Priority queue ADT

Heaps

Lecture 21

Priority queue ADT

• Like a dictionary, a priority queue stores a set of pairs (key, info)
• The rank of an object depends on its priority (key)

Rear of queue

Front of queue

key: 9 8 6 5 4

Priority queue ADT

(4, O)
(5, O)
(8, O)

insert(9, O)

(4, O)
(5, O)
(8, O)
(9, O)

remove()

(5, O)
(8, O)
(9, O)

insert(6, O)

(5, O)
(6, O)
(8, O)
(9, O)

insert(2, O)

Implementation of priority queue

Unsorted array of pairs (key, info)

findMin(): Need to scan array O(n)
insert(key, info): Put new object at the end O(1)
removeMin(): First, findMin, then shift array O(n)

Sorted array of pairs (key, info)

findMin(): Just return first element O(1)
insert(key, info):
 Use binary-search to find position of insertion. O(log n)
 Then shift array to make space. O(n)

Implementation of priority queue

Using a sorted doubly-linked list of pairs (key, info)

findMin(): Return first element O(1)
insert(key, info):
 First, find location of insertion.
 Binary Search?
 Slow on linked list.
 Instead, we have to scan array O(n)
 Then insertion is easy O(1)
removeMin(): Remove first element of list O(1)

Heap data structure

• A heap is a data structure that implements a priority queue:
 – findMin(): O(1)
 – removeMin(): O(log n)
 – insert(key, info): O(log n)
• A heap is based on a binary tree, but with a different property than a binary search tree
 heap ≠ binary search tree
A heap is a binary tree such that:
- For any node \(n \) other than the root, \(\text{key}(n) \geq \text{key}(\text{parent}(n)) \)
- Let \(h \) be the height of the heap:
 - First \(h-1 \) levels are full: for \(i = 0, \ldots, h-1 \), there are \(2^i \) nodes of depth \(i \)
 - At depth \(h \), the leaves are packed on the left side of the tree

What is the maximum number of nodes that fits in a heap of height \(h \)?
\[
\sum_{k=0}^{h} 2^k = 2^{h+1} - 1
\]
What is the minimum number?
\[
(2^h - 1) + 1 = 2^h
\]
Thus, the height of a heap with \(n \) nodes is:
\[
\lceil \log(n) \rceil
\]

Heaps: findMin()
The minimum key is always at the root of the heap!

Heaps: Insert
Insert(key \(k \), info \(i \)). Two steps:
1. Find the left-most unoccupied node and insert \((k, i)\) there temporarily.
2. Restore the heap-order property (see next)

Heaps: Bubbling-up
Restoring the heap-order property:
- Keep swapping new node with its parent as long as its key is smaller than its parent’s key
Running time? \(O(h) = O(\log(n)) \)
Insert pseudocode

Algorithm insert(key k, info i)
Input: The key k and info i to be added to the heap
Output: (k, i) is added

lastNode ← nextAvailableNode(lastNode)
lastNode.key ← k, lastNode.info ← i
n ← lastnode
while (n.getParent()!=null and n.getParent().key > k) do
 swap (n.getParent(), n)

Heaps: RemoveMin()

• The minimum key is always at the root of the heap!
• Replace the root with last node

Heaps: Bubbling-down

Restoring the heap-order property:
– Keep swapping the node with its smallest child as long as the node’s key is larger than it’s child’s key

removeMin pseudocode

Algorithm removeMin()
Input: The key k and info i to be added to the heap
Output: (k, i) is added

swap(lastNode, root)
Update lastNode

n ← root
while (n.key > min(n.getLeftChild().key, n.getRightChild().key)) do
 if (n.getLeftChild().key < n.getRightChild().key)
 swap(n, n.getLeftChild)
 else
 swap(n, n.getRightChild)

Finding nextAvailableNode

nextAvailableNode(lastNode) finds the location where the next node should be inserted. It runs in time O(n).
n ← lastNode;
while (n is the right child of its parent & n.parent!=null) do
 n ← n.parent
if (n.parent == null) then
 nextAvailableNode is the left child of the leftmost node of the tree
else
 n ← n.parent // go up one more level
if (n has no left child) then
 nextAvailableNode is the right child of n
else
 n ← n.rightChild // go down the right child
while (n has a left child) do
 n ← n.leftChild
nextAvailableNode is the left child of n

NextAvailableNode - Example
Array representation of heaps

- A heap with \(n \) keys can be stored in an array of length \(n+1 \)
- For a node at index \(i \),
 - The parent (if any) is at index \(\lfloor \frac{i}{2} \rfloor \)
 - The left child is at index \(2i \)
 - The right child is at index \(2i + 1 \)
- lastNode is the first empty cell of the array. To update it, either add or subtract one

HeapSort

Algorithm heapSort(array \(A[0...n-1] \))

Heap \(h \) ← new Heap()

for \(i=0 \) to \(n-1 \) do
 \(h.insert(A[i]) \)

for \(i=0 \) to \(n-1 \) do
 \(A[i] ← h.removeMin() \)

Running time: \(O(n \log n) \) in worst-case

Easy to do in-place: Just use the array \(A \) to store the heap