server

cluster which serves multiple service classes, the performance isolation is achieved by allo-

cating separate nodes for different service classes. But, it generally results in poor resource

utilization and sometime poor response time since a possible best server is permanently

allocated to another service class. Cluster reserves enforce more fine grained performance

isolation by using the resource containers as the basic building blocks.

Resource container is an operating system concept for enforcing resource reservation

and performance isolation for individual processes within a single machine. Cluster re-

serves just creates such resource containers in each cluster node such that the aggregated

resource reservations build up the required cluster-wide resource allocation for each service

class. Hence, assuming resource containers provide node-wise performance isolation, the

cluster reserves can provide cluster-wise performance isolation. Further, having this type

of fine grain resource allocation enables maximum utilization of each resource by giving

2. Literature Survey 18

the ability to tune the node-wise resource consumptions of each service class.

Hence, the problem of creating cluster reserves that gives maximum resource utilization

converges into finding out the percentiles of resource containers in each cluster node. The

best way to tune these percentiles is to match for the resource utilization patterns in each

cluster nodes for each service class. Cluster reserve approaches this problem as a two-

phased optimization problem: in the first step, it finds out what is the possible minimum

deviations between provided cluster-wide resource allocation and the required allocation;

then in the second step, for the minimum deviation obtained in the first step, the algorithms

calculates the node-wide resource allocations that minimize the deviations between node-

wise usages and node-wide allocations.

The cluster wide allocations are administrative decision, but the node-wide allocations

are tuned to match the usage pattern. Therefore, the cluster reserve technique is well suited

for geographically distributed clusters where the usage pattern of different service classes

in different cluster nodes can significantly vary. The work done in [ArD00] also validates

that the cluster reserves provides good performance isolation for various request conditions

such as sparse requests and content-based requests.

Each of the above mentioned works resembles to and at the same time differs from my

approach in different dimensions. WebOS enabled rent-a-server, Service Grid, and self-

organizing networks provide dynamic resource allocation capability, in a more real-time

fashion than my approach. However, except the self-organizing networks, others fails to

achieve a high resource utilization. Service Grid actually shows that it attain good resource

utilization compared to the fully static allocation. But, it also shows that a hybrid approach

provides better results. My technique is naturally a hybrid technique (Chapter 4). Spawning

networks provides the functionality to spawn child networks, which is analogous to the VC

creation (Chapter 4) in my work. However, it only provides the framework for creating such

child systems, but does not describe an efficient way of finding resources to be included in

the child network. Further, the practical validity of its argument of totally replacing existing

network architectures is still a question. Cluster reserves and VC can be considered as

similar concepts. However, whereas VC creation always provides a safety margin to handle

sudden demand spikes, cluster reserves always tries to find a tight solution.

2. Literature Survey 19

2.4 Optimization Techniques in Wide-Area Networks

Computer networking has benefited from a number of optimization algorithms in the past

such as Dijkstra algorithm and other algorithms for finding maximum flow and minimum

spanning tree [OSP83, GoS98]. However, there are relatively a few works found in the

literature that use optimization techniques for wide-area resource management. Below I

mention some works that apply ideas from the field of operational research to build up

efficient wide-area resource management systems.

Qiu, et al. analyze the performance of an optimization algorithm applied to the problem

of web server replica placement with other types of algorithms (greedy, random, and “hot

spot”) [QiP01]. Here, the placement problem is approached as a � -median problem, and

the network topology is assumed to be a tree. Even though, the work concludes that the

optimization approach does not perform the best, it shows the feasibility of the application

of optimization techniques in wide-area networks. Cidon et al also handle a similar problem

that place electronic contents efficiently over a distribution tree [CiK01]. Again the network

is considered as a tree, and the objective is to minimize the total cost of communication and

storage in the network. The work presented in [JaJ01] consider the network as a graph when

again handling the same problem of placing mirrors in the network. Here the placement is

attacked as a min- � -center problem and different approaches are used to solve the problem.

In my work too, an optimization algorithm from the operational research is used to

address the key issue. However, the various assumptions made in the above mentioned

works make my work differ from them. These works generally put a limit on the number

of replicas to be placed; assume servers are capable of serving any load; consider placement

criteria controlled by response time; or assuming a tree based network topology. But, the

formulation I present in this thesis (Section 5.1) is more flexible for different scenarios with

more practical assumptions.

3
Public Computing Utility Model

A PCU model is introduced here as the resource provisioning framework for wide-area

services. It aggregates computing resources from different owners and allocates service

specific partitions of those resources to different services. These computing resources can

be CPU clock cycles, computer memory, storage space, network bandwidth, or any similar

computational resource. Individuals, institutions, or companies can share their idling com-

puting resources with the PCU. PCU respects the individual policies which can stipulate

sharing pattern (fully dedicated, partially dedicated, or on-demand based), trusted groups,

allowed applications, and cost functions.

(a)

(b)

PCU manager

resources

PCU manager

(c)

domain managers
- with peering arrangement

domains

Figure 3.1: Resource management in a PCU

A PCU begins its operations with a resource that acts as the PCU manager and accepts

the requests for joining from resources (Figure 3.1.a). To address the scalability issue when

more resources try to join the PCU from various geographical locations (Figure 3.1.b), the

20

3. Public Computing Utility Model 21

area of PCU administration is divided into multiple domains and each domain is instanti-

ated with a domain manager (DM) (Figure 3.1.c). Each DM is responsible for the resource

management operations within the particular domain. Peering arrangement among the DMs

coordinates their operation and with this coordination, the network of DMs can be consid-

ered again as a single PCU manager, a virtualization that is used for the rest of this thesis.

The detailed description of the PCU manager operations are out of the scope of this thesis,

but it is assumed that there are mechanisms and controlling protocols that provide the PCU

manager the control over the participating resources.

PCU Manager

service originators

VC1
VC2

VC3

SO1

SO3

SO2

virtual clusters

end users

Figure 3.2: An overall picture of PCU operation

The customers of a PCU are generally service originators (SOs) who are in need of

cost effective and QoS guaranteed wide-area resource deployment. The SOs will contact

the PCU manager specifying its requirements and the manager will create resource parti-

tions for these SOs which I name as virtual clusters (VC). VCs are service specific, secure

collections of resources with minimized cost and maximized QoS. The concept of VC is

one of the unique aspects of my work and the detailed description of the VC concept is

given in Chapter 4. Despite the fact that VCs can physically overlap, the performance

isolation is to be ensured by low level scheduling schemes. The business and service rela-

tions between SOs and the PCU are regulated by the negotiated service level agreements

3. Public Computing Utility Model 22

(SLA). The ultimate consumers of the resources are the end users of the services. For ex-

ample, an on-line movie streaming company can request resources from the PCU and when

the resources are allocated and the contents (movies) are downloaded on to the allocated

resources, it will be the customers of the company who watch the movies online are the ul-

timate consumers (end users) of the resources. In some cases, for example in a distributed

computing application, the SO itself can be the end user. Figure 3.2 illustrates this overall

operation of a PCU.

A implementation of such a PCU faces a number of issues: it has to provide proto-

cols for resource registration, dissemination, and discovery; a policy management should

be devised to respect the rights of the owners on their resources; an SLA management

sub-structure is to be built up for SLA creation, monitoring, and modifications; heuristics

should be developed for cost-effective and QoS guaranteed resource allocation; and low

level scheduling schemes should be enforced to provide low level performance isolation.

The rest of this thesis analyses the means of enforcing QoS guarantee in this PCU

model. Since VC is the core idea behind guaranteeing QoS for services, the VC creation

process is analyzed in detail and heuristics for the creation process and QoS aware load

balancing are developed.

4
Virtual Clusters

Traditionally, a cluster is located at a single site and is designed to handle the expected

peak demand for the hosted application. This makes clusters costly because components

such as storage, processing, and network have to be provisioned for the highest demand

level. Consequently, at average load levels, the cluster resources will be underutilized.

