
Strategies for Improving the Trustworthiness and
Efficiency of Network Positioning Algorithms

Balasubramaneyam Maniymaran
Dept. of Elect. and Computer Eng.,

McGill University,
Montreal, QC, Canada
bmaniy@cs.mcgill.ca

Muthucumaru Maheswaran
School of Computer Science,

McGill University,
Montreal, QC, Canada

maheswar@cs.mcgill.ca

Yuanyuan Gao
School of Computer Science,

McGill University,
Montreal, QC, Canada
ygao30@cs.mcgill.ca

Abstract

As real-time interactive applications start embracing the service-oriented paradigm, it becomes increasingly im-

portant to locate services by proximity. One way to implement this is via network latency estimation using approaches

such as network positioning. In this paper, we propose simple and practical strategies to improve the trustworthiness

of network positioning schemes. In particular, our strategies make network positioning immune to non-random per-

turbations such as denial-of-service attacks and localized network congestion. Additionally, we studied the overhead

generated by existing network positioning algorithms and propose an algorithm that results in low overhead while

retaining very high accuracies. We performed extensive simulations and implementations on PlanetLab to examine

the performance trade-offs.

1. Introduction

In a brave new service-oriented world, network latencies are going to be a critical factor in determining the best point of

presence for a service. This is more so as the services model is embraced by real-time and interactive applications such

as online games, interactive live streaming, and voice over IP (VoIP). In addition, network latency also affects other

TCP based applications because the TCP congestion handling mechanisms makes the throughput of a TCP connection

depend on the end-to-end latency.

The network latency issue can be approached in two ways: choosing one end point of a transaction such that

end-to-end latency is minimized or predicting a quality of service (QoS) deliverable for a given network configuration.

One emerging approach for network latency estimation is network positioning, where network hosts are mapped

onto a linear space such that the latency and proximity properties along the actual network can be deduced from the

coordinates on this linear space. The obvious advantage of this solution is that it can be used both to predict the

network delay and to derive the proximity information using spatial algorithms. Further, once the mapping is found,

the network delay and proximity information can be readily extracted without creating additional network traffic

providing a scalable solution.



One of the key concerns with network positioning schemes is the errors associated with latency measurements such

as: (a) probe noise: probe packet (usually an application level ping) is subjected to random queuing and processing

delays as any other packet, (b) probing error: probes in the Internet do not travel in a straight line, thus overestimating

distance, (c) non-random error: probing is impacted by situations such as network congestion, route instability, and

various forms of denial of service attacks. Probe noise and probing error have been addressed by previous proposals

for network positioning but non-random errors are yet to be addressed.

With a services oriented computing model, service providers can use proximity to attract customers to their de-

ployment. If we use a network positioning scheme for proximity determination, it should be immune to non-random

errors. This paper proposes a simple and practical approach to addressing the non-random errors. Our approach is to

divide the network into trusted clusters using offline trust relationships. For example, nodes with a campus network

would fall into a single trusted cluster because the nodes can mutually trust each other and can reach each other without

crossing untrusted networks. The coordinate mapping algorithms use the coordinate constraints determined from the

trusted measurements to check and correct the coordinates yielded by the untrusted global scope measurements.

We studied the clustering strategy using extensive simulations and also implemented and tested the algorithms

on PlanetLab. The results indicate that the clustering approach can significantly improve the trustworthiness of the

coordinate computation especially for large networks.

Another important issue with regard to network positioning is efficiency. Because these algorithms run periodically

as part of the infrastructure, they should be minimally intrusive in terms of message and processing overheads. We

examined the overheads of two distinct network positioning algorithms and propose a third one that can outperform

other two under certain conditions. Simulations as well as implementations were used to evaluate the performance.

The paper is organized as follows: Section 2 introduces the network positioning scheme used in our research

and formulates the problem; Section 3 describes three positioning algorithms used in our system; An cluster-based

positioning solution is introduced in Section 4 to address the impact of non-random errors; Section 5 presents the

performance study on the cluster-based scheme and the used algorithms; A concise description of related works is

given in Section 6.

2. Landmark-Aided Positioning

Network positioning schemes can be categorized into two groups: infrastructure-based and infrastructure-less solu-

tions. The infrastructure-based schemes employ infrastructure nodes called landmarks as the reference points for the

other nodes. The infrastructure-less schemes rely on no infrastructure nodes; instead, any node can be a reference

point for another node. A node in this type of scheme learn about another node in the system from the source field of

an incoming message. Then, the node probes the remote node and adjusts its position accordingly. The infrastructure-

2



less schemes have a number of practical issues: (a) as nodes solely depend on incoming messages, a node might

take a long time to receive enough unique messages to find its correct position; Conversely, in infrastructure mode,

node positioning is extremely fast, because a node is proactive in determining its position; (b) previous research has

established the need for probing distant reference points to produce a good mapping. In infrastructure-less scheme, it

is not guaranteed that sufficient incoming messages are from distant nodes. In fact, the motivation behind a network

positioning scheme is to confine traffic as much as possible to a locality, which could mean less traffic from distant

nodes; (c) a set of malicious nodes can disturb the positioning system by just sending messages to selected nodes in

the system. On receiving these messages, the innocent nodes will contact the malicious nodes who lie about their

positions which leads to incorrect positioning.

Therefore, an infrastructure-based positioning scheme is considered for this paper, which we call as landmark-

aided positioning (LAP). The primary objective in LAP design is to maximize scalability and minimize message

overhead generated by the algorithms. The LAP scheme consists of two phases: landmark positioning and node

positioning. In the landmark positioning phase, the landmarks run a distributed algorithm to positioning themselves

relative to each other in a Cartesian space. When the landmark positioning phase is complete, the positions of the

landmarks provide the reference frame for the other nodes. In the node positioning phase, each non-landmark node

uses the reference frame to fix its position. The two phases of the LAP scheme are repeated periodically to handle

with the changing network conditions.

2.1. Node positioning

The node positioning algorithms try to minimize the objective function defined as:

∑
j

ε(li j, l̂i j) (1)

where li j is the measured network delay and l̂i j is the predicted network delay between the node i and the landmark

j. The predicted delay is the Euclidean distance between the nodes, i.e. l̂i j = |~xi−~x j| where ~xi,~x j ∈ ℜd are the

coordinates of the node i and landmark j, respectively. The error function ε() defines the positioning error as the delay

prediction error:
ε(li j, l̂i j) = |li j− l̂i j| (2)

The inputs to a node positioning algorithm are the measured network delay values and the coordinates of the

landmarks. It was previously shown that, for a d-dimensional Cartesian space, d +1 landmarks are enough to produce

reasonably accurate positioning [1]. Therefore, the node positioning algorithm requires only a O(d) number of probe

messages causing very low message overhead (the total message complexity is O(Nd), where N is the number of

nodes in the system). Optimization algorithms are iterative procedures. Therefore, the computational load on each

node is determined by the number of iterations taken by the algorithm to reach convergence.

