Big-O notation

Lecture 10

Running time of selection sort

- We showed that running selection sort on an array of \(n \) elements takes in the worst case
 \[T(n) = 1 + 15n + 5n^2 \]

- When \(n \) is large, \(T(n) \approx 5n^2 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(T(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>661</td>
</tr>
<tr>
<td>20</td>
<td>2301</td>
</tr>
<tr>
<td>30</td>
<td>4951</td>
</tr>
<tr>
<td>40</td>
<td>8601</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>5015001</td>
</tr>
<tr>
<td>2000</td>
<td>20030001</td>
</tr>
</tbody>
</table>

Doubling \(n \) quadruples \(T(n) \)

N.B. That is true for any coefficient of \(n^2 \) (not just 5)

Big-O notation

- Goals:
 - Simplify the discussion of algorithm running times
 - Describe how the running time of an algorithm increases as a function of \(n \) (the size of the problem), when \(n \) is LARGE
 - Get rid of terms that become insignificant when \(n \) is large
- We will say things like:
 - The worst-case running time of selectionSort on an array of \(n \) elements is \(O(n^2) \)
 - The worst-case running time of mergeSort on an array of \(n \) elements is \(O(n \log(n)) \)

Big-O definition

- Let \(f(n) \) and \(g(n) \) be two non-negative functions defined on the natural numbers \(N \).
- We say that \(f(n) \) is \(O(g(n)) \) if and only if:
 - There exists an integer \(n_0 \) and a real number \(c \) such that: for all \(n \geq n_0 \), \(f(n) \leq c \cdot g(n) \)

More mathematically, we would write:

\[\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R} : \forall n \geq n_0, f(n) \leq c \cdot g(n) \]

- N.B. The constant \(c \) must not depend on \(n \)

Intuition and visualization

- “\(f(n) \) is \(O(g(n)) \)” iff there exists a point \(n_0 \) beyond which \(f(n) \) is less than some fixed constant times \(g(n) \)

\[f(n) \leq c \cdot g(n) \quad (\text{for } c = 1) \]
Proving big-O relations

- To prove that \(f(n) \) is \(O(g(n)) \), we must find \(n_0 \) and \(c \) such that \(f(n) \leq c \cdot g(n) \).
- Example: Prove that \(5 + 3 \, n^2 \) is \(O(1 + n^2) \).

 We need to pick \(c \) greater than 3. Let’s pick \(c = 5 \).

 If we choose \(n_0 = 1 \), we get that if \(n \geq n_0 \), then

 \[
 5 + 3 \, n^2 \leq 5 + 5 \, n^2 \quad \text{(since \(n \geq n_0 \))}

 = 5 \cdot (1 + n^2)

 = c \cdot (1 + n^2)

\]

Examples

- Prove that \(2n + 3 \) is \(O(n) \)

Examples

- Prove that \(f(n) = 10^{100} \) is \(O(1) \)

Examples

- Prove that \(n \, (\sin(n) + 1) \) is \(O(n) \)

Proving that \(f(n) \) is not \(O(g(n)) \)

- To prove that \(f(n) \) is not \(O(g(n)) \), one must show that for any \(n_0 \) and \(c \), there exists an \(n \geq n_0 \) such that \(f(n) > c \cdot g(n) \).

- Procedure: Assume \(n_0 \) and \(c \) are given, and find a value of \(n \) such that \(f(n) > c \cdot g(n) \). The value of \(n \) will usually depend on \(n_0 \) and \(c \).
Examples
• Prove that \(n \, (\sin(n) + 1) \) is \(O(n) \)

Examples
• Prove that \(2^n \) is not \(O(n^3) \)