The virtual cluster (VC) concept introduced in this thesis is an effort to increase the cost

effectiveness of the clusters by boosting the overall utilization.

VCM instantiation

VCM

resource partition

virtual cluster

SO

PCU manager

SLA

client
domains

anchor points

dynamic

static

negotiation
2

SLA creation

3

VC creation

4d

4a

4e

3

4c

4c

4c

SO-VC interaction
5

1

4b

Figure 4.1: VC creation process on a PCU system.

23

4. Virtual Clusters 24

As mentioned previously, the PCU aggregates all available resources into a global re-

source pool and then allocates partitions of them to different applications. These resource

partitions are called VCs as illustrated in Figure 4.1. Because PCU manages the global

resource pool from which a VC is allocated resources, a VC is highly flexibly provisioned

to handle spikes in demand. Unless all VCs that are handled by a PCU experience demand

spikes at the same time, the PCU can dynamically change the resource provisioning level

of a VC to handle the changing requirements. This enables a VC that is initially allocated

for an estimated demand condition to grow, shrink, or move at run time to accommodate

the changing demand.

To support the VC creation process, I introduce a notion called the anchor points (APs)

(see Figure 4.1). The APs represent centroids of the demand distribution in a geographical

area. For example, the gateway of a university domain can represent the demand originating

from the university. Similarly, a gateway of an Internet service provider (ISP) can represent

the demand originating from the clients connecting via the ISP. In addition to the locational

attributes, APs have other attributes such as demand intensities and type. The VC can be

designed with sufficient resources such that the APs are covered at or above a predefined

level of service or the AP coverage QoS is maximized.

A VC is created by the PCU for a service originator (SO) and is managed by the PCU.

The SO uses a proxy called the VC manager (VCM) to communicate with the PCU its re-

quirements in the form of a VC specification (VCS) that contains a list of APs, acceptable

cost, tolerance for variation of delivered service, and others such as access and manage-

ment requirements. As shown in process 1 in Figure 4.1, the VCM is co-located with the

SO. The PCU negotiates with the VCM (process 2 in Figure 4.1) and comes up with a ser-

vice level agreement (SLA). Similar to the SLA introduced in [ApF01], this SLA describes

the agreed performance level, tolerance, implementation cost, and other metrics of perfor-

mance. The PCU creates a VC that satisfies the SLA. As shown in Section 5.1, the VC

creation problem can be formulated as an optimization problem, where the cost of creating

a VC is minimized while a measure of delivered QoS is maximized. The VC creation is

controlled by the PCU manager (process 4a), but it is bound to the constraints from the

SLA (process 4b) and anchor point arrangements (process 4c). It results in a collection of

resources that can be dynamic (process 4d) with varying demand conditions at APs, but a

4. Virtual Clusters 25

static virtualization (process 4e) is given to VCM to facilitate its interactions (process 5).

This virtualization isolates the complex resource management from the high level service

management simplifying the operation of the SO.

At VC creation, each AP is assigned a particular “home server” that is capable of han-

dling nominal demand presented by the AP. However, depending on the conditions present

in the SLA the VC can be subjected to reallocations that can be triggered periodically or

as demands change by predefined thresholds. Therefore, a VC can be considered as a

semi-dynamic resource allocation mechanism.

Because the VC creation process attempts to minimize the set of resources that partic-

ipate in a given VC configuration, the resultant VC configuration is susceptible overload

situations when the demands for the hosted services increase. Although the VC can reorga-

nize itself for the new demand conditions by undergoing reallocations, it will be costly to

undergo such reallocations for every significant variation in the VC demand. Further, the

delays in obtaining the benefits out of the reallocations make it less attractive.

Therefore, to handle the variations in demand from the expected value that was specified

in the VCS, I introduce a notion called the overload partitions (OLPs) to handle demand

spikes. The OLP can be considered as a protection layer of the actual VC. In the creation

process, at first a resource partition is created for the service considering an increased

demand conditions. Then the VC nodes are extracted by rerunning the allocation process

(for the nominal demand conditions) considering the resource partition obtained from the

first step as the global resource pool. The resources outside the VC set, but inside the

resource collection from the first step are allocated as the OLP nodes. This ensures that

the resource allocated for the VC is contained within the previous set of resources, which

keeps the combined cost of VC plus OLP minimum. However, when the VC is created,

the resources are dedicated for the exclusive use of the service hosted by the VC, while the

resource in the overload partition are shared with other VCs in a best-effort manner. VC

nodes and OLP nodes are primed with the appropriate system and application softwares

at startup. It should be noted that resources can mean virtualized partitions of a single

physical resource. Therefore, even with dedicated allocations a physical resource can be

hosting components that belong to different applications.

5
Heuristics for Enforcing the SLAs in
PCUs

This chapter develops an optimization model for the VC creation process explained in

Chapter 4. The ultimate aim of this optimization model is to mathematically formulate

the trade-off between achieving the best QoS and reducing the system cost. Section 5.1

develops the optimization model of a VC creation and analyzes the practical validity of

such model. The solution methods of the developed model is analyzed and a heuristic

that solves this model is explained in Section 5.2. An example of this heuristic applied

is illustrated in Section 5.3. In Section 5.4, different scheduling schemes are discussed in

which load balancing and on-line QoS monitoring are given importance.

5.1 Mathematical Formulation

I model the VC creation problem as a facility location problem (FLP) [Das95]. In general,

a FLP is concerned with optimally placing a number of facilities (equivalent to serving re-

sources) to cover demands at a predefined set of points (equivalent to APs in VCs). There

exist several variants of FLPs that differ on the optimization criteria. In this thesis, I de-

velop a model for VC creation that is based on capacitated fixed-charge location problem

(CFCLP). The CFCLP assumes that placing a facility at a given candidate location incurs

a fixed cost and each facility has a limited capacity of covering the demands.

When a server is initiated into a VC, the application or operating system needs to be

installed and the initial data should be loaded from the appropriate data sources. This

26

5. Heuristics for Enforcing the SLAs in PCUs 27

implies a fixed or known cost for priming a server into a VC. Servers that are part of

a given VC have a fixed capacity and are capable of handling only a fixed number of

concurrent requests at any given time. Therefore, the capacity of the serving nodes should

be considered while allocating the serving resources to cover the demand. Further, the

serving resources bound by the the VC creation process to a particular AP have to provide

the best coverage for the demand originating from that AP. This is achieved by minimizing

the covering cost in a CFCLP model.

I model my system as a graph with the servers and APs as the nodes and the network

links as the edges. Let ��� be the set of server nodes that can be part of a VC and ��� be the

set of APs. In addition, I define the following parameters:�
	��
– distance/delay between nodes and ���	��
– bandwidth between nodes and �� � – capability of server � that denotes attributes such as computing power and

storage power� � – capacity of server � that denotes maximum number of concurrent requests

it can handle� 	�� – cost of covering node in ��� by node � in ��� as defined below� �
– fixed cost for locating a facility at node ���	
– demand at node �
– required capability for a node to participate in a VC�
– intra-VC bandwidth

The covering cost � 	�� is defined as

� 	��������
	�� � !��	��
where

�
and ! are VC specific and are given by its VCS. For example, by making

�"�$#
,

we can ignore the inter-node delay and just consider inter-node bandwidth. The covering

cost � 	�� can be considered as the inverse of the delivered QoS with a smaller value of � 	��
implying a higher value for the delivered QoS.

