COMP 250 – Midterm
October 17th 2014, 18:10 – 19:55

- This exam has 7 questions.
- This is an open book and open notes exam. No electronic equipment is allowed.

Question 1 (15 points). Java programming

What will the following Java program print when executed?

class question1 {
 static public void questionA(int x) {
 x = x + 2;
 }

 static public int questionB(int x) {
 x = x + 3;
 return x;
 }

 static public void questionC(int array[]) {
 array[0] = array[0] + 4;
 }

 static public int questionD(int n) {
 if (n<=1) return 1;
 return questionD(n-1)+questionD(n-2);
 }

 public static void main(String args[]) {
 int x, y, z;
 int a[] = new int[10];
 x = 1;
 y = 1;
 a[0] = 1;
 questionA(x);
 y = questionB(y);
 questionC(a);
 z = questionD(6);
 System.out.println("x = " + x);
 System.out.println("y = " + y);
 System.out.println("a[0] = " + a[0]);
 System.out.println("z = " + z);
 }
}

Answer:

x = 1
y = 4
a[0] = 5
z = 13
Question 2 (20 points). Stacks and recursion

Professor Stackbottom proposes the following recursive algorithm that is using a stack as argument.

```
Algorithm mistery(Stack S)
Input: Stack S
Output: Modifies the stack S and returns a number

value = S.pop()
if (S is empty) then return value
else {
    result = mistery(S)
    S.push(value)
    return result
}
```

The objective of this question is to discover the purpose of this algorithm. We start by executing the following commands.

```
S = new Stack();
S.push('1');
S.push('2');
S.push('3');
```

a) (4 points) Draw the content of the stack at this point.

```
Stack S:
3
2
1
```

b) (8 points) If we now execute

```
int x = mistery(S);
```

What is the value of x, and what is the content of the stack after the execution of the algorithm?

```
x = 1
Stack S:
3
2
```

c) (4 points) In one sentence, explain what is this algorithm doing when given a stack S as input.

```
It removes the object at the bottom of the stack and returns it.
```

d) (4 points) Using the big-Oh notation, give the running time of the mistery algorithm if it is executed on a stack of n elements. No justification is needed.

```
O(n)
```
Question 3 (15 points). Proofs by induction

Prove by induction on \(n \) that for every integer \(n \geq 0 \) and any real number \(a > 0 \), we have

\[
a^0 + a^1 + a^2 + \ldots + a^n = \frac{a^{n+1} - 1}{a - 1}.
\]

Base case: WE’VE DONE THIS EXAMPLE IN CLASS

Induction hypothesis:

Inductive step:
Question 4 (15 points). Recursive algorithms

Complete the pseudocode of the RecursiveSum algorithm below to obtain a recursive algorithm such that given a positive integer n, it prints all the ways of expressing n as sums of positive integers. For example, given $n=4$, the output should looks like this:

1+1+1+1=4
1+1+2=4
1+2+1=4
1+3=4
2+1+1=4
2+2=4
3+1=4
4=4

Note: This will be easier to do if we add, in addition to n itself, two additional arguments to the RecursiveSum algorithm:
- an array A large enough to store up to n elements, which will be used to accumulate partial sums through recursive calls.
- an integer $soFar$ that keeps track of how many elements of A have been filled already.

Then, the result shown above would be obtained by calling $\text{RecursiveSum}(A[], 0, 4)$.

Algorithm $\text{RecursiveSum}(A[], soFar, n)$

Inputs: $A[]$ is an array of integers, where elements $A[0,..., soFar-1]$ are already filled
n is an integer

Output: The algorithm prints out every possible ways to complete the partial sum already stored in $A[0,...,soFar-1]$ so that the numbers add up to n.

\[
\]

```plaintext
if ( sumSoFar = n ) then print A[0] "+" A[1] "+" ... "+" A[soFar-1] "=" n
else { /* WRITE YOUR PSEUDOCODE HERE */
    for i = 1 to n - sumSoFar do
        A[soFar] = i
        RecursiveSum(A, soFar+1, n)
}
```
Question 5 (10 points). Big-Oh notation

Prove, using only the definition of the big-Oh notation, that \(\log(n^2 + 1) + n + 1 \) is \(O(n) \).