3



2.2. Landmark positioning

The landmark positioning problem is formulated as an optimization minimizing the objective function defined in

Equation 3, where nodes i and j are landmarks.

∑
i

∑
j

ε(li j, l̂i j) (3)

1: repeat
2: /* outer loop */
3: for all node i do
4: x j← coordinates of other landmarks
5: li j← ping values to other landmarks
6: repeat
7: /* inner loop */
8: for all landmark j 6= i do
9: adjusting~xi related landmark j

10: end for
11: until convergence on xi
12: end for
13: until convergence on system

Figure 1: Pseudo code for landmark positioning.

Figure 1 shows the pseudo code of the landmark po-

sitioning algorithm. In the inner loop (steps 6–11), each

landmark adjusts its position relative to other landmarks

and in the outer loop (steps 1–13), the landmarks ex-

change their adjusted coordinates. The algorithm contin-

ues until there is no adjustment in the coordinates. The

number of iterations taken by both the inner and outer

loops determines the computational load on each land-

mark node, while the outer loop iterations determines the

message overhead created by the algorithm due to inter-

landmark coordinate exchanges. Therefore, the message complexity of landmark positioning is O(IoL2), where Io is

the number of outer loop iterations and L is the number of landmarks in the system.

3. LAP Algorithms

This section examines two representative algorithms from the literature: Simplex and Spring. Also, it presents a new

algorithm we developed called SpringEq.

3.1. Simplex Downhill Algorithm

As network positioning is a multi-dimensional optimization problem1, Simplex downhill (SDH) algorithm is an obvious

solution. The pseudo code of the Simplex algorithm for node positioning is given in Figure 2. The complexity of step

4 is O(Ld) (from Equations 1 and 2), where L is the total number of landmarks and d is the dimension of the Cartesian

space. Further, since the SDH algorithm uses a geometric construct called simplex [2] which is a polygon of d + 1

vertexes, the complexity of the steps 3–6 becomes O(Ld2). Hence, the complexity of the SDH algorithm becomes

O(ILd2), where I is the number of iterations taken by the repeat...until loop.

1an optimization problem with more than one independent variable

4



1: create simplex
2: repeat
3: for all simplex points do
4: evaluate objective function
5: find/refine downhill direction
6: end for
7: move down hill
8: if could not move then
9: shrink simplex size

10: end if
11: until converged

Figure 2: Simplex downhill algorithm.

SDH method has number of disadvantages. First, it is in-

herently a centralized algorithm. The distributed implementa-

tion for landmark positioning needs to iteratively run the cen-

tralized version at every outer loop iteration. Therefore, the

complexity of simplex algorithm for landmark positioning is

O(IoILd2), where Io is the number of iterations in the outer

loop. Second, the performance of the algorithm is sensitive

to various design parameters (for example, the initial simplex

size and position).

3.2. Spring Algorithm

Spring algorithm models the network as a spring system [3, 4]. The network hosts are considered as massless nodes

connected to each other with springs whose natural lengths2 are the measured network delay. In such a system, the

springs are almost always under deformation (either shrunken or elongated). The Spring algorithm iteratively adjusts

the positions of the nodes so that total deformation in the spring system is minimized. Comparing this procedure with

the error function defined in Equation 2, it can be seen that the Spring algorithm effectively solves the optimization

problem defined in Equation 3. Spring algorithm is an attractive solution as it is very simple to code and is naturally

distributed.

1: limit← 0.05,dec← 0.025
2: s← 0.5 /* scale factor */
3: repeat
4: x j← coordinates of the other landmarks
5: li j← ping values to the other landmarks
6: for all landmarks j do
7: ~ui j← unit direction towards landmark j
8: l̂i j← |~xi−~x j|
9: ~xi←~xi + s(l̂i j− li j)~ui j

10: end for
11: s←max((s−dec), limit)
12: until converged

Figure 3: Pseudo code for the Spring algorithm.

For every iteration of the Spring algorithm in Figure 3, a

landmark adjusts its position relative to each of the other land-

marks. The size of the adjustment is controlled by scale factor

s. As proposed in [3], the scale factor is decreased by a fixed

value at every iteration, but lower bounded by another fixed

value (step 11).

The complexity of the Spring algorithm given by O(IoLd),

because steps 6–10 have complexity of O(d). As the dimen-

sion of the Cartesian space is constant, Spring algorithm has

complexity linear to the size of the landmark set like the SDH method. Even though the values of Io and I depend on

the data set, the Spring algorithm can be expected to perform better than SDH as it does not really have an inner loop

like SDH (or I = 1 always in Spring).

Even though the Spring algorithm is actually proposed as a distributed algorithm, by moving steps 4 and 5 out-

2length of a spring at rest, i.e. when no force applied upon

5



side the repeat...until loop, it can be used for node positioning. This provides a much simpler solution (coding

complexity) than the SDH method.

3.3. SpringEq Algorithm

SpringEq (spring system in equilibrium) is inspired by the spring system-based algorithms [4, 5]. SpringEq algorithm

uses the same spring model used by the Spring algorithm; However, instead of considering the individual springs

attached to a node, SpringEq algorithm considers the resultant force on a node and formulates the solution by deriving

the equilibrium condition of the node as a system of homogeneous equations.

j

i+1

x'
j

x
j x

i

x
i+1

F

F'

l
i,j

Figure 4: A spring under deformation due to the
movement of the end points.

Using the Hooke’s Law, the force ~F applied on a spring

under deformation~δ can be written as ~F = k~δ, where k is the

spring constant. Considering the spring under deformation as

shown in Figure 4, the force ~F can be written as:

~F = k[(~x j−~xi′)−~li′, j] (4)

where, ~li′, j is the natural length of the spring measured in the direction of the spring layout. i.e. ~li′, j = li, j
(~x j−~xi′ )
|~x j−~xi′ | .