5. Heuristics for Enforcing the SLAs in PCUs 28

The decision variables are defined as follows:

% �&� '()+* if node � is part of the VC#
otherwise

, 	��&� '() * if node �.-/�0� covers node 1-/���#
otherwise

With these parameters, the optimization problem for creating a VC becomes (with 2-3�4�
and �657�8-/�0�):

minimize 9 � � � % � � 9 	 9 � �:	 � 	�� , 	�� (5.1)

Subject to� � ; � % � < � (5.2)% �=� %?> @ * <BA �65C�BD �E� >GF �.H
(5.3), 	�� @ % � < I5J� (5.4)

9 � , 	�� ; * < (5.5)

9 	 ��	 , 	�� @ � � % � < � (5.6)% � � # 5 * (5.7), 	�� � # 5 * (5.8)

The objective function given by Equation (5.1) has two parts: first part is based on the

number of servers in the VC and the second part is the total demand weighted cost (
��	 � 	��).

By minimizing the objective function, the first part reduces the total priming cost of the VC,

while the second part reducing the cost of allocation and thus increasing delivered QoS. The

demand weighted cost given in the second part is used to place severs of a VC closer to APs

that have higher demand. This will reduce the percentage of possible violation of required

performance level.

The constraint in Equation (5.2) restricts the VC membership to nodes with given capa-

bilities (e.g., with given CPU, memory, and disk capacities). This constraint can be applied

5. Heuristics for Enforcing the SLAs in PCUs 29

off-line to produce a candidate set of nodes to which the CFCLP can be applied. The intra-

VC bandwidth requirement is defined by the constraint in Equation (5.3). The constraint

in Equation (5.4) denotes that an AP is covered only by a single server that is part of VC

(which is the “home server” of the AP). The constraint in Equation (5.5) ensures that ev-

ery AP is covered by at least one node in the VC. Finally, the constraint in Equation (5.6)

ensures that the number of APs covered by a particular node is within its capacity.

5.1.1 Practical Validity of the Formulation

In this formulation, I assume that the QoS of a service is decided by the network bandwidth

and the delay. This assumption is applicable in most cases where the QoS is measured by

the response time and the throughput. Even in other cases, this formulation can be still

used, but the definition of the � 	�� will have to be modified to suit the scenario at hand.

Further, the above formulation tries to minimize the objective function value and hence,

maximize the delivered QoS, but does not guarantee a given QoS level. This becomes an

issue when a SO specifies a value for QoS in its VCS. Nevertheless, it can be addressed by

preprocessing the � 	�� matrix such that, the elements � 	�� that fail to meet the required QoS

bound are replaced by a very large number. This transformation of the � 	�� values will make

the solution to the above optimization converge to a solution that satisfies the stipulated

bound.

In general, a CFCLP is formulated with , 	��K;L#
instead of the constraint in Equation

(5.8). When , 	�� is defined as such, the demand at an AP is splittable and can be served by

multiple servers. In this case, fractions of server capacities can be used to serve portions of

AP demands, resulting in a tighter solution. However, by making , 	�� a 0-1 variable, each

AP is provided a “home server” that naturally provides a safety margin on the available

resource capacity. This is because there will be some fraction of total capacity in each

server that is not allocated to any AP.

It is further assumed that there exists mechanisms to translate resource capability at-

tributes such as CPU power, memory, and storage into numbers (� �) to be fed into the

formulation and to disseminate node and link informations (such as
�M	��

and
�7	��

matrices) to

the central node where the problem is formulated.

5. Heuristics for Enforcing the SLAs in PCUs 30

5.2 Solution Methods and the Drop Heuristic

Solving CFCLPs is known to be NP-hard [KoP00, Das95]. Several algorithms have been

proposed in the literature including local search and Lagrangian relaxation that provide

near-optimal solutions [KoP00, Das95]. In this study, my objective is to develop fast solu-

tion procedures that can be implemented in a distributed way. Although a VC is not created

and deleted at very short time intervals, a fast scheme for VC creation is essential because a

PCU can be in a continuous state of VC creation, deletion, and modification in response to

requests that arrive at run time. This thesis examines a centralized version of the heuristic

as a first step towards solving the VC creation and management problem. We use a mod-

ified version of the drop heuristic that is used in [Das95] for solving uncapacitated fixed

charged location problems (UFCLPs). It is a heuristic that is based on the local search

paradigm [KoP00].

This heuristic works in two phases. In the first phase, a feasible configuration is found

for a VC by considering all available servers that have the required capability. In this allo-

cation, each AP is assigned to a server using a greedy strategy that considers the covering

cost � 	�� , i.e. APs are assigned to servers that are “close” to them by means of � 	�� . Once the

feasible allocation is found, the second phase is initiated to drop excess serving capacity

and reduce the cost of the VC.

The dropping phase tentatively drops an already selected server and computes the

change in the overall objective function value. The objective function value can increase

or decrease. It may decrease because as servers are dropped the first part of the objective

function in Equation (5.1) decreases. On the other hand, it may increase because the cov-

ering cost given by the second part of the objective function in Equation (5.1) can increase

as some APs loose its closest server. Having computed the changes in the value of the

objective function resulting from dropping different servers, the server with the largest cost

reduction is marked for permanent deletion from the VC. However, before this server is per-

manently dropped, the APs covered by the server need to be reallocated to other servers.

This process can result in capacity overflows at other servers. These capacity overflows are

handled by recursively invoking the reallocation procedure to find a viable assignment of

APs to servers. If such an assignment is found infeasible or more expensive in terms of the

5. Heuristics for Enforcing the SLAs in PCUs 31

start

consider VC with all the
nodes in the PCU

VC possible? VC fail

min_cost = curr_cost

consider dropping each
of the nodes and

calculate objective
function costs

decrease in obj.
function cost?

VC = curr. assignment,
 alloc_cost = min_cost

drop the node with
maximum decrease

node capacity
exceeded?

adjust server-
anchor

attachments

adjustment
possible?

curr_cost <
min_cost?

VC = previous assignment,
alloc_cost = min_cost

Finish

NO

YES

NO

NO

NO

NO

YES

YES

YES

YES

Figure 5.1: The modified drop heuristic.

5. Heuristics for Enforcing the SLAs in PCUs 32

objective function, then the server marked for deletion is reinstated into the VC and the VC

is formed with currently allocated servers. If that assignment is found feasible, the marked

server is dropped from VC, and then the VC creation process will go through another drop

phase. This iteration will continue until no server is found feasible to be dropped out. The

flowchart in Figure 5.1 illustrates this process.

The capability constraint in Equation (5.2) is applied to form a candidate set of servers

before the drop heuristic is invoked. Similarly, the intra-bandwidth constraint in Equation

(5.3) is applied to produce a connected set of resources with the given bandwidth before the

allocation heuristic is applied. The application of this constraint can yield several connected

components and the heuristic will be applied to each of these components. The minimum

cost VC among all the different connected components is taken as the final VC.

The drop heuristic is a centralized solution method. The practical applicability of such a

centralized solution in a wide-area system like PCU is questionable. However, this heuris-

tics can be developed into a distributed form, if we consider the domains (see Chapter 3)

as the high level, abstract resources to apply the heuristic. The aggregated capacity of the

domains can be used as the formulation parameters. When the high level VC is constructed

that is made up of domains, the same heuristic can be applied in each selected domains to

select suitable individual resources. Depending on the levels in the domain hierarchy, the

heuristic can be recursively applied until the individual resources that participating the VC

are found.

5.3 VC Creation – An Example

Here I illustrate an example of a VC creation process on a 56-node network. The intercon-

nection topologies among the resources were generated using an Internet topology genera-

tor called the Tiers [Doa96]. The Tiers creates a network with WAN-MAN-LAN topology.

