
1

Methods
•  Method (a.k.a. function, procedure, or routine):

–  Piece of code that carries a specific computation
–  Can be called (executed) from anywhere in the code (if they

are public)
–  Can take one or more parameters (arguments) as input
–  Can return a value (or an array, or any object)

 public static float square(float x) {
 float s = x*x;
 return s;
 }

•  Local variables:
–  Variables declared inside a method (e.g. s).
–  They are discarded after the method finishes being executed.

[Downey Ch 3, 6.1-6.4] public class course{
 // prints welcoming statement. Takes no arguments. Returns nothing
 public static void printWelcome() {
 System.out.println("Welcome to COMP 250");
 }

 // prints welcoming statement for the given courseID. Returns nothing
 public static void printWelcome(int courseID) {
 System.out.println("Welcome to COMP ” + courseID);
 }

 // returns the letter grade for the given percent grade
 public static char getGradeFromPercent(double percent) {
 char grade;
 if (percent >= 0.8) grade = 'A';
 if (percent >= 0.7 && percent < 0.8) grade = 'B';

 if (percent < 0.7) grade = ‘C’;
 return grade;
 }

 public static void main (String args[]) {
 printWelcome();
 printWelcome(203);
 char g = getGradeFromPercent(0.67);
 System.out.println("The grade is " + g);
 grade = ‘A’; // compilation error: ‘grade’ was only defined inside

 // getGadeFromPercent method
 }
}

Why are methods useful?
•  Code re-use: a method can be called (executed) as

often as we want, from anywhere in the program.
No need to duplicate code.

•  Encapsulation: Allows to think of a piece of code
as a black box with a well-defined function. Users
don’t need to know how the method works, only
what the method does: what are its arguments,
what does it return.

•  Makes program much easier to design,
understand and debug

 Parameter passing
// Returns area a circle of radius r
static double circleArea(double r) {
 double a = 3.1416 * r * r ;
 r = -1 ; // just to see what happens
 return a ;
}

public static void main(String args[]) {
 double radius = 2;
 double area = circleArea(radius);
 System.out.println("Radius:”
 + radius + " Area: ” + area);
}

Output: Radius: 2 Area:12.5664

Memory (stack)

 The truth about parameter passing
•  What happens when a method is called?

1.  The flow of execution of the code calling the method is
interrupted.

2.  If the methods takes some arguments, these arguments are
allocated in memory (stack). They are initialized with the
value of the arguments provided by the caller.

3.  If variables are declared within the method, they are also put
on the stack.

4.  The code of the method is executed. This may include calling
other methods.

5.  When the code of the method has been executed, it may return
a value to the caller. All local variables and arguments created
on the stack are discarded.

•  Summary: Parameters are passed by value
–  The method called receives a copy of the parameters passed
–  Since it is working a copy, the method can't change the

original
–  But watch out with arrays and non-primitive types...

static void stupidIncrement(int a) {
 int i = a;
 i = i + 1;
 System.out.println(“In stupidIncrement, i = “ + i);

}
static void fakeAssign(int a, int b) {

 a = b;
 System.out.println(“In fakeAssign, a = “ + a + ” and b = “ + b);

}
static int add(int a, int b) {

 int sum = a + b;
 a = 0;
 return sum;

}
static public void main(String args[]) {

 int a = 1, b = 2, i = 9;
 fakeAssign(a, b);
 System.out.println(“After fakeAssign a:“ + a + ” b: “ + b + “ i:“ + i);
 stupidIncrement(b);
 System.out.println(“After stupid a:“ + a + ” b:“ + b + “ i:“ + i);
 stupidIncrement(i);
 System.out.println(“Again after stupid a:“ + a + ” b:“ + b + “ i:“ + i);
 a = add(i, a);
 System.out.println(“After add a:“ + a + ” b:“ + b + “ i:“ + i);
 System.out.println(“sum = “ + sum); // this causes an compilation error

} // because sum is only defined inside “add”

2

Output:

In assign, a =2 and b = 2
AfterfakeAssign a:1 b:2 c:9 // because in fakeAssign, we
were working // only on copies of the
original a and b
In stupidIncrement, i = 3
After stupidIncrement, a: 1 b: 2 i: 9 // the variable i used
in // fakeAssign has nothing to
do

 // with the variable i defined
in main
In stupidIncrement, i = 10
Again after stupidIncrement a: 1 b: 2 i: 9
After add a: 10 b: 2 i: 9

 Parameter passing with arrays
static void changeArray(int a[]) {
 System.out.println(“First, a[0] is “ + a[0]);
 a[0]=2;
 System.out.println(”Then, a[0] is " + a[0]);
 a = new int[2];
 a[0]=3;
 System.out.println("Then, a[0] is " + a[0]);
}
public static void main(String args[]) {
 int[] array;
 array = new int[3];
 array[0] = 1;
 changeArray(array);
 System.out.println("Finally, array[0] is " + array[0]);
}