To prove this, we need to find constants \(c \) and \(n_0 \) such that \(\log(n^2+1) + n + 1 \leq c \cdot n \) for all \(n \geq n_0 \).

We note that:
\[
\log(n^2 + 1) + n + 1 \leq \log(n^2 + n^2) + n + 1 \quad \text{(if } n \geq 1) \\
= \log(2n^2) + n + 1 \\
= \log(2) + 2 \log(n) + n + 1 \\
= 2 \log(n) + n + 2 \\
\leq 2n + n + 2n \quad \text{(if } n \geq 1) \\
= 5n
\]

So, if we choose \(n_0 = 1 \) and \(c = 5 \), we get that \(\log(n^2 + 1) + n + 1 \leq c \cdot n \) for all \(n \geq n_0 \). Thus, \(\log(n^2+1) + n + 1 \) is \(O(n) \).
Question 6 (10 points). Solving recurrences

Using the substitution method, obtain an explicit formula for the following recurrence:

\[T(n) = T(n-1) + 2n + 1 \quad \text{if } n > 0 \]
\[0 \quad \text{if } n = 0 \]

Let's first obtain the first few values of \(T(n) \), for verification purposes.

\[T(0) = 0; \quad T(1) = 0 + 2*1 + 1 = 3; \quad T(2) = 3 + 2*2+1 = 8; \quad T(3) = 8 + 2*3 + 1 = 15; \quad T(4) = 15 + 2*4 +1 = 24 \]

Now, we use the substitution method to obtain an explicit formula for \(T(n) \).

\[T(n) = T(n-1) + 2n + 1 \]
\[= (T(n-2) + 2(n-1)+1) + 2n + 1 = T(n-2) + 4n + 2 - 2 \] \((2) \)
\[= (T(n-3) + 2(n-2) + 1) + 4n + 2 - 2= T(n-3) + 6n + 3 -2-4 \] \((3) \)
\[= (T(n-4) + 2(n-3) + 1) + 6n +3 -2-4= T(n-4) + 8n + 4 -2-4-6 \] \((4) \)
\[\ldots \]
\[= T(n-k) + 2k n + k - 2 \sum_{i=0}^{k} i \]

We hit the base case when \(n-k = 0 \), i.e. \(k=n \). We then get

\[T(n) = T(0) + 2n^2 + n - 2 \sum_{i=0}^{n-1} i \]
\[= 0 + 2n^2 + n - 2(n-1)*n/2 = 2n^2 + n - n^2 + n = n^2 + 2n \]

Verification: From the explicit formula, we get \(T(0) = 0, T(1) = 1+2 = 3, T(2) = 4+4 = 9, T(3) = 9 + 6 = 15, T(4) = 16 + 8 = 24 \). So all looks good.
Question 7 (15 points). Running time of algorithms

Give the worst-case running time of the following algorithms, using the simplest $\Theta()$ notation (big-Theta notation) possible. No justification needed.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$\Theta()$ Running time</th>
</tr>
</thead>
</table>
| **Algorithm1** $(\text{int } n)$ | $i \leftarrow 2 \cdot 2^n$
while $(i > 1)$ do {
 $i \leftarrow i / 2$
} | $\Theta(n)$ |
| **Algorithm2** $(\text{int } n)$ | $\text{for } i = 1 \text{ to } n \text{ do }$
 $\text{for } j = 1 \text{ to } 999 \text{ do }$
 $\text{print ``Bazinga!''}$ | $\Theta(n)$ |
| **Algorithm3** $(A[], \text{int } n)$ | $\text{for } i = 0 \text{ to } n-1 \text{ do }$
 $A[i] = i$
merge(A, 0, n/2, n-1)
pivot = partition(A, 0, n-1) | $\Theta(n)$ |

Note: merge and partition refer to the algorithms seen in class.
This page is left intentionally empty. You can use it for drafting your solutions.