Playing with big-Oh notation

Mathieu Blanchette

September 27, 2003

1 Big-Oh notation

Let f(n) and g(n) be two functions from the integers to the non-negative real numbers: $f: \mathbf{N} \to \mathbf{R}^+$, $g: \mathbf{N} \to \mathbf{R}^+$. We say that f(n) is O(g(n)) if and only if there exist constants $c \in \mathbf{R}$ and $N \in \mathbf{N}$ such that for all $n \geq N$, $f(n) \leq c \cdot g(n)$. In more mathematical terms: f(n) is O(g(n)) iff: $\exists c \in \mathbf{R}, N \in \mathbf{N}$ such that $f(n) \leq c \cdot g(n)$ $\forall n \geq N$,.

To prove that that a function f(n) is O(g(n)), one needs to find c and N such that $f(n) \le c \cdot g(n) \ \forall n \ge N$.

Example 1:

Let f(n) = 4n + 2 and g(n) = n. Prove that f(n) is O(g(n)).

We want to find c and N such that $4n+2 \le c \cdot n \ \forall n \ge N$. Choosing $c \le 4$ is not going to work. Let's try c=5. Then, we want to find N such that $4n+2 \le 5n \ \forall n \ge N$. Choosing N=0 or N=1 would not work. However, for N=2, we have that if $n \ge N$, then $4n+2 \le 4n+n=5n=c \cdot n$. Thus, we have found constants c=5 and N=2 such that $f(n) \le c \cdot g(n) \ \forall n \ge N$. Consequently, f(n) is O(g(n)). Notice that we could have chosen c and N differently: c=6, N=1 also works. In fact, if f(n) is O(g(n)), there will be an infinite number of choices of c and N that will work.

Example 2:

With f(n) and g(n) defined as above, prove that g(n) is O(f(n)). That's easy: Pick c = 1, N = 1, then $g(n) = n \le c \cdot f(n) \ \forall n \ge N$.

Example 3:

Let $f(n) = 3n + n \log_2(n)$ and $g(n) = n \log_2(n)$. Prove that f(n) is O(g(n)).

Note: From here on, we will assume that $\log(n)$ means $\log_2(n)$. We want to find c and N such that $3n + n\log(n) \le cn\log(n)$. How can we find them? Let's set N = 2 (below $N = 2, \log(n) < 1$ which would cause trouble) and try to find a c that works. We would like $3n + n\log(n) \le cn\log(n) \ \forall n \ge 2$. Choosing c = 4 will work nicely: if $n \ge 2$, $3n + n\log(n) \le 3n\log(n) + n\log(n) = 4n\log(n) = cg(n)$. Thus f(n) is O(g(n)). Notice that g(n) is also O(f(n)).

Example 4:

Let $f(n) = 2^{100}$ and g(n) = 1. Prove that f(n) is O(g(n)).

We need to find c and N such that $2^{100} \le c \cdot 1 \ \forall n \ge N$. That's easy: pick $c = 2^{100}$ and N = anything.

Example 5;

Let f(n) = 2n + 8 and g(n) = 5n + 2. Prove that f(n) is O(g(n)).

We need to find c and N such that $f(n) \le cg(n) \ \forall n \ge N$. If we pick c = 1 and N = 2, then $n \ge N$ implies that $2n + 8 = 2n + 6 + 2 \le 2n + 3n + 2 = 5n + 2 = 1 \cdot g(n) \ \forall n \ge N$.

Now prove that g(n) is O(f(n)).

Pick c = 3, N = 1. Then $g(n) = 5n + 2 \le 3(2n + 8) = c \cdot f(n) \ \forall n \ge N$.

Notice: We have shown that 2n + 8 is O(5n + 2). In general, we will try to keep the function inside O() the simplest as possible. Since being O(5n + 2) is equivalent to being O(n), we will usually simply write that 2n + 8 is O(n).

Proving that f(n) is not O(g(n))

To prove that f(n) is not O(g(n)), we must show that for any choice of c and N, there exists an $n \ge N$ such that $f(n) > c \cdot g(n)$. Notice that the value of n chosen will usually depend on c and N.

Example 6

Prove that n^2 is not O(n). Assume someone gives us a choice of c and N. We must show that no matter what c and N are, we can find $n \ge N$ such that $n^2 > c \cdot n$. If we take n = c + 1, then $n^2 = (c+1)^2 > c(c+1) = cn$. However, we must ensure that n is at least N, so let's instead pick $n = \max(c+1, N)$.

Example 7

Prove that n^2 is not $O(n\log(n))$. Given a choice of c and N, we must exhibit an $n \geq N$ such that $n^2 > cn\log(n)$, or equivalently $n > c\log(n)$. Let's try $n = c^c$. Then $c\log(n) = c \cdot c\log(c) = c^2\log(c) < c^2c = c^3 < c^c = n$, where the last inequality is true only if c > 3. But our proof has to work for any value of c. What if $c \leq 3$? In that case, simply pick n = 16, so that $n = 16 > 3\log(16) = 12$. Now remember that n chosen has to be at least N, so in conclusion, the choice of n should be $\max(N, c^c)$ if c > 3 and $\max(N, 16)$ if $c \leq 3$.