Playing with big-Oh notation

Mathieu Blanchette

September 27, 2003

1 Big-Oh notation

Let \(f(n) \) and \(g(n) \) be two functions from the integers to the non-negative real numbers: \(f : \mathbb{N} \to \mathbb{R}^+ \), \(g : \mathbb{N} \to \mathbb{R}^+ \). We say that \(f(n) \) is \(O(g(n)) \) if and only if there exist constants \(c \in \mathbb{R} \) and \(N \in \mathbb{N} \) such that for all \(n \geq N \), \(f(n) \leq c \cdot g(n) \). In more mathematical terms: \(f(n) \) is \(O(g(n)) \) iff: \(\exists c \in \mathbb{R}, N \in \mathbb{N} \) such that \(f(n) \leq c \cdot g(n) \) \(\forall n \geq N \).

To prove that a function \(f(n) \) is \(O(g(n)) \), one needs to find \(c \) and \(N \) such that \(f(n) \leq c \cdot g(n) \) \(\forall n \geq N \).

Example 1:
Let \(f(n) = 4n + 2 \) and \(g(n) = n \). Prove that \(f(n) \) is \(O(g(n)) \).
We want to find \(c \) and \(N \) such that \(4n + 2 \leq c \cdot n \) \(\forall n \geq N \). Choosing \(c = 4 \) is not going to work. Let’s try \(c = 5 \). Then, we want to find \(N \) such that \(4n + 2 \leq 5n \) \(\forall n \geq N \). Choosing \(N = 0 \) or \(N = 1 \) would not work. However, for \(N = 2 \), we have that if \(n \geq N \), then \(4n + 2 \leq 4n + n = 5n = c \cdot n \). Thus, we have found constants \(c = 5 \) and \(N = 2 \) such that \(f(n) \leq c \cdot g(n) \) \(\forall n \geq N \). Consequently, \(f(n) \) is \(O(g(n)) \). Notice that we could have chosen \(c \) and \(N \) differently: \(c = 6, N = 1 \) also works. In fact, if \(f(n) \) is \(O(g(n)) \), there will be an infinite number of choices of \(c \) and \(N \) that will work.

Example 2:
With \(f(n) \) and \(g(n) \) defined as above, prove that \(g(n) \) is \(O(f(n)) \).
That’s easy: Pick \(c = 1, N = 1 \), then \(g(n) = n \leq c \cdot f(n) \) \(\forall n \geq N \).

Example 3:
Let \(f(n) = 3n + n \log_2(n) \) and \(g(n) = n \log_2(n) \). Prove that \(f(n) \) is \(O(g(n)) \).
Note: From here on, we will assume that \(\log(n) \) means \(\log_2(n) \). We want to find \(c \) and \(N \) such that \(3n + n \log(n) \leq c n \log(n) \). How can we find them? Let’s set \(N = 2 \) (below \(N = 2 \), \(\log(n) < 1 \) which would cause trouble) and try to find a \(c \) that works. We would like \(3n + n \log(n) \leq c n \log(n) \) \(\forall n \geq 2 \). Choosing \(c = 4 \) will work nicely: if \(n \geq 2 \), \(3n + n \log(n) \leq 3n \log(n) + n \log(n) = 4n \log(n) = c g(n) \). Thus \(f(n) \) is \(O(g(n)) \). Notice that \(g(n) \) is also \(O(f(n)) \).
Example 4:
Let $f(n) = 2^{100}$ and $g(n) = 1$. Prove that $f(n)$ is $O(g(n))$.
We need to find c and N such that $2^{100} \leq c \cdot 1 \forall n \geq N$. That’s easy: pick $c = 2^{100}$ and $N = \text{anything}$.

Example 5:
Let $f(n) = 2^n + 8$ and $g(n) = 5^n + 2$. Prove that $f(n)$ is $O(g(n))$.
We need to find c and N such that $f(n) \leq c \cdot g(n) \forall n \geq N$. If we pick $c = 1$ and $N = 2$, then $n \geq N$ implies that $2^n + 8 = 2n + 6 + 2 \leq 2n + 3n + 2 = 5n + 2 = 1 \cdot g(n) \forall n \geq N$.
Now prove that $g(n)$ is $O(f(n))$.
Pick $c = 3$, $N = 1$. Then $g(n) = 5n + 2 \leq 3(2n + 8) = c \cdot f(n) \forall n \geq N$.

Notice: We have shown that $2^n + 8$ is $O(5^n + 2)$. In general, we will try to keep the function inside $O()$ the simplest as possible. Since being $O(5^n + 2)$ is equivalent to being $O(n)$, we will usually simply write that $2^n + 8$ is $O(n)$.

Proving that $f(n)$ is not $O(g(n))$
To prove that $f(n)$ is not $O(g(n))$, we must show that for any choice of c and N, there exists an $n \geq N$ such that $f(n) > c \cdot g(n)$. Notice that the value of n chosen will usually depend on c and N.

Example 6
Prove that n^2 is not $O(n)$. Assume someone gives us a choice of c and N. We must show that no matter what c and N are, we can find $n \geq N$ such that $n^2 > c \cdot n$. If we take $n = c + 1$, then $n^2 = (c + 1)^2 > c(c + 1) = cn$. However, we must ensure that n is at least N, so let’s instead pick $n = \max(c + 1, N)$.

Example 7
Prove that n^2 is not $O(n \log(n))$. Given a choice of c and N, we must exhibit an $n \geq N$ such that $n^2 > cn \log(n)$, or equivalently $n > c \log(n)$. Let’s try $n = c^c$. Then $c \log(n) = c \cdot c \log(c) = c^2 \log(c) < c^2 c = c^3 < c^c = n$, where the last inequality is true only if $c > 3$. But our proof has to work for any value of c. What if $c \leq 3$? In that case, simply pick $n = 16$, so that $n = 16 > 3 \log(16) = 12$. Now remember that n chosen has to be at least N, so in conclusion, the choice of n should be $\max(N, c^c)$ if $c > 3$ and $\max(N, 16)$ if $c \leq 3$.

2