However, for small displacement of~δi, ~F = ~F ′ and

~li′, j =~li, j = ~x j−~δ j−~xi (5)

From Equations 4 and 5, ~F = k[(~x j−~xi′)− (~x j−~δ j−~xi)]

= k[~δ j− (~xi′ −~xi)]

~F = k(~δ j−~δi) (6)

For the equilibrium of the node i connected to L−1 springs:

L−1

∑
j=1

~F =
L−1

∑
j=1

[ki, j(~δ j−~δi)] = 0

L−1

∑
j=1

~δ j− (L−1)~δi = 0 ∀i assuming ki, j = 1 (7)

~δ j can be calculated as~δ j = (l̂i j− li j)~u ji, where~u ji = (~x j−~xi)/l̂i j. Equation 7 represents a system of homogeneous

equation, Aδ = 0, where

6



A = {ai j}L×L =





1 j 6= i

−(L−1) j = i
and δ = {~δi}

1: r← 0.85 /* relax factor */
2: repeat
3: x j← coordinates of the other landmarks
4: li j← ping values to the other landmarks
5: ~∆←−~δi(1− r)(L−1)
6: for all landmarks j do
7: l̂i j← |~xi−~x j|
8: ~ui j← unit direction towards landmark j
9: ~δ j← (l̂i j− li j)~ui j

10: ~∆←~∆−~δ j
11: end for
12: ~δi←− 1

r(L−1)
~∆

13: ~xi←~xi +~δi
14: until converged

Figure 5: Pseudo code for the SpringEq algorithm.

At equilibrium, the system is at the minimum energy,

which means that the deformation in the springs in the system

is minimized. Therefore, solving the system for equilibrium

effectively solves the landmark positioning problem.

SpringEq algorithm solves this system of equations using

an iterative method. An iterative method is chosen because it

can be easily converted into a distributed solution, where each

node i solves the ith equation of the system. SpringEq uses

successive over relaxation (SOR) method for its speed and

simplicity. Figure 5 shows the pseudo code for the SpringEq

algorithm. Similar to the Spring algorithm, the complexity of

the SpringEq algorithm is O(ILd).

The position of a node relative to a set of landmarks can be found by re-writing the Equation 7 as:

~δi =
1

L−1

L−1

∑
j=1

~δ j (8)

The SpringEq algorithm for node positioning runs the Equation 8 iteratively to compensate the error due to the as-

sumption that that~δi is small.

4. Clustered Landmark-Aided Positioning

To position itself, a node needs to obtain latency measurements from several landmarks along with their coordinates.

Here, the node places trust on the coordinates given by the landmarks and the measured latencies to them. To prevent

simple spoofing attacks disrupting the network positioning process, the coordinates given by the landmarks must be

secured. This involves signing the messages at the sender side and verifying them at the receiver. To determine

application level network latencies, we need to subtract the signing and verifying times from the measured times.

The malicious nodes may not be the only source of errors in latency measurements. The Internet itself is a dynamic

system with variable network conditions in different network segments which can introduce arbitrary errors that are

non-random. Non-random errors are not persistent, therefore, can not be handled by optimization algorithms; at the

7



same time, they cannot be filtered by data smoothing the measurements.

One way of reducing the impact of these non-random errors is to increase the number of measurements so that the

overall fraction of bad measurements considered for the calculation of the position is low. But, this is not an efficient

solution, because it not only produces additional network traffic but the signing and verification process can create

significant overhead on the nodes as well.

We introduce a new scheme called clustered landmark aided positioning (CLAP) to address these issues. The

primary idea behind CLAP is to create clusters of trusted neighboring peers and share information within the clus-

ter. Further, the proximity-based clustering reduces the possibility of non-random errors, because the intra-cluster

measurements are limited to short distances that hardly cross congested paths. The CLAP uses this trust on local

measurements to build a trusted global coordinates.

4.1. Cluster Formation and Maintenance

One of the problems in CLAP is forming the clusters. The simplest approach is to create clusters statically. For

example, all nodes in a campus network or in a highly controlled network can be selected as part of a cluster. In highly

trusted and stable environments, this approach can be sufficient.

In more dynamic networks, we need to use online schemes to create clusters. One approach is to select a seed node

around which the cluster should be established. Then, probe for other candidate nodes that lie within a given network

latency and include them in the cluster. This approach is suitable for dynamic network environments. Unlike the static

case given above, the trust issue is not directly considered here.

Another approach is to define clusters using off-line trust relations very much like the static approach and then

refine it dynamically. The cluster defined by the offline trust relations is the total set of nodes that can participate in the

cluster. The dynamic scheme measures the inter-node network latencies and temporarily removes some nodes from

the cluster. Nodes could be removed because they are computationally overloaded and unable to respond to network

positioning requests in a timely manner or lie behind a locally congested network link. The dynamic scheme can be

considered as a cluster maintenance routine.

4.2. Cluster Oriented Positioning

The CLAP algorithms is shown in Figure 6. It uses the simple LAP (SLAP) in two different ways. We assume that

a global set of landmarks are already chosen and a landmark positioning algorithm has already run among them to

establish the reference frame.

We run the cluster formation process to setup the clusters that will be used by the CLAP scheme. Once the cluster

is setup, we do the following operations periodically. In the first step, each node runs the SLAP node positioning

8



process to establish its coordinates with respect to the global reference frame. In the second step, each node runs the

SLAP landmark positioning process within its cluster. It should be noted that the landmark positioning process will

take its initial values from the outputs of the node positioning scheme. Because the landmark positioning is entirely

within the cluster it is trusted. Thus, we can consider this process as a correction on the coordinates obtained by the

SLAP node positioning in the previous step.

1: cluster formation()
2: loop
3: /* CLAP iteration */
4: doSLAPnodePosition()
5: doSLAPlandmarkPosition([cluster nodes])
6: if maintain time() then
7: cluster maintain()
8: end if
9: wait(NODE POS WAIT TIME)

10: end loop

Figure 6: CLAP Algorithm

In the third step, the cluster maintenance process is run by

each node. It should be noted that this step is not run at each

iteration (i.e., we don’t expect the cluster to require mainte-

nance every iteration). In the last step, we wait for a specified

time and then iterate.

In the next iteration, the coordinates corrected by the

cluster-based landmark positioning will be fed into the SLAP

network positioning. This network positioning process will

use the corrected coordinates as the starting point.

The cost of the CLAP scheme is the additional message overhead it produces. It increases the node positioning

message complexity to O(Nd +CIcN2
c ), where C is the number of clusters in the system, Nc is the average number

of nodes in a cluster, and Ic is the average number of iterations taken by the cluster-restricted landmark positioning

algorithm. Nc can be a relatively small number and Ic is expected to be small as the algorithm is applied on positions

that have already converged. Therefore, the CLAP scheme does not create excessive message overhead for very large

networks.

5. Performance Analysis

In this section, we discuss the results from simulations and implementations of the different algorithms. It is organized

in three subsections. We devote one subsection for each different type of positioning and examine them in the following

order: node positioning, landmark positioning, and CLAP. Below we discuss the parameter settings that were common

for all the simulations and implementations. Specific settings are discussed in that particular subsection.

Detailed simulations were performed for exploring the three algorithms described in Section 3. The simulations

allowed us to examine much larger parameter space than the implementation which were limited by the resources

provided by PlanetLab. We used a random network for the simulations, where nodes are assigned with random coor-

dinates that is known only to the simulator (the nodes know only the coordinates found by the positioning algorithms).