Tiers-created network is basically a text file describing node locations (X-Y coordinates),

connectivity details, and the delay and bandwidth of the links. The network initialization

code written in Matlab accepts this network information file and places the APs at ran-

domly chosen LAN nodes and assume the rest of the nodes to be possible candidates for

the location of serving resources. Also it assigns random demands for the APs and random

5. Heuristics for Enforcing the SLAs in PCUs 33

232 57

15

57

21

131

34

35

66

54

33 73

10527

83

46

36
29

120

19

90

67

42

18

64

20

19

64

35

36

43

44

45

46

53
54

55 56 48
49

50

51

38

39

40

41

28

29

30

31

21

20

19

18

13

14
15161110

9

8

26

25

24

23

33

34

13
22

32

42

52 47

37

27

17

127

3

2

6 5

1

4

116

281

433 234

326100

175

496
400

246

240

329

153

125

480

161

333

186

422

156

348184

102

329
473

236 456

Figure 5.2: The initial network.

capacities and capabilities for the servers and then generates the cost matrix (
��	 � 	��) for the

network. The output of this initialization is again an text file and Figure 5.2 illustrates this

output. The gray nodes are servers and others are APs and their capacities and demands

are given next to them.

The VC creation code, also written in Matlab, contains codes for creating connected

node sets (Section 5.2) and for implementing Drop heuristic. The VC creation with OLP is

carried out in two stages: in stage one, the VC creation code is run with the demand values

of the APs increased by the factor of 1.5; in the second stage, candidate server set is reduced

5. Heuristics for Enforcing the SLAs in PCUs 34

232 57

15

57

21

131

34

35

66

54

33 73

10527

83

46

36
29

120

19

90

67

42

18

64

20

19

64

35

36

43

44

45

46

53
54

55 56 48
49

50

51

38

39

40

41

28

29

30

31

21

20

19

18

13

14
15161110

9

8

26

25

24

23

33

34

13
22

32

42

52 47

37

27

17

127

3

2

6 5

1

4

116

281

433 234

326100

175

496
400

246

240

329

153

125

480

161

333

186

422

156

348184

102

329
473

236 456

Figure 5.3: The created VC with OLP

to the servers output from the first stage, demands are set back to the nominal values, and

the program is rerun. The servers output in the second stage is considered as the VC nodes

and the rest of the servers from the first stage as the OLP nodes. The program output is the

input text file appended with the list of the selected VC nodes and preferred server list as

described in 5.4. The output files from both stages are used as the inputs for the simulation

study (Section 6.2). Figure 5.3 shows the created VC with OLP in the network with the

“home server”-AP attachments. The black nodes are the dedicated VC nodes and the dark

gray nodes are OLP nodes. The preferred list is shown in Table 5.1.

5. Heuristics for Enforcing the SLAs in PCUs 35

8
13

15
18

19
20

21
22

24
25

26
27

29
39

32
33

34
36

37
41

42
43

45
47

48
51

52
53

54

3
16

16
4

16
4

4
2

6
3

6
2

3
17

7
2

7
7

5
5

16
2

5
5

2
5

17
16

7
40

6
5

14
14

4
14

2
56

56
56

2
16

3
3

3
17

56
2

5
7

2
7

3
7

5
3

56
56

7
4

4
17

17
17

17
3

3
3

3
4

4
4

6
6

6
6

5
40

6
6

6
5

5
6

6
6

6
3

17
17

4
4

3
4

1
1

1
1

17
17

17
2

2
2

2
40

6
2

5
2

6
6

2
2

2
2

1
3

3
3

3
1

3
7

7
7

7
3

3
1

5
5

5
5

6
2

5
1

5
2

2
40

5
5

5
2

1
1

1
1

7
1

6
2

2
2

1
1

7
1

1
1

1
1

1
1

3
1

40
40

1
1

1
1

6
7

7
7

7
2

7
5

6
6

6
7

7
2

7
7

3
3

3
3

3
7

3
1

1
3

7
3

3
5

16
16

2
2

6
2

4
5

5
5

6
2

6
40

40
7

7
7

7
40

40
40

7
3

7
40

7
7

4
2

2
6

6
5

6
17

4
4

4
5

6
5

4
4

40
40

4
4

4
4

4
4

4
4

4
40

40
17

5
6

5
5

16
5

40
17

17
17

16
5

16
17

17
4

4
17

17
17

17
17

17
17

17
17

4
4

16
14

14
16

16
40

16
16

40
40

40
40

40
40

56
56

56
17

56
56

56
56

56
56

56
56

56
17

17
56

40
40

40
40

14
40

56
16

16
16

14
14

14
16

16
16

16
16

16
16

16
16

16
16

16
16

16
16

14
56

56
56

56
56

56
14

14
14

14
56

56
56

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14

Ta
bl

e
5.

1:
T

he
pr

ef
er

re
d

se
rv

er
li

st
he

ad
ed

by
th

e
“h

om
e

se
rv

er
s”

.

5. Heuristics for Enforcing the SLAs in PCUs 36

5.4 Request Scheduling

In a VC a probing order is specified at the creation process for every AP by a preferred list

of servers that is headed by the “home server.” The preferred list is formed based on the

values for
�:	 � 	�� . The home server will be the destination of the requests from the AP for

under loaded conditions. A request scheduling strategy has to make two different types of

decisions: (a) determining the best server when capacity is available on different servers

and (b) determining the server to queue when capacity is exceeded on all servers. The

requests are scheduled using two different strategies: (a) greedy server acquisition with

home server queuing, and (b) probabilistic server acquisition with minimum loaded server

queuing.

In the greedy approach, requests from an AP are sent to the home server unless the

home server is overloaded. If the home server is overloaded, the servers in the preference

list is sequentially examined and the search is restricted to the servers that provide a
��	 � 	��

cost smaller than or equal to the maximum tolerable service cost. (This confirms the PCU

operation always abide by the SLA). When all servers are found to be serving above their

capacities, the request is queued at the home server. Our rationale behind the home server

queuing is that because the home server is determined by the off-line assignment process to

be the “best” server to handle the bulk of the load from the AP, it should be the single best

server to handle excess demand. Besides, queuing at the home server should reduce the

situations where a server is inundated by requests from APs that are not primarily handled

by this server.

In the probabilistic approach, I use an escape probability, N�O , with which a request

escapes from being assigned to a particular server in the sequential search through the

server list. N�O is defined as

N0O � '()LP6QSR �UTP6Q for a server that belong to the dedicated partitionP Q R � TP6QWV XZY\[] for a server that only belongs to the OLP
(5.9)

Where ^`_ is the total capacity of a server measured in terms of the total number of con-

current requests it can handle; � � is the active capacity (i.e., capacity that is available at

any given time) of the server, and N�aZbO is the escape probability at the home server for the

5. Heuristics for Enforcing the SLAs in PCUs 37

particular AP under consideration. � �c-ed # 57^`_gf is equal to ^h_ at no-load condition and
#

at

overloaded conditions.

With the escape probability defined as above, as the active capacity decreases the re-

quests escape more frequently. This attempts to prevent the situation where a server is fully

loaded while the rest of the servers are running below capacity. In other words, it encour-

ages the requests to diffuse to other servers without concentrating on a particular server.

In this scheduling process, once a request escapes through the full list of servers in the

preference list, it is assigned to a server with minimum load (maximum active capacity or

minimum queue length). As in the greedy approach, QoS bounds are considered here too

at the time of scheduling requests.

As explained in Chapter 4, the resource allocation for a service is made of two parts: the

dedicated VC nodes and the non-dedicated OLP nodes. By including the escape probability

at the home server in the denominator of the expression for the escape probability at a OLP

server, I bias the requests to escape the OLP servers more until the dedicated VC nodes

are almost fully loaded (i.e., the selection process favors to assign the request to a server in

the dedicated partition). This motivation stems from the fact that the OLP resources should

be used sparingly and not used excessively under nominal loading conditions, because

performance isolation is not guaranteed at these OLP nodes.

When a VC without OLP is considered (as I did in my simulation study), only the first

part of Equation 5.9 is used for scheduling requests.

6
Simulation, Results, and Discussions

This chapter explains the simulation study I carried out to evaluate the performance of

different VC configurations and two different scheduling schemes developed in Section

5.4. Also the performance of the VC is compared with an existing on demand cluster

creation mechanism called the Service Grid described in Section 2.3.2. The Section 6.1

discusses the assumptions I made in building up the simulation. Section 6.2 describes the

overall arrangement of the simulation study. The load prediction mechanism used in the

simulation is explained in Section 6.3, and the obtained results and detailed discussion are

given in Section 6.4.

