
Playing with big-Oh notation

Mathieu Blanchette

September 27, 2003

1 Big-Oh notation

Let f(n) and g(n) be two functions from the integers to the non-negative real numbers: f : N → R+,
g : N → R+. We say that f(n) is O(g(n)) if and only if there exist constants c ∈ R and N ∈ N such
that for all n ≥ N , f(n) ≤ c·g(n). In more mathematical terms: f(n) is O(g(n)) iff: ∃c ∈ R, N ∈ N
such that f(n) ≤ c · g(n)) ∀n ≥ N,.

To prove that that a function f(n) is O(g(n)), one needs to find c and N such that
f(n) ≤ c · g(n) ∀n ≥ N .

Example 1:
Let f(n) = 4n + 2 and g(n) = n. Prove that f(n) is O(g(n)).
We want to find c and N such that 4n + 2 ≤ c · n ∀n ≥ N . Choosing c ≤ 4 is not going to work.
Let’s try c = 5. Then, we want to find N such that 4n+2 ≤ 5n ∀n ≥ N . Choosing N = 0 or N = 1
would not work. However, for N = 2, we have that if n ≥ N , then 4n + 2 ≤ 4n + n = 5n = c · n.
Thus, we have found constants c = 5 and N = 2 such that f(n) ≤ c · g(n) ∀n ≥ N . Consequently,
f(n) is O(g(n)). Notice that we could have chosen c and N differently: c = 6, N = 1 also works.
In fact, if f(n) is O(g(n)), there will be an infinite number of choices of c and N that will work.

Example 2:
With f(n) and g(n) defined as above, prove that g(n) is O(f(n)).
That’s easy: Pick c = 1, N = 1, then g(n) = n ≤ c · f(n) ∀n ≥ N .

Example 3:
Let f(n) = 3n + n log2(n) and g(n) = n log2(n). Prove that f(n) is O(g(n)).
Note: From here on, we will assume that log(n) means log2(n). We want to find c and N such that
3n+n log(n) ≤ cn log(n). How can we find them? Let’s set N = 2 (below N = 2, log(n) < 1 which
would cause trouble) and try to find a c that works. We would like 3n+n log(n) ≤ cn log(n) ∀n ≥ 2.
Choosing c = 4 will work nicely: if n ≥ 2, 3n+n log(n) ≤ 3n log(n)+n log(n) = 4n log(n) = cg(n).
Thus f(n) is O(g(n)). Notice that g(n) is also O(f(n)).

1



Example 4:
Let f(n) = 2100 and g(n) = 1. Prove that f(n) is O(g(n)).
We need to find c and N such that 2100 ≤ c · 1 ∀n ≥ N . That’s easy: pick c = 2100 and
N = anything.

Example 5;
Let f(n) = 2n + 8 and g(n) = 5n + 2. Prove that f(n) is O(g(n)).
We need to find c and N such that f(n) ≤ cg(n) ∀n ≥ N . If we pick c = 1 and N = 2, then n ≥ N
implies that 2n + 8 = 2n + 6 + 2 ≤ 2n + 3n + 2 = 5n + 2 = 1 · g(n) ∀n ≥ N .
Now prove that g(n) is O(f(n)).
Pick c = 3, N = 1. Then g(n) = 5n + 2 ≤ 3(2n + 8) = c · f(n) ∀n ≥ N .

Notice: We have shown that 2n+8 is O(5n+2). In general, we will try to keep the function inside
O() the simplest as possible. Since being O(5n + 2) is equivalent to being O(n), we will usually
simpy write that 2n + 8 is O(n).

Proving that f(n) is not O(g(n))
To prove that f(n) is not O(g(n)), we must show that for any choice of c and N , there exists an
n ≥ N such that f(n) > c · g(n). Notice that the value of n chosen will usually depend on c and N .

Example 6
Prove that n2 is not O(n). Assume someone gives us a choice of c and N . We must show that no
matter what c and N are, we can find n ≥ N such that n2 > c · n. If we take n = c + 1, then
n2 = (c + 1)2 > c(c + 1) = cn. However, we must ensure that n is at least N , so let’s instead pick
n = max(c + 1, N).

Example 7
Prove that n2 is not O(n log(n)). Given a choice of c and N , we must exhibit an n ≥ N such
that n2 > cn log(n), or equivalently n > c log(n). Let’s try n = cc. Then c log(n) = c · c log(c) =
c2 log(c) < c2c = c3 < cc = n, where the last inequality is true only if c > 3. But our proof
has to work for any value of c. What if c ≤ 3? In that case, simply pick n = 16, so that
n = 16 > 3 log(16) = 12. Now remember that n chosen has to be at least N , so in conclusion, the
choice of n should be max(N, cc) if c > 3 and max(N, 16) if c ≤ 3.

2