The value of a ping between two nodes i and j, li j, is taken as l′i j(1+2ξρ), where l′i j is the Euclidean distance between

9



i and j based on the assigned coordinates and ξ and ρ are positive fractions simulating the ping error and ping noise

respectively. While ξ is constant for an experiment, ρ is randomly varied for each ping. The results presented here are

averaged over many tests using different hypothetical setups.

We implemented the different positioning schemes on PlanetLab [6]. It is an ideal environment for testing our

schemes because it presents realistic scenarios like congestion, diverse link behaviors, and client workloads. Although

PlanetLab consists of about three hundred nodes, many of them show frequent down-time. Therefore, we probed the

PlanetLab nodes for a long interval and chose 127 nodes to run our network positioning schemes. Out of these 127

nodes, 30 nodes are randomly selected as landmarks and the remaining 97 nodes as ordinary hosts. When some of the

selected nodes became unresponsive, the algorithms continued to run temporarily not considering them for calcula-

tions. In the implementation, the landmarks started landmark positioning 10 minutes prior to the other nodes starting

the node positioning. The landmarks updated their positions every 3 hours by re-running the landmark positioning

algorithm. Ordinary hosts updated their positions once every hour. The experiments lasted for 5 landmark updating

periods.

5.1. Node Positioning Performance

Figures 7 and 8 show the results from the simulations that compared the different node positioning algorithms. Even

though the performance difference in terms of accuracy is marginal, Spring outperforms others in terms of number of

iterations taken.

 0

 10

 20

 30

 40

 50

 3  4  5  6  7  8  9  10

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex
SpringEq

Spring

Figure 7: Variation average number of iterations taken
with varying number of landmarks per node.

 0

 0.05

 0.1

 0.15

 0.2

 3  4  5  6  7  8  9  10

av
er

ag
e 

re
la

tiv
e 

di
st

an
ce

 e
rr

or

no. of landmarks

Simplex
SpringEq

Spring

Figure 8: Variation of average relative prediction error
with varying number of landmarks per node.

The fast convergence of the Spring algorithm can be attributed to the large scale factor in the initial iterations. This

convergence behavior is illustrated in Figure 9. This plot tracks the coordinates of a node for first few iterations of the

Spring and SpringEq algorithms for 1000 trials. The node’s actual coordinates are (750,750) and initial coordinates

are randomly chosen in the range ([0,1000], [0,1000]) for the trials. It can be seen from the figure that the Spring

10



algorithm converges very close to the correct position in the first iteration itself, while the SpringEq algorithm slowly

converges towards the correct position.

 0

 200

 400

 600

 800

 1000

 1200

 0  100  200  300  400  500  600  700  800  900  1000

springEq 0
spring 0

springEq 1
spring 1

Landmarks

Figure 9: Coordinates after first two iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex
SpringEq

Spring

Figure 10: Variation of average number of iterations
taken when using large number of landmarks per node.

Figure 10 shows the performance of the algorithms for large number of landmarks. Interestingly, the performance

of Spring algorithm quickly deteriorates as the number of landmarks increases3. This prompted us to look at the

convergence of the algorithms closely to understand this observations. Figure 11 shows the average displacements in

the positions of the nodes between iterations at the final few iterations (close to convergence) for different configu-

rations. It shows that the displacement in position of the nodes hardly becomes zero in the Spring algorithm. When

using 20 landmarks, the displacements after reaching the maximum allowable iterations are still within the conver-

gence threshold of the algorithm. However, when using larger number of landmarks, the displacements exceeds the

threshold making the algorithm not converge. On the other hand, SpringEq is able reach convergence in both cases,

because the displacements reach zero irrespective of the number of landmarks used. A careful look at the pseudo

code reveals that the reason for the constant displacement (or oscillation) is the non-zero scale factor. Therefore,

instead of having a fixed limit on the decreasing scale factor, we modified the scale factor adjustment step (step 11

in Figure 3) as s = max((s− 0.025),1/L), where L is the number of landmarks used. This idea is supported by the

Figure 10, where performance degradation is observed at 20 landmarks and above when the scale factor is limited to

0.05(= 1/20 = 1/L). Figures 11 and 12 show that this modification greatly improve the performance of the Spring

algorithm.

The implementation results for node positioning scheme using Spring algorithm with varying number of landmarks

per node are shown in Figures 13 and 14. Figure 13 shows the average distance correlation of the system. Figure 14

shows the cumulative distribution of relative error for the group of nodes using different amount of landmarks. As

3even though few landmarks are enough for node positioning, this observation is important for analyzing the behavior of the algorithm in
landmark positioning.

11



 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35

A
ve

ra
ge

 d
is

pl
ac

em
en

t

Iteration

Spring (150 LMs)
Spring (20 LMs)

Spring (150 LMs, modified scale step)
SpringEq (150 LMs)

SpringEq (20 LMs)

Figure 11: Displacement in position between iterations
in final few iterations (landmarks = 20).

 0

 10

 20

 30

 40

 50

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex
SpringEq

Spring

Figure 12: Variation of average number of iterations with
modified scale factor.

expected, the accuracy improves with the number of landmarks used per node; but the improvement is not very

significant.

5 10 15 20 25 30 35
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of landmarks

C
or

re
la

tio
n

Figure 13: Variation of distance correlation with number
of landmarks per node.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

10 landmarks per node
15 landmarks per node
20 landmarks per node
25 landmarks per node
30 landmarks per node

Figure 14: Cumulative distribution of relative distance er-
ror.

5.2. Landmark Positioning Performance

This section presents the performance of the algorithms for landmark positioning. The experiments run the landmark

positioning algorithms over several time steps (epochs) simulating the periodic re-runs of the algorithm in a practical

scenario. The figures show the performance of the algorithms for the first three epochs.

Figure 15 shows the accuracy in positioning using the three algorithms. Even though all the algorithms perform

almost equal in terms of accuracy, Figure 16 shows that they significantly differ in terms of number of iterations taken

in the outer loop of algorithm (as in Figure 1). As described in Section 2.2, number of outer loop iterations determines

12



the message overhead. Simplex is the worst among the three in this regard (note that iterations are limited to 100 by

the experiment). As expected from the node positioning results, Spring algorithm outperforms the SpringEq algorithm

for small number of landmarks, but the SpringEq algorithm takes over when the number of landmarks increases.

Importantly, despite the number of landmarks, the number of iterations taken by the SpringEq algorithm is much

smaller than that taken by the Spring algorithm in the second and third epochs. This shows that when there is no

perturbation in the system, SpringEq provides much lower overhead than the Spring algorithm.