6.1 Assumptions

In response to the demands specified at the APs by the SO, the PCU creates a VC. This

VC is essentially a set of compute resources that are interconnected by networks that have

at least the specified amount of available bandwidth. These resources can be used to host

different types of applications such as high performance computing, streaming media ap-

plications, distribution of documents, and transactional applications with multi-tier config-

urations.

For this study, I assume a web document serving application such as the deployment of

an E-news site. The E-news site needs resources such that its popular documents can be

served from the “edge” of the network. The interesting edges of the network are specified

by the SO using a set of APs. The demand for the services arrive in the form of requests

for documents at various points on the network. These requests are routed to the closest

38

6. Simulation, Results, and Discussions 39

serving resources and the servers answer the requests with the appropriate documents. We

assume that the computation time at the server is proportional to the request size and there

is sufficient bandwidth between the serving resource and client such that no performance

bottlenecks are encountered in the network.

In the simulations, I assume that the requests arrive at the APs with exponentially dis-

tributed inter-arrival times and have request lengths (or size) on a Gamma distribution. The

average demand for service (request intensity) is defined as the mean request length di-

vided by the mean request interval. For different APs, the mean request intervals vary in

the range *1i?i?ij* # seconds and the mean request lengths vary in the range * #6# i?i?iIk #6# sec-

onds. As described in Sections 5.1 and 5.2, the VC can be created with a specific intra-VC

bandwidth requirement. Because the Service Grid (Section 2.3.2) that is compared with

the VC does not allow the specification of internal connectivity constraints, the minimum

intra-VC bandwidth requirement is set to
#
.

Also the demand at the APs are assumed to be steady over the run time of the simula-

tion. It may be unrealistic but this type of steady loading is assumed to test the system at

its extreme capabilities. For example, when the system is to be tested against overloaded

condition, with a realistic type of fluctuating demands the system can not be pushed to its

overloaded limits. Following the same line of argument, it is also assumed that each server

has infinite-sized buffer to queue the requests. If the buffer sizes are limited at servers,

then the run time of the system also will have its effect on the results. Further, when the

fluctuating demands also are considered with limited buffer sizes at the servers, the length

of overloaded periods also will become a decisive factor in the results. The purpose of

this simulation study presented here is not to address such complicated situations but to

evaluate the fundamental performance of the proposed system.

6.2 Simulation Setup

The simulation study I carried out is of two phases: in the first phase the centralized off-line

drop heuristic is applied to create a VC according to the assumed network, demand, and

server attributes; and the second phase simulates the setup by creating the working network

model, generating the load and evaluating the performance of the created VC.

6. Simulation, Results, and Discussions 40

The implementation of the first phase is explained in the Section 5.3. For the second

phase a discrete event simulator called Parsec [Par02] is used. In this phase a manager node

is introduced to coordinate the scheduling of requests. The APs send the requests to the

manager which implements the stipulated scheduling scheme, selects a server for serving

the request, and informs the AP the selected server. Then the AP contacts the server with

the request. The manager is established in a server node that is not participating in VC or

OLP. However, in real cases, the manager can be distributed in each AP.

The simulator is built up of entities which are the templates of different types of nodes

in the network – AP, server, and manager. The entity (template) code provides the function-

alities of the respective type, such as request generation, communication, scheduling, and

request processing. Multiple nodes can be generated from an entity. The communication

between entities are in the form of application level messages.

This simulation study creates and analyses the performance of the following cases:

1. VC without OLP

(a) with greedy scheduling

(b) with probabilistic scheduling

2. VC with OLP

(a) with probabilistic scheduling

The load conditions for which the VC is created is considered as the nominal load and the

performance are analyzed for underload and overload conditions. Also the following styles

of load variations are considered in this simulation:

1. Demands in all the APs are increased or decreased by the same factor.

2. The demand change factors for APs are randomly selected from a “window”, so that

some of them are above nominal values and others are below. The center of the win-

dow is shifted moving the overall loading pattern of the system towards underloaded

or overloaded condition.

6. Simulation, Results, and Discussions 41

3. The demands in a small percentage of the APs are increased by a particular factor

and the demands in the rest are reduced so that the whole system is at the nominal

load conditions.

These different loading schemes are used in anticipation of representing different practical

loading scenarios. Demands of the APs are varied either by changing the request intervals

or the request lengths.

The performance of the different VC setups for different loading conditions are com-

pared to the performance of the Service Grid. The Service Grid is created with a simi-

lar simulator with same APs, servers, and demand and capacity attributes. But the man-

ager entity is removed and two other entities are introduced to represent the GM and RM

of the Service Grid (see Section 2.3.2). The scheduling policy used with Service Grid

is always greedy assigning server for requests, that gives minimum queue weighted cost

(queue length l �:	 � 	��).
A capacity prediction scheme explained in the next section is used to predict the capac-

ity of a server at any instance, that assists the scheduling schemes.

6.3 Load Prediction and Active Capacity

A server participating in a VC can receive requests from multiple APs. Therefore, the load-

ing condition of a server is best estimated by the server itself because there does not exist

any other single entity that is fully cognizant of the server loading. Even the centralized

scheduling manager can not derive the loading conditions of the servers, due to the net-

work delays in the request assignments and the variation of time each request spends on a

server. If another entity is interested in the status, the server should update the entity with

its status. Because the server’s status can change dynamically the updation process could

entail significant overhead to maintain accurate state information at a given entity. Further

due to communication delay, accuracy of the state information will be diminished due to

the staleness in the data values. In this study, I use periodic updates coupled with simple

prediction algorithms at the entities to maintain the state at the remote entities. This pro-

cedure is used to maintain information regarding the queue lengths (in case of overloaded

servers) and active serving capacity (in case of underloaded servers).

6. Simulation, Results, and Discussions 42

The simple prediction algorithm works as follows: at first it calculates the mean m of

the previously obtained five updates with the equation:

m � *npo9	rq�sut 	 (6.1)

Where t 	 is the previous updates and n is the number of previous updates which is 5 in our

case. Then variance v of the data is defined as:

v � *nwo9	rq�sZx t 	�y m{z}| (6.2)

Then the autocorrelation ~ is calculated as:

~ � '��(��)
#

If v ��#s��� o R
s�� o R

s
9 	�q�s�x t 	�y m{z x t 	r��s�y m{z Otherwise

(6.3)

Now, the status of the server is predicted as:

t o
��s=� m � ~ x t o

y m{z (6.4)

6.4 Results and Discussions

This simulation study is conducted on a network topology with 56 nodes, where 29 of

them are APs and rest are candidate servers. The VC created for APs has 8 servers in the

dedicated partition and 4 more servers in the OLP. The simulations are carried out for a

fixed duration of time.

Various performance metrics are used in this study. One of the metrics, response time

(���) is defined as the time taken from the origination of the request at a client to the receipt

of the service completion acknowledgment at the client. The response time is comprised

of binding time, communication time (�4�), and service time. The binding time is the time

taken for a request to be assigned to a server. The communication time is the time spent

on transportation and waiting in the queues. The service time is the time the server spends

6. Simulation, Results, and Discussions 43

on processing the request. The request length has a direct impact on the response time,

because it determines the service time. To isolate this effect, I consider the communication

time as a performance metric as well.

In the Service Grid and VC, when a request is assigned to a server that is exceeded its

capacity, the request is queued at the server. When a request is queued, its communication

time increases with a corresponding increase in the response time. This happens despite

the fact that the request may be assigned to a server with a
��	 � 	�� value that satisfies the

QoS and hence, the actual QoS will be poor. Therefore, the percentage of queued requests

(�B�) is considered as another performance metric. With higher the value of �=� , poorer

performance with respect to response time can be expected.

