QuickSort

Yet another sorting algorithm!

Usually faster than other algorithms on average, although worst-case is \(O(n^2) \)

Divide-and-conquer:
– **Divide**: Choose an element of the array for pivot.
 Divide the elements into three groups: those smaller than the pivot, those equal, and those larger.
– **Conquer**: Recursively sort each group.
– **Combine**: Concatenate the three sorted groups.

Example

\[
A = [6 \ 3 \ 5 \ 9 \ 2 \ 5 \ 7 \ 8 \ 4 \ 5]
\]

QuickSort running time

Worse case:
– Already sorted array (either increasing or decreasing)
– \(T(n) = T(n-1) + c \ n + d \)
– \(T(n) \) is \(O(n^2) \)

Average case: If the array is in random order, the pivot splits the array in roughly equal parts, so the average running time is \(O(n \log n) \)

Advantage over mergeSort:
– constant hidden in \(O(n \log n) \) are smaller for quickSort. Thus it is faster by a constant factor
– quickSort is easy to do “in-place”

In-place algorithms

– An algorithm is *in-place* if it uses only a constant amount of memory in addition of that used to store the input
– Importance of in-place sorting algorithms:
 – If the data set to sort barely fits into memory, we don’t want an algorithm that uses twice that amount to sort the numbers
– SelectionSort and InsertionSort are in-place: all we are doing is moving elements around the array
– MergeSort is not in-place, because of the merge procedure, which requires a temporary array
– QuickSort can easily be made in-place...

Algorithm partition(A, start, stop)

Input: An array A, indices start and stop.

Output: Returns an index \(j \) and rearranges the elements of \(A \) such that for all \(i < j \), \(A[i] \leq A[j] \) and for all \(k > j \), \(A[k] > A[j] \).

\[
pivot \leftarrow A[stop]
\]

\[
left \leftarrow start
\]

\[
right \leftarrow stop - 1
\]

while \(left \leq right \) do

 while \(left \leq right \) and \(A[left] \leq pivot \) do \(left \leftarrow left + 1 \)

 while \(left \leq right \) and \(A[right] > pivot \) do \(right \leftarrow right - 1 \)

if \(left < right \) then exchange \(A[left] \leftrightarrow A[right] \)

exchange \(A[stop] \leftrightarrow A[left] \)

return \(left \)
Example of execution of partition

\[
A = [6 \ 3 \ 7 \ 3 \ 2 \ 5 \ 7 \ 5] \quad \text{pivot} = 5
\]
\[
A = [6 \ 3 \ 7 \ 3 \ 2 \ 5 \ 7 \ 5] \quad \text{swap 6, 2}
\]
\[
A = [2 \ 3 \ 7 \ 3 \ 6 \ 5 \ 7 \ 5]
\]
\[
A = [2 \ 3 \ 7 \ 3 \ 6 \ 5 \ 7 \ 5] \quad \text{swap 7,3}
\]
\[
A = [2 \ 3 \ 7 \ 3 \ 6 \ 5 \ 7 \ 5]
\]
\[
A = [2 \ 3 \ 7 \ 3 \ 6 \ 5 \ 7 \ 5] \quad \text{swap 7, pivot}
\]
\[
A = [2 \ 3 \ 6 \ 5 \ 7 \ 5]
\]

In-place quickSort

Algorithm quickSort(A, start, stop)

Input: An array A to sort, indices start and stop

Output: A[start...stop] is sorted

if (start < stop) then
 pivot ← partition(A, start, stop)
 quickSort(A, start, pivot-1)
 quickSort(A, pivot+1, stop)