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

co
rr

el
at

io
n 

be
tw

ee
n 

di
st

an
ce

 m
at

ric
es

no. of landmarks

Simplex - 1st epoch
Spring - 1st epoch

SpringEq - 1st epoch
Simplex - 2nd epoch

Spring - 2nd epoch
SpringEq - 2nd epoch

Simplex - 3rd epoch
Spring - 3rd epoch

SpringEq - 3rd epoch

Figure 15: Variation of distance correlation with number
of landmarks with (original Spring algorithm).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex - 1st epoch
Spring - 1st epoch

SpringEq - 1st epoch
Simplex - 2nd epoch

Spring - 2nd epoch
SpringEq - 2nd epoch

Simplex - 3rd epoch
Spring - 3rd epoch

SpringEq - 3rd epoch

Figure 16: Variation of number of outer loop iterations
with number of landmarks (original Spring algorithm).

Figure 17 shows the displacements in the positions of the landmarks between epochs. Note that, these are inter-

epoch displacements, not inter-iteration displacements and are required to be zero to produce a robust positioning,

where two subsequent positions (in time) of a node are same or very close unless perturbed by a network condition.

The figure shows that Spring algorithm performs poorly compared to SpringEq algorithm and this justifies the constant

workload it requires at every epoch as shown in Figure 16.

Figure 18 shows the same performance metric with the scale factor in Spring algorithm modified as in Section

5.1. Even though this modification improved the performance of the algorithm in node positioning, it degrades the

performance in landmark positioning. It is because the scale factor is brought down too fast so that the adjustment of

landmarks’ positions are much restricted well before any of them converge to the low error positions. Figure 19 uses

the scale factor adjustment as described in the refined Vivaldi algorithm [4] (s = ∆local
∆local+∆remote

). This actually perform

worse, because, when the relative error in the positions are same everywhere in the system, the lower limit of the scale

factor becomes 0.5.

Another interesting characteristics of the algorithm is the change in performance for different convergence criteria.

The above experiments considered a node to have converged to its when the relative distance errors in the links to the

landmarks are less than 30%. Figure 20 shows the performance of the algorithm when the node is considered converged

to its position when its displacement is within a design threshold. This improves the accuracy a little bit (results are not

13



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9

D
is

pl
ac

em
en

t

Epochs

Spring
SpringEq

Figure 17: Displacement in landmark positions in subse-
quent epochs (original Spring algorithm).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex - 1st epoch
Spring - 1st epoch

SpringEq - 1st epoch
Simplex - 2nd epoch

Spring - 2nd epoch
SpringEq - 2nd epoch

Simplex - 3rd epoch
Spring - 3rd epoch

SpringEq - 3rd epoch

Figure 18: Variation number of outer loop iterations with
number of landmarks (modified Spring algorithm).

shown here). However, as the figure shows, performance of the Spring algorithm worsen with modification, whereas

the performance of the SpringEq improves. This again proves that displacement in position is the worst behavior in

Spring equilibrium while the best in SpringEq. Therefore, in addition to producing lower message overhead, SpringEq

algorithm provides a more robust positioning scheme compared to the Spring algorithm. That is, SpringEq provides a

positioning scheme that smoothly varies

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex - 1st epoch
Spring - 1st epoch

SpringEq - 1st epoch
Simplex - 2nd epoch

Spring - 2nd epoch
SpringEq - 2nd epoch

Simplex - 3rd epoch
Spring - 3rd epoch

SpringEq - 3rd epoch

Figure 19: Variation of number of outer loop iterations
(modified Spring algorithm according to [4]).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140  160  180  200

av
er

ag
e 

no
. o

f i
te

ra
tio

ns

no. of landmarks

Simplex - 1st epoch
Spring - 1st epoch

SpringEq - 1st epoch
Simplex - 2nd epoch

Spring - 2nd epoch
SpringEq - 2nd epoch

Simplex - 3rd epoch
Spring - 3rd epoch

SpringEq - 3rd epoch

Figure 20: Variation of number of outer loop iterations
(original Spring algorithm, convergence on position).

The rest of this section shows the implementation results for landmark positioning. The implementation based

experiments were restricted to a maximum of 30 landmarks. In order to reduce the impact of landmark selection on

the observed performance, the experiments are repeated for 5 times for each number of landmarks, with different set

of landmarks for every experiment.

Figure 21 shows the variation of average distance correlation with number of landmarks. Both algorithms (Spring

and SpringEq) show good performance. However, the performance slightly reduces when more nodes are involved.

14



It is probably because large number of landmarks increases the probability of non-random errors encountered in the

measurement which the SLAP algorithms do not handle. Still, comparing the two algorithms with the error bars,

SpringEq algorithm provides more stable performance than the Spring algorithm.

5 10 15 20 25 30 35
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Number of landmarks

C
or

re
la

tio
n

Spring
SpringEq

Figure 21: Variation of distance correlation with number
of landmarks.

5 10 15 20 25 30 35
50

100

150

200

250

Number of landmarks

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e 
/ (

se
c)

Spring
SpringEq

Figure 22: Variation of convergence time with number of
landmarks.

5 10 15 20 25 30 35
50

100

150

200

250

300

350

400

450

500

Number of landmarks

A
ve

ra
ge

 n
um

be
r 

of
 m

es
sa

ge
s

Spring
SpringEq

Figure 23: Variation of message overhead with number of
landmarks.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

SpringEq,begin
SpringEq,end
Spring,begin
Spring,end

Figure 24: Cumulative distribution of relative Error.

Figures 22 and 23 show the average convergence time and the average message complexity of the two algorithms

for different number of landmarks. The convergence time increases for both algorithms with the number of land-

marks. This increase in converge time is attributed to both the additional inter-landmark communication delay and the

increasing number of iterations. From Figure 23, it can be seen that the increase in convergence time is mainly due to

the increase in number of iterations, because the number of messages increases with the number of iterations taken.

The figures show that SpringEq performs a little better than Spring algorithm. However, we know from the simulation

results that the real performance improvement in SpringEq can be seen only when the number of landmarks is large

15



which is not the case here. Despite this fact, we observed that the Spring algorithm occasionally failed to converge

when the number of landmarks is more than 25 supporting our observation on convergence from Section 5.1.

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

450

500

Update periods / (per 3 hours)

A
ve

ra
ge

 n
um

be
r 

of
 m

es
sa

ge
s

Spring
SpringEq

Figure 25: Variation of message overhead with time.

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

Update periods / (per 3 hours)

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e 
/ (

se
c)

Spring
SpringEq

Figure 26: Variation of convergence time with time.

Figure 24 shows the cumulative distribution of the relative distance error at the beginning and the end of the

experiment. The level of accuracy for both algorithms improves at the end with the SpringEq algorithm providing

slightly better results than the Spring algorithm.