In the Service Grid, requests are assigned to the server that provides the best QoS value

among, the servers the GM currently manages. But, even this best may fail to satisfy the re-

quired QoS. In this study, we assume the QoS value the VC guarantees as the required QoS

and uses the percentage of QoS failed assignments (�1�0�\�) in the Service Grid as another

performance metric. Because the Service Grid is able to utilize as much serving resource

as needed and available and the VC is restricted to the chosen set, for a fair comparison, in

addition to the above metrics the number of servers used should be considered as well. The

tables present two values for the number of servers used: one is the total number of servers

used in the system and the other is the maximum number of servers that were being used

at a particular instance. All the values presented in the rows of the tables are averages of at

least five runs.

Normalized Total Total
request Normalized ��� ��� No. of ���0�\� ��� servers servers
interval load (sec.) (sec.) requests (%) (%) used at a time

1.5 0.7 462 1.319 283 972 0.01 10.9 15 12
1.1 0.9 461 1.350 398 176 0.01 13.4 21 18
1 1 462 1.359 404 119 0.01 13.6 21 19

0.9 1.1 463 1.914 528 964 0.01 28.4 26 26
0.7 1.5 462 2.091 670 002 0.05 34.1 26 26

Table 6.1: Performance of the Service Grid with mean request interval.

Tables 6.1, 6.2, and 6.3 show the performances of the Service Grid and the VC without

6. Simulation, Results, and Discussions 44

Normalized
request Normalized ��� ��� No. of ���
interval load (sec.) (sec.) requests (%)

1.5 0.7 461 0.645 267 676 0.00
1.1 0.9 461 0.672 370 741 1.05
1 1 461 0.683 376 725 1.32

0.9 1.1 6 867 6 406 486 727 99.2
0.7 1.5 20 552 20 091 583 762 99.6

Table 6.2: Performance of the VC without OLP with mean request interval using greedy
server acquisition.

Normalized
request Normalized ��� ��� No. of ���
interval load (sec.) (sec.) requests (%)

1.5 0.7 461 0.643 267 996 0
1.1 0.9 461 0.655 370 873 0
1 1 460 0.655 376 761 0.00

0.9 1.1 9 452 8 991 486 472 99.4
0.7 1.5 20 058 23 597 583 872 99.6

Table 6.3: Performance of the VC without OLP with mean request interval using proba-
bilistic server acquisition.

OLP with varying mean request intervals (normalized). Table 6.2 shows the results of

using the greedy server acquisition strategy in VCs while Table 6.3 shows the results of

using the probabilistic server acquisition strategy. The normalized request interval of 1

denotes the nominal load condition for which the VC was created. The smaller the mean

request interval, the higher the load as tabulated in the normalized load column.

From these tables we can make following observations: (a) the performance of the

Service Grid in terms of � �0�\� and ��� are fairly steady; (b) the VC outperforms Service

Grid at underload conditions, while the reverse is true at overload conditions in terms of��� ; (c) Service Grid consumes more than double the number of serving resources compared

to VC; and (d) even with that much resources consumed, a fraction of requests are always

served with poor QoS.

6. Simulation, Results, and Discussions 45

From Tables 6.2 and 6.3, we can observe that the probabilistic server acquisition per-

forms better than the greedy server acquisition process. Further, with probabilistic server

acquisition the VC outperforms the Service Grid in the nominal and underload conditions

with respect to all metrics.

Normalized Total Total
request Normalized ��� ��� No. of ���0�\� ��� servers servers
length load (sec.) (sec.) requests (%) (%) used at a time

0.3 0.3 138 0.614 403 878 0.00 0.36 10 8
0.5 0.5 230 0.848 404 826 0.00 6.65 14 11
1 1 462 1.359 404 119 0.01 13.6 21 19

1.1 1.1 507 1.667 403 882 0.01 20.0 22 23
1.5 1.5 694 3.620 404 579 0.03 49.0 26 26

Table 6.4: Performance of the Service Grid with mean request length.

Normalized
request Normalized ��� ��� No. of ���
length load (sec.) (sec.) requests (%)

0.3 0.3 138 0.645 376 722 0
0.5 0.5 229 0.645 377 315 0
1 1 461 0.683 376 725 1.32

1.1 1.1 533 26.8 376 717 69.8
1.5 1.5 18 645 17 955 376 747 99.3

Table 6.5: Performance of the VC without OLP with mean request length using greedy
scheduling.

Tables 6.4, 6.5, and 6.6 show similar results with varying mean request lengths.

The Service Grid starts off with a single server that is randomly chosen. As requests

arrive and accumulate at the current server, further servers are added “on demand” to the

serving set. Because the server acquisitions are performed on demand, the system has

to run out of serving resources to acquire more resources. Therefore, �=� and ���0�\� will

continue to have non zero (possibly small) values. Delays in acquiring new resources can

further increase these values. As a results, under nominal or underloaded conditions, the��� value tends to be higher with Service Grid than with the VC.

6. Simulation, Results, and Discussions 46

Normalized
request Normalized ��� ��� No. of ���
length load (sec.) (sec.) requests (%)

0.3 0.3 138 0.636 377 024 0
0.5 0.5 230 0.636 376 733 0
1 1 460 0.655 376 761 0.00

1.1 1.1 522 16.83 376 470 64.0
1.5 1.5 20 743 20 053 376 386 99.3

Table 6.6: Performance of the VC without OLP with mean request length using probabilis-
tic scheduling.

Moreover, these tables also show the vulnerability of the VC to overload conditions.

Because a VC operates with a limited set of resources, when the system is overloaded even

by a small amount the requests quickly start queuing at the resources and this queuing

dramatically increases �4� and ��� .
Normalized

request Normalized ��� ��� No. of ���
interval load (sec.) (sec.) requests (%)

1 1 461 0.666 376 967 0
0.8 1.2 461 0.676 454 031 0
0.7 1.5 461 0.697 564 569 0.00
0.6 1.6 461 0.704 602 798 0.00
0.5 2 5 700 5 240 753 214 96.4

Table 6.7: Performance of the VC with OLP with mean request interval.

For underloaded or nominally loaded conditions, the results show that VC without OLP

with probabilistic server acquisition performs better than Service Grid. The results also

show the weakness of the VC under overloaded conditions. To address this problem, I

introduced the notion of OLPs. Tables 6.7 and 6.8 show the performance of the VC with

OLP that are created for a overloaded condition of 1.5 times the nominal load condition.

Even with the OLP, the VC uses only a total of 12 servers. These tables show that the

addition of the OLP improves the performance without a dramatic increase in the cost of

creating and maintaining the VC.

6. Simulation, Results, and Discussions 47

Normalized
request Normalized ��� ��� No. of ���
length load (sec.) (sec.) requests (%)

1 1 461 0.666 376 967 0
1.2 1.2 553 0.676 376 882 0
1.5 1.5 691 0.697 376 815 0.00
1.6 1.6 737 0.703 376 665 0.00
2 2 6 601 5 680 377 063 98.0

Table 6.8: Performance of the VC with OLP with mean request length.

Normalized Normalized Total Total
window window ��� ��� No. of ���0�\� �B� servers servers

size center (sec.) (sec.) requests (%) (%) used at a time
0 1 922 2.940 212 930 0.01 27.4 20 16
1 1 889 2.893 213 217 0.01 25.2 19 15

1.5 1.25 1 038 4.478 213 241 0.02 41.1 21 17

Table 6.9: Performance of the Service Grid for windowed loading.

Normalized Normalized
window window ��� ��� No. of ���

size center (sec.) (sec.) requests (%)
0 1 461 0.655 377 018 0.00
1 1 395 0.710 376 918 0.80

1.5 1.25 10 720 10 159 376 571 79.3

Table 6.10: Performance of the VC without OLP for windowed loading.

Normalized Normalized
window window ��� ��� No. of ���

size center (sec.) (sec.) requests (%)
0 1 461 0.666 377 042 0
1 1 513 0.672 376 769 0

1.5 1.25 729 86.5 376 260 16.2

Table 6.11: Performance of the VC with OLP for windowed loading.

6. Simulation, Results, and Discussions 48

Because a VC is a large-scale system by itself with geographically distributed presence,

it is unrealistic to assume that the demand presented to a VC will be uniform across the VC.

In particular, a VC can expect localized hotspots where the demands are much higher than

the expected value that are separated by regions where the demands are below the expected

value. I simulated the VC configurations under these demand situations to verify whether

the VC is able to diffuse the demand to the nodes with sufficient active capacity.

In Tables 6.9, 6.10, and 6.11, the demand varies in a window. The mean request lengths

at each AP is selected from a uniformly distributed window. The first rows of the tables

report results for demands generated without the windows. Therefore, the first rows of the

tables present the results for nominal loading conditions. The second rows of the tables

report results for demands generated with a window of width 1 that is centered at nominal

loading. Therefore, the maximum loading is 1.5 times the nominal loading and the min-

imum loading is 0.5 times the nominal loading. The third rows of the tables present the

results for demands generated with a window of width 1.5 that is centered at 1.25 times the

nominal loading.

The results shown in the above tables indicate that VC with OLP outperforms the Ser-

vice Grid by about 40% with respect to the response time while using 33% less number

of serving resources. The VC is able to achieve this performance benefit by selecting the

server locations carefully considering the expected demands at the APs. On the other hand,

the Service Grid locates resource on demand and as a result may not place them in the most

desirable locations with respect to the majority of the requests.

Normalized % of Total Total
overload overloaded ��� ��� No. of ���0�\� �B� servers servers

factor APs (sec.) (sec.) requests (%) (%) used at a time
1 1 461 1.360 404 232 0.00 13.6 22 20

1.1 0.25 460 1.344 403 838 0.01 13.0 22 19
1.2 0.25 461 1.362 403 815 0.00 13.5 22 20
1.5 0.25 469 1.450 403 621 0.00 14.8 22 21

Table 6.12: Performance of the Service Grid for asymmetrical loading.

Tables 6.12, 6.13, and 6.14 present results from simulations that applied a different

6. Simulation, Results, and Discussions 49

Normalized % of
overload overloaded ��� ��� No. of ���

factor APs (sec.) (sec.) requests (%)
1 1 461 0.655 377 128 0.01

1.1 0.25 459 0.655 377 414 0.00
1.2 0.25 461 0.655 376 567 0.01
1.5 0.25 458 0.659 376 385 0.10

Table 6.13: Performance of the VC without OLP for asymmetrical loading.

Normalized % of
overload overloaded ��� ��� No. of ���

factor APs (sec.) (sec.) requests (%)
1 1 461 0.666 376 551 0

1.6 0.25 458 0.667 376 562 0
1.8 0.25 464 0.663 376 413 0
2 0.25 463 0.666 377 221 0

Table 6.14: Performance of the VC with OLP for asymmetrical loading.

loading scheme called the asymmetrical loading. In this loading, a given percentage of the

APs are overloaded by a fixed factor and the rest of the APs are underloaded such that the

total system is loaded at nominal loading conditions. The APs to be overloaded are ran-

domly selected (provided the total number of selected APs are below the given percentage).

As expected, the systems including Service Grid performed very well. However, VC with

OLPs was able to perform at the same level as the Service Grid that was using a larger

number of serving resources.

The overall resource utilizations among the resources that make up a “cluster” are

shown in Figure 6.1. The horizontal axis represents the scaled simulation time with the

vertical axis showing the total active capacity remaining in the cluster at the time that cor-

responds to the value on the horizontal axis. From the figure it is clear that VC without

overload partitions provides the best resource utilization. Service Grid have the lowest

resource utilization at about 50% overall utilization. The VC with OLP still outperforms

the Service Grid (although by a smaller margin). However, when only the dedicated VC

6. Simulation, Results, and Discussions 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

scaled simulation time

n
o

rm
al

iz
ed

 t
o

ta
l a

ct
iv

e
ca

p
ac

it
y

o
f

th
e

sy
st

em
s

Service Grid VC without OLP VC with OLP dedicated nodes in VC with OLP

Figure 6.1: Resource utilization within a cluster.

nodes within the cluster is considered, the overall resource utilization improves to about

70%. Because the non-dedicated OLP resources are shared with multiple VCs, they by de-

sign should have low utilizations when observed from a single VC (i.e., the OLP resources

can expect loading from multiple VCs). The difference between the utilization figures of

the dedicated partition resources and OLP resources show that the probabilistic server ac-

quisition scheme meets our objective of maximally using the dedicated partition resources

(Section 5.4).

The overall utilizations shown in Figure 6.1 do not illustrate some of the important

features of the different heuristics. Further, a VC is created off the resources managed by

the PCU. Therefore, a VC will incur renting costs while it holds the resource or uses the

resource to store and execute its programs. The VC and Service Grid operate in different

modes as well. For instance, the VC continuously holds the same resources in the dedicated

partition until it is reconfigured by a subsequent reallocation process. However, the Service

Grid acquires and releases resources in a dynamic fashion. Therefore, I developed a “cost”

metric to compare the cost-effectiveness of the different schemes.

6. Simulation, Results, and Discussions 51

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 5 9

13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

scaled simulation time

u
n

it
 u

ti
liz

at
io

n
 c

o
st

Service Grid VC without OLP VC with OLP

Figure 6.2: Unit utilization cost of a cluster.

Let n be the number of servers acquired and used by a scheme at any given time,
�

be

the fixed cost of using the server per unit time, and � be the overall resource utilization.

Overall resource utilization can be computed from the Figure 6.1 as 1.0 - total remaining

active capacity. With these parameters, a metric called unit utilization cost is defined asx n l � zI��� . A lower value for this metric indicates a cost-effective configuration.

Figure 6.2 shows the variation of this metric with scaled simulation time for the different

schemes. It can be observed that the VC configurations hold this metric steady and the

Service Grid shows significant oscillations. The oscillations are due to the variations caused

by the continuous inclusion and deletion of serving resources from the Service Grid in

response to the variations in demand.

7
Conclusion

7.1 Contributions

This thesis makes the following contributions to the wide-area resource management:

A novel PCU model: The PCU model proposed here identifies the key components in

making a PCU concept practically feasible and commercially acceptable. The novel fea-

tures of this model are (a) an ISP like service structure; (b) proposing the resource profiling

scheme for resource registration; (c) addressing scalability by developing PCU structure

made up of domains; (d) incorporating peering technology for inter-domain information

dissemination; and (e) SLA based service instantiation and monitoring.

The concept of virtual cluster: This is the main contribution of this work that has many

excellent features: (a) it mathematically formulates the trade-off between achieving the best

QoS and reducing the system cost, making it best suitable for commercial infrastructures;

(b) even though multiple services can occupy a single resource and the service–resource at-

tachments can change with time, a virtualized static logical resource set exposed to the SO

hides the complexity; (c) being a semi-dynamic scheme, a VC can reshape itself matching

the varying demand pattern, at the same time the static virtualization to the SO simplify-

ing the service management; and (d) the optimization based VC creation results in better

resource utilization.

The concept of anchor point: By providing a representation of demand distribution in a

network, the concept of anchor point enables a client-centric resource allocation for wide-

area services.

The concept of overload partition: The overload partition nodes have two attributes:

52

7. Conclusion 53

they are selected via an optimization process and they are shared among multiple services.

Hence they provides a cost effective, but still QoS obeying solution to handle demand

spikes in the network.

7.2 Limitations

The work given in this thesis is bound to the following limitations:

Single service: This work is developed for allocating resources for a single service. If more

than one service is to be hosted in the system, the services have to be allocated resource

one after anther by a priority order. This work did not extend its mechanism to allocate

resources for multiple services simultaneously.