Figures 25 and 26 show the message overhead produced and convergence time required by the algorithms in the

periodic re-runs. As expected, SpringEq algorithm show a considerable improvement over Spring algorithm in the re-

runs. The first run always costs more due to the random initial coordinates. However, the SpringEq algorithm shows a

big improvement in the performance from the second update. While the SpringEq shows a steady, low overhead after

the second update, the overhead in Spring algorithm is constantly high and unstable.

5.3. CLAP Performance

This section compares the performance of SLAP and CLAP schemes first using simulations and then using implemen-

tations. The simulations run the landmark positioning algorithm once at the beginning and then the node positioning

algorithms for 20 times (we call them as “epochs”), with and without CLAP adjustment. Each node maintains SLAP

and CLAP coordinates separately. The results presented here are average performance over 10 tests. We assumed that

no nodes are malicious and the non-random errors are caused by the congestion at the borders of the clusters. That is,

the traffic contained within a cluster are not subjected to non-random errors. In the simulation, the borders of a specific

fraction of clusters are considered congested and the values of the pings that crosses those borders are increased by a

fixed percentage.

Figure 27 shows the variation of distance correlation in the SLAP and CLAP schemes for varying network sizes

16



when 30% of the cluster borders are considered congested. Distance correlation is the correlation between the mea-

sured ping and predicted distance (Euclidean distances) values across all the N×N pairs. The figure shows that CLAP

provides much better and more stable performance than SLAP. More interestingly, CLAP provides better performance

even when there is no non-random error. It is due to the fact that a given absolute error in predicting short distance has

more impact than the same error in predicting long distances. Figure 28 shows the cumulative distribution of relative

distance error for the congested and non-congested parts of the network for a 250-nodes system. The performance

is better in CLAP and, more importantly, it is same for both congested and non-congested parts of the network. Be-

cause all the pings originated from the congested clusters are subjected to non-random error despite their choice of

landmarks, the error in the positions of the nodes in those clusters are high. However, the CLAP scheme prioritize the

local distances, the effect of the congestion in the borders are minimized to produce a better prediction accuracy.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700  800  900  1000  1100

di
st

an
ce

 c
or

re
la

tio
n

no. of nodes

CLAP
SLAP

Figure 27: Variation of distance correlation with varying
system size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5

cu
m

m
ul

at
iv

e 
di

st
rib

ut
io

n

relative error

congested clusters (CLAP)
non-congested clusters (CLAP)

congested clusters (SLAP)
non-congested clusters (SLAP)

Figure 28: Cumulative distribution of relative prediction
error in the congested and non-congested clusters in 250
node system.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  100  200  300  400  500  600  700  800  900  1000

av
er

ag
e 

oc
cu

pa
nc

y 
di

am
et

er

no. of nodes

SLAP in period (t-1) 
CLAP in period (t-1)

SLAP in period t
CLAP in period t

Figure 29: Variation of maximum occupancy diameter
with varying system size.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

di
st

an
ce

 c
or

re
la

tio
n

fraction of congested clusters

CLAP
SLAP

Figure 30: Variation of distance correlation with varying
amount of non-random error in the network.

17



Figure 29 shows the performance of the schemes in terms of maximum occupancy diameter. Maximum occupancy

diameter of a node is the diameter of the area in which the coordinates of the node fell in the last T epochs, where

T is a system defined parameter (it is 4 in our experiment). This metric is a measure to evaluate the robustness of

the coordinates. Robustness of the coordinates is important in the network positioning schemes, because the overlay

applications using these schemes will be forced to make and break overlay connections based on the coordinates.

Unstable coordinates will cause too many unwanted operations causing large application level overhead. Figure 29

shows the maximum occupancy diameters in the system for the last two calculations. It shows that the robustness

increases with time for both the algorithms, but CLAP performs better than SLAP in terms of absolute robustness.

In addition to the random network we used for the above results, we also consider a hypothetical network created

from the all-to-all PlanetLab node ping values from Stribling’s project [7]. The all-to-all ping data for a day is pre-

processed to extract the average node-to-node ping values for the nodes that are active throughout the day. Ping values

in the synthetic network is assumed to have these average values with manually added probe noise. The AS numbers

of the networks in which the active nodes are located are found using the Route View project [8]. The nodes in a single

AS are belongs to the same cluster in CLAP. When the number of nodes in a cluster is too small, nodes from adjacent

AS’s are aggregated into a single cluster. The topology of the network is derived by extracting AS-level connectivity

of these networks from the Route View database. In order to simulate the Internet, shortest path algorithm is used to

find the route between all the node pairs. When simulating network congestions, not only the congested end clusters,

but a congested cluster in the middle of the path of a ping also increases the value of the ping.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

cu
m

m
ul

at
iv

e 
di

st
rib

ut
io

n

relative error

congested clusters (CLAP)
non-congested clusters (CLAP)

congested clusters (SLAP)
non-congested clusters (SLAP)

Figure 31: Cumulative distribution of relative prediction
error in the congested and non-congested clusters.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
ax

. o
cc

up
an

cy
 d

ia
m

et
er

% of network congestion

SLAP at period (t-1)
CLAP at period (t-1)

SLAP at period t
CLAP at period t

Figure 32: Variation of maximum occupancy diameter
with varying amount of non-random error in the network.

Figures 30 – 32 present the performance of the SLAP and CLAP schemes for varying amount of network conges-

tion using this hypothetical network. Even though the performance difference between CLAP and SLAP is not that

sharp as in the simulations with random network, the CLAP scheme still outperforms the SLAP scheme. Figure 30

shows the CLAP performance is better than that of the SLAP. Further, the performance range (denoted by the error

18



2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time / (hour)

C
or

re
la

tio
n

Without cluster−based adjustment
With cluster−based adjustment

Figure 33: Variation of distance correlation.

2 4 6 8 10 12

0

20

40

60

80

100

120

Time / (Hour)

A
ve

ra
ge

 o
cc

up
an

cy
 d

ia
m

et
er

 / 
(m

ill
is

ec
)

SLAP
CLAP

Figure 34: Variation of average occupancy diameter.

bars) shows that CLAP provides a more robust solution.

Figures 33 and 34 show the performance of the SLAP and CLAP schemes in the implementation on the PlanetLab

testbed. Even though the performance difference of the schemes in terms of distance correlation is not discernible,

the CLAP scheme shows more robust node positions compared to the SLAP scheme. Here the occupancy diameter

is calculated in an increasing time window (starting from the beginning of the experiment) instead of moving time

window as in the simulation. This is the reason for the the increase in the occupancy diameter after every landmark

positioning re-runs. This shows that changing the reference frame has a big impact on the stability of the non-landmark

nodes.