Simulation study is restricted to a single type of service: The service type considered in

the simulation study is of a document retrieval type. Other type of applications will need

modifications in the Parsec simulator codes. However, the mathematical model and drop

heuristic code need no modifications.

Centralized allocation structure: The developed solution heuristic in this work is cen-

tralized, making it infeasible to scale a large infrastructure. However, this work does give

a proposal for developing the heuristic into a distributed algorithm (Section 5.2).

7.3 Future Works

The novelty of my work can be further extended in the following ways:

� The mathematical model is to be further developed to enable simultaneous resource

allocation for multiple services.

� The distributed version of the proposed drop heuristic should be developed to make

the allocation process on-line.

� Different service and workload types should be simulated to validate the performance

of the VC for various applications.

7. Conclusion 54

� The simulation study should be further extended by using real traces instead of the

synthetic traces and with limited buffer size at the servers.

� A queueing model can be developed to further improve the scheduling schemes.

� Other mechanisms and components to build a complete PCU should be developed,

tested, and implemented to validate the practical feasibility of the proposed PCU

architecture.

Despite the limitations of this work mentioned in Section 7.2, the simulation results

clearly show the VC mechanism proposed here is a definite break-through towards a QoS

guaranteed, cost effective wide-area resource management. Supported by this VC man-

agement framework, the proposed PCU architecture will become the potential resource

management framework of the future services.

A
Abbreviations

AP Anchor point

API Application programming interface

CFCLP Capacitated fixed charged location problem

COD Cluster-on-demand

FLP Facility location problem

GM Group manager

ISP Internet service provider

OLP Overload partition

PCU Public computing utility

QoS Quality of service

RM Resource manger

RU Remote Unix

SDK Software development kit

SLA Service level agreement

UFCLP Uncapacitated fixed charged location problem

VC Virtual cluster

VCS Virtual cluster specification

VoD Video-on-demand

55

Bibliography

[Aka02] “Akamai homepage,” http://www.akamai.com.

[AnG02] A. Andrzejak, S. Graupner, V. Kotov, and H. Trinks, “Self-organizing control

in planetary-scale computing,” IEEE International Symposium on Cluster Com-

puting and the Grid (CCGrid), (Berlin), May 2002.

[ApE02] K. Appleby, T. Eilam, L. L. Fong, G. Goldszmidt, and M. H. Kalantar, “Re-

source model for self-managing computing utility services,” IBM Research Di-

vision, Thomas J. Watson Research Center, Mar 2002.

[ApF01] K. Appleby, L. Fong, G. Goldszmidt, S. Krishnakumar, and et al., “Océano –

SLA based management of a computing utility,” 7th IFIP/IEEE International

Symposium on Integrated Network Management (IM2001), May 2001.

[ArD00] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: A mechanism for

resource management in cluster-based network servers,” ACM Sigmetrics 2000

International Conference on Measurement and Modeling of Computer Systems,

June 2000.

[BoM02] E. Bouillet, D. Mitra, and K. Ramakrishnan, “The structure and management

of service level agreements in networks,” IEEE Journal on Selected Areas in

Communications, Vol. 20, No. 4, May 2002.

[CaK99] A. Campbell, M. Kounavis, D. Villela, J. Vicente, H. D. Meer, K. Miki, and

K. Kalaichelvan, “Spawning networks,” IEEE Network Magazine, Vol. 13,

No. 4, July/August 1999, pp. 16–29.

56

�`�E�h���}�c�c�2������
57

[CiK01] I. Cidon, S. Kutten, and R. Soffer, “Optimal allocation of electronic content,”

INFOCOM, 2001, pp. 1773–1780.

[Con02] “Condor: High throughput computing,” http://www.cs.wisc.edu/condor/.

[CzF02] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke, “SNAP: A

protocol for negotiating service level agreements and coordinnating resource

management in distributed systems,” 8th Workshop on Job Scheduling Strater-

gies for Parallel Processing, (Edinburgh, Scotland), July 2002.

[Das95] M. Daskin, Network and Discrete Location: Models, Algorithms, and Applica-

tions, John Wiley & Sons, Inc., New York, NY, 1995.

[Doa96] M. B. Doar, “A better model for generating test networks,” IEEE Globecom,

Nov. 1996, pp. 86–93.

[EpL96] D. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, “A worldwide

flock of condors: Load sharing among workstation clusters,” Journal on Future

Generations of Computer Systems, Vol. 12, 1996.

[FoK01] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid: Enabling

scalable virtual organizations,” International Journal of Supercomputer Appli-

cations, 2001.

[FoK02] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The physicology of the

Grid: An Open Grid Services architecture for distributed systems integration,”

Argonne National Laboratory, IL, USA, 2002.

[FoK99] I. Foster and C. Kesselman, “The Globus project: a status report,” Future Gen-

eration Computer Systems, Vol. 15, No. 5–6, 1999, pp. 607–621.

[FuV02] Y. Fu and A. Vahdat, “Service level agreement based distributed resource alloca-

tion for streaming hosting systems,” 7th International Workshop on Web Content

Caching and Distribution (WCW), (Boulder, Colorado), Aug. 2002.

�`�E�h���}�c�c�2������
58

[GoS98] M. G. Gouda and M. Schneid, “Maximizable routing mertics,” 6th IEEE Inter-

national Conference on Network Protocols, (Austin, Texas), Oct. 1998.

[GrW94] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds

Jr., “Legion: The next logical step toward a nationwide virtual computer,” June

1994.

[JaJ01] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror place-

ment on the Internet,” INFOCOM, 2001, pp. 31–40.

[JaJ99] H. Jamjoom, S. Jamin, and K. Shin, “Self-organizing network services,” Uni-

versity of Michigan, 1999. Techinal Report CSE-TR-407-99.

[KoP00] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a local search

heuristic for facility location problems,” Journal of Algorithms, 2000.

[Kot01] V. Kotov, “On virtual data centers and their operating environments,” Hewlett-

Packard Company, 2001. Techreport HPL-2001-44.

[KrB02] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey of Grid re-

source management systems,” Software Practice and Experiance, Vol. 32, No. 2,

Feb. 2002, pp. 135–164.

[Kre01] H. Kreger, “Web services conceptual architecture,” IBM, May 2001. Whitepaper

WSCA 1.0.

[LeV02] “Legion: A worldwide virtual computer,” http://legion.virginia.edu/.

[LeW01] B. Lee and J. B. Weissman, “Dynamic replica management in the Service Grid,”

IEEE 2nd International Workshop on Grid Computing, Nov. 2001.

[LiL88] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor – a hunter of idle work-

stations,” The 8th International Conference of Distributed Computing Systems,

June 1988, pp. 104–111.

[MoC02] J. Moore and J. Chase, “Technical report: Cluster on demand,” Department of

Computer Science, Duke University, May 2002.

�`�E�h���}�c�c�2������
59

[OSP83] “OSPF version 2,” RFC 1583.

[Par02] “Parsec: Parallel simulation enviornment for complex systems,”

http://pcl.cs.ucla.edu/projects/parsec/.

[QiP01] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of web server

replicas,” INFOCOM, 2001, pp. 1587–1596.

[SET02] “SETI@home home page,” http://setiathome.ssl.berkeley.edu/.

[UrS02] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and application

profiling in shared hosting platforms,” 5th Symposium on Operating Systems

Design and Implementation (OSDI), (Boston, MA), Dec. 2002.

[VaA98] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, and D. Culler, “WebOS: Operat-

ing system services for wide area applications,” The Seventh IEEE Symposium

on High Performance Distributed Computing, July 1998.

[VaK01] V. Kotov, “Towards service-centric system organization,” Hewlett-Packard

Company, 2001. Techreport HPL-2001-54.

[Web02] “Webos: Operating system services for wide area applications,”

http://www.cs.duke.edu/ari/issg/webos/.