6. Related Works

6.1. Predicting Network Delay and Proximity

Internet distance map service relies on a set of infrastructure nodes called tracers placed well distributed on the Internet

for predicting network delays. Each tracer measures the network delay to all other tracers and every node in the system

measures its network delay to the closest tracer. The delay between a node pair is predicted using triangulation via the

nearest tracers to the two nodes. IDMaps approach was shown to produce inaccurate predictions especially for short

delays ([9]).

Meridian [10] is a peer-to-peer (P2P) proximity-based resource discovery mechanism. Each meridian node main-

tains a fixed number of pointers to a set of other meridian nodes discovered using a gossip protocol. These routing

pointers are organized into multiple levels with pointers at each increasing level pointing to nodes at increasing network

distance. Another gossip protocol is used for proximity-based resource discovery using these pointers. Meridian’s nov-

19



elty is the real-time proximity detection, however this procedure is costlier than network positioning-based solution in

terms of message overhead.

6.2. Network Positioning Schemes

There are two types of network positioning schemes: binning schemes and beaconing schemes. Even though both of

them use landmarks, a binning scheme [11, 12]does not require an explicit landmark positioning for them to create a

reference frame. However, binning scheme imposes an explicit order among the landmarks. A normal node pings the

landmarks and uses the array of ping distances (in the defined order) as its coordinates. The advantage of a binning

scheme is that it is very simple: the landmarks can be completely passive. Also the normal nodes do not require any

complex algorithm to position themselves. However, this simple scheme has a number practical concerns: the mapping

based on binning can be used to deduce only the proximity information. Additional triangulation-based calculations

are required to predict the network delay. Further, binning schemes are more sensitive to landmarks in number of

ways: (a) the number of landmarks determines the dimension of the mapping space and this number should be pretty

large enough to avoid false clustering of nodes; (b) changing the set of landmarks (members or their order) results in a

new coordinate basis requiring the whole system to be reconfigured, which is undesirable in a dynamic environment;

(c) the binning scheme is vulnerable for landmark failures.

Binning schemes uses large number of landmarks to avoid the false clustering which leads to high processing costs.

Virtual landmarks project [13] uses mathematical routines to map the coordinates from high dimensional coordinate

space onto another manageable low dimensional space. The new coordinates can be considered as the binned coordi-

nates created using a set of “virtual landmarks.” However, virtual landmarking requires a centralized procedure to find

the mapping matrix and a large set of data must be collected to produce a good mapping matrix.

Global network positioning (GNP) [1] is the pioneering work on beaconing-based network positioning schemes.

GNP uses Simplex downhill optimization for both landmark and node positioning phases. Landmark positioning is

centrally performed in a representative node. GNP is shown to perform better than binning schemes and IDMaps in

predicting delays. GNP research establishes many fundamental concepts of network positioning: (a) the node pairs

in the Internet that do not satisfy the triangular inequality are the fundamental source of inaccuracy in a beaconing

scheme. However, only a little percentage of the node pairs are like that and, thus, a beaconing scheme is generally

applicable; (b) choosing a well distributed set of landmarks is better than randomly selecting them; (c) the accuracy

increases with number of landmarks used per node, but improvement in accuracy diminishes with the increasing

number of landmarks; (d) cardinality of the Cartesian space has the similar effect. A coordinate space with more than

four dimension does not show much improvement. The design of GNP has two issues: centralized implementation of

landmark positioning algorithm and fixed set of landmarks for all the nodes.

20



Network positioning system (NPS) [14] extends the GNP design as a distributed scheme using a hierarchical re-

lation among the nodes with a fixed set of “root” landmarks. This hierarchical landmarking prevents nodes forming

disjoint clusters and thus multiple disjoint coordinate spaces. NPS design also concentrates on practical issues such as

damping the noise in the ping values, periodic updates of the coordinates, maintaining the stability of the coordinates

against the topology change, preventing landmarks from getting congested, and handling malicious reference points.

One of the primary issue in NPS is that the prediction error is amplified down the hierarchy.

Vivaldi [3] is inspired by GNP, but, uses a spring system model as described Section 3.2. It is a fully distributed

algorithm where with no landmarks. Vivaldi shows comparable performance with GNP. However, the convergence of

the Vivaldi system depends on the scale factor of the algorithm. Further, introducing a new set of nodes into an already

converged system disturbs the whole system. Improved algorithms are presented in [4] to address these problems.

However, the best scale factor proposed in the work is only empirical.

Big-bang simulation (BBS) [9] is similar to Vivaldi, but it uses molecular dynamics instead of spring analogy.

BBS is more complex than Vivaldi due to the complex potential and kinetic energy calculations and highly likely to

produce large message overhead. Lighthouse [15] is another distributed network positioning scheme. It does not use

any optimization algorithm. Each subset of landmarks chosen by a node form the basis for a new Cartesian space.

As this basis is not orthogonal, the node can be positioned in the “local” space using positioning procedure purely

algebraic. The coordinates from different local spaces are translated into a global space using a transition vector that

is calculated by the initial nodes. Lighthouse scheme shows a comparative performance to GNP and its algebraic

algorithm looks more attractive than the optimization based approaches. But, how the algebraic solution produces

a solution under imperfect conditions is not clear and the same for how well the transition matrix can be transfered

across the system.

There are number of schemes mainly addressing the best way to chose the landmarks. Practical Internet coor-

dinates (PIC) [16] proposes three landmark selection algorithms, one selecting random nodes as landmarks, the next

selecting neighborhood nodes, and the last a hybrid of the other two. PIC shows that the hybrid selection provides

an better overall performance. The PCoord scheme [17] proposes another set of landmark selection algorithms. Its

best landmark selection algorithm uses gossip protocol to get informed about other nodes so that it can select a well-

dispersed set of landmarks. PCoord algorithms achieve GNP-level accuracy either with high storage cost (for large

amount of route pointers) or increased message overhead.

These existing works on network positioning fail to address message overhead produced by the schemes. Further,

they fail to completely analyze the effect of errors in ping values, especially the effect of non-random errors.

21



6.3. Network Monitoring

Network monitoring services try to predict the behavior of a network segment by collecting information from accessi-

ble points of the segment. Network weather service (NWS) [18] employs distributed sensor—collector mechanism to

forecast the deliverable performance of computing resources and link throughput. Network tomography [19] is another

type of monitoring service which tries to characterize the internal attributes of a network segment using end-to-end

measurements (packet loss, delay, etc.) that crosses the segment. It uses compute-intensive statistical inference tech-

niques. Different traffic measurement and statistical models have to be develop to predict different attributes. Even

though network monitoring services can be used to predict network latencies, it is not meant for it and the network

positioning scheme can do it with much lower overhead (in terms of computation and message complexities).

6.4. Geo-location

Geo-location services map IP addresses to geographical locations. It is useful for scenarios like targeted advertising,

geographical location-based web presentation, or geographical location-based policy modification.

Many commercially used geo-location services like Quova [20] and NetGeo [21] use a huge mapping database

extracted with the collaboration of ISPs. The advantages of this type of services are that they are accurate to the zip

code level. However, they are not scalable, because the size of the database can grow unmanageably large. Alternative

approach is to use in-network queries and measurements. One example is IP2Geo [22]. The common tools used

for this approach are DNS names, whois, traceroute, and queries on BGP routers. This type of geo-location service

generally provides only coarse grain location and always associated with some error.

The constraint-based geo-location (CBG) [23] operates similar to network positioning schemes using the ping

delays to extract geographical locations. The key problem in CBG is to find the conversion factor between network

ping values and the geographical distances. CBG uses a set of landmarks, but here instead of nodes pinging the

landmarks, the landmarks pings the node. The geographical location of the host is taken as the centroid of the area

covered by the intersection of all the predicted distance circles with landmarks as the centers.

Geo-location services can not be used for predicting network delay or proximity as there is rarely a correlation

between geographical and network proximity.

7. Conclusion

In this paper, we proposed two new algorithms for network positioning. We evaluated their performance using simu-

lations and implementation against two most significant algorithms from previous research.

The SpringEq algorithm we proposed for landmark positioning is shown to incur significantly lower message

22



overhead than the previously proposed Spring algorithm. Further, the SpringEq algorithm was found to produce

landmark and node positionings that are robust. That is, the subsequent coordinates (in time) computed for a node did

not change unless the network conditions have changed between the computations. This property is significant because

the coordinates produced by the network positioning schemes will be used by some application level overlays. If the

network positioning mechanism changes the coordinates without need, it can lead to very inefficient deployments.

The Clustered LAP algorithm outperformed the simple LAP

without had minimal changes positions computed by Sprin

Our results indicate that the proposed algorithms significantly outperform In this paper, we studied the important

topic of network positioning using simulations and implementations.

This paper addressed two important issues in network positioning schemes that is generally overlooked by other

schemes: message complexity and abnormal non-random errors in pings (non-random errors). In addressing these

issues, this paper makes the following contributions:

• Developed a new algorithm called SpringEq which provides lower message overhead than the existing popular

algorithms for landmark positioning.

• Proposed a two step network positioning scheme called CLAP which can (a) greatly reduce the impact of

measurement errors using shared knowledge; (b) increase accuracy even in normal cases by giving emphasize

on short hop distances.

• Carried out a detailed analysis of three network positioning algorithms both theoretically and using simulation to

derive the desired properties of network positioning algorithms: (a) The coordinates of the nodes should change

only if there is a permanent changes in the network conditions, but should be robust against the temporary

changes; (b) They should always accept the fact that it is impossible to produce a perfect mapping and the

convergence should not be affected by the non-zero prediction error in the final position; (c) Producing low

error mapping is not enough, but those coordinates have to be robust, i.e. the coordinates of a node must not

change for the re-run of the algorithms if the network condition is not changed; (d) When the network conditions

are not changed, the amount of overhead should be much lower for the re-runs of the algorithms than the initial

run; (e) Convergence criteria can make a big difference so that they have to be chosen wisely.

We chose an infrastructure-based network positioning scheme that a distributed scheme in this research. Our

experimental results shows that positioning an ordinary node in an infrastructure-based scheme is very fast. Further,

as only a small fraction of total landmark nodes are used by each ordinary node for positioning, the bottle neck and

single point failure problems are not that serious as previously argued.

We are building a location-based P2P discovery system on the scheme proposed in this paper to evaluate its

applicability.

23



References

[1] T. S. E. Ng and H. Zhang, “Predicting internet network distance with coordinates-based approaches,” in INFO-
COM 2002, June 2002.

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in C : the art of scientific
computing, Cambridge University Press, 2nd edition, 1992.

[3] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, “Practical, distributed network coordinates,” in The 2nd
Workshop on Hot Topics in Networks (HotNets-II), Nov. 2003.

[4] F. Dabek, R. Cox, F. Kaahoek, and R. Morris, “Vivaldi: A decentralized network coordinate system,” in
SIGCOMM 2004, Aug. 2004.

[5] F. J. Blom, “Considerations on spring analogy,” Interanational Journal for Numerical Methods in Fluids, vol.
32, no. 6, pp. 647–668, March 2000.

[6] “Planetlab project,” http://www.planet-lab.org/.

[7] J. Stribling, “All pairs pings data for Planetlab,” http://pdos.csail.mit.edu/˜strib/pl app/.

[8] “Route Views project,” http://routeviews.org/, University of Oregon.

[9] Y. Shavitt and T. Tankel, “Big-Bang simulation for embedding network distance in Euclidean space,” in INFO-
COMM 2003, April 2003.

[10] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight network location service without virtual
coordinates,” in SIGCOMM 2005, Aug. 2005.

[11] Z. Xu, M. Mahalingam, and M. Karlsson, “Turning heterogenity to an advantage in overlay routing,” in INFO-
COM, April 2003.

[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay construction and server
selection,” in INFOCOM 2002, June 2002.

[13] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Internet Measurement Conference, Oct. 2003.

[14] T. S. E. Ng and H. Zhang, “A network positioning system for the internet,” in USENIX, June 2004.

[15] M. P. J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti, “Lighthouses for scalable distributed location,” in IPTPS
2003, Feb. 2003.

[16] M. Costa, M. Castro, A. Rowstron, and P. Key, “PIC: Practical internet coordinates for distance estimation,”
Techincal Report MSR-TR-2003-53, Microsoft Research, Cambridge, UK, Sept. 2003.

[17] L. Lehman and S. Lerman, “PCoord: Network position estimation using peer-to-peer measurements,” in Third
IEEE International Symposium on Network Computing and Applications (NCA’04), Aug. 2004, pp. 15–24.

[18] R. Wolski, N.T. Spring, and J. Hayes, “Network weather service: A distributed resource performance forecasting
service for metacomputing,” Future Generation Computing Systems, vol. 15, no. 5–6, pp. 757–768, Oct. 1999.

[19] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomography: Recent developments,” Statistical
Science, vol. 19, no. 3, pp. 499–517, 2004.

[20] Quova, “Geolocation,” http://www.quova.com/.

[21] Verifia, “Netgeo,” http://www.netgeo.com/.

[22] V. N. Padmanabhan and L. Subramanian, “An investigation of geographic mapping techniques for internet hosts,”
in SIGCOMM 2001, Aug 2001, pp. 173–185.

[23] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based geolocation of internet hosts,” in SIGCOMM
2004, Oct. 2004, pp. 288–293.

24