Memory (stack) Memory (heap) Strings
•  Strings store sequences of characters
•  Strings behave just like arrays (but they’re more than

that)
String s; // s is a reference to a String. Currently, it’s a null String
String s = "Hello";
char c = s.charAt(1); // c is 'e'
int l=s.length(); // l is 5
String t = s.substring(1,3); // t is a new string with "el"
String u = "Hello";
if (u==s) System.out.println("they are =="); // won't be printed
if (s.equalsTo(u)) System.out.println("They are equalsTo"); // this will be

•  Complete description of String operations:
https://docs.oracle.com/javase/7/docs/api

[Downey Ch 8]

Input/Output
•  Java has a large number of ways to read in and

write out data. We will use only the most basic.
•  To import IO libraries, start your code with:

import java.io.*; // this should be the first line of your code

•  To read data from keyboard:

// First open a stream from which data will be read
BufferedReader keyboard = new BufferedReader(new

 InputStreamReader(System.in));
System.out.println("Enter your name:");
String name = keyboard.readLine(); // reads one line from the keyboard
System.out.println("Enter your age:");
String ageString = keyboard.readLine();
int age = Integer.parseInt(ageString); // convert the string into an integer
keyboard.close(); // close the stream when we are done

[Downey Appendix B]

Input
•  To read data from file named "myFile.txt":
BufferedReader myFile = new BufferedReader(new

 FileReader("myFile.txt”));
String line = myFile.readLine();

•  To read from an URL:
URL mcgill= new URL("http://www.cs.mcgill.ca”);
URLConnection mcgillConn = mcgill.openConnection();
BufferedReader myURL = new BufferedReader(new

InputStreamReader(mcgillConn.getInputStream ()));
String header = myURL.readLine();

[Downey Appendix B]

3

Output
•  To write data from file named "myOutput.txt":
BufferedWriter myFile = new BufferedWriter(new

 FileWriter("myOutput.txt”));
String line="Hello my friends!";
myFile.writeLine(line);
...
myFile.close();

•  Good tutorial on IO:
–  http://java.sun.com/docs/books/tutorial/essential/io/

•  Full documentation:
–  https://docs.oracle.com/javase/7/docs/api

[Downey Appendix B]

Programming style and comments
•  How?
•  Choose meaningful names for methods and

variables. Stick to your conventions.
e.g. int nbSides;
getPlayersList(montrealExpos)

•  Add comments to clarify any piece of code
whose function is not obvious

•  Give a short description of each method:
–  what does it do?
–  what arguments does it expect?
–  what assumptions are made?
–  what does it return?
–  Side-effects?

•  Do not overcomment!

•  Why?
–  Makes re-use easier (even for you!)
–  Makes finding and solving bugs easier
–  Allows others to use your code
–  Easier to convince your boss (or TA!)

that your code is working
–  Easier to analyze the efficiency of the

solution

Object-Oriented Programming (OOP)

•  Idea: User-defined types to complement primitive
types like int, float...

•  Definition of a new type is called a class. It
contains:
–  Data
–  Methods: Code for performing operations on this data

•  Example: the class String contains
–  Data: Sequence of characters
–  Operations: capitalize, substring, compare...

•  Example: we could define a class Matrix with
–  Data: an m x n array of numbers
–  Operations: multiply, invert, determinant, etc.

Why OOP?

•  Think of a set of classes as a toolbox:
–  You know what each tool does
–  You don't care how it does it

•  OOP allows to think more abstractly:
–  Each class has a well defined interface
–  We can think in terms of functionality rather than in

terms of implementation
•  The creator of a class can implement it however

he/she wants, as long the class fulfills the
specification of the interface

A first example
// The new type created is called SportTeam
class SportTeam {

 // The class a four members
 String homeTown;
 int victories, losses, points;

 public static void main(String[] args) {
 // we can declare variables of type SportTeam
 SportTeam expos;

 // this creates an object of typeSportTeam and expos now references it.
 expos = new SportTeam();

 expos.victories = 62;
 expos.homeTown = "Montreal";
 SportTeam alouettes = new SportTeam();
 alouettes.victories = 11;
 }
}

class SportTeam {
 String homeTown;
 int victories, losses, points;
 // Constructors are methods used to initialize members of the class
 public SportTeam() { // constructors are declared with no return type.
 victories=losses=points=0;
 homeTown=new String("Unknown");
 }
 // Constructors can have arguments
 public SportTeam(String town) {
 victories=losses=points=0;
 homeTown=town;
 }
 public static void main(String[] args) {
 // now we can declare variables of type SportTeam
 SportTeam expos, alouettes;
 expos = new SportTeam();
 alouettes = new SportTeam("Montreal");
 }
}

4

public class SportTeam {
 String homeTown;
 int victories, losses, points;
 public SportTeam() { /* see previous page */}
 public SportTeam(String town) { /* see previous page */}
 // this method returns a string describing the SportTeam
 public String toString() {
 return homeTown + " : " + victories + " victories, " + losses +

 " losses, for " + points + " points.";
 }
 public static void main(String[] args) {
 // now we can declare variables of type SportTeam
 SportTeam expos, alouettes;
 expos = new SportTeam();
 alouettes = new SportTeam("Montreal");
 expos.victories=62;
 alouettes.victories = expos.victories - 52;
 String report = alouettes.toString();
 System.out.println(report);
 }
}

Private vs public
•  We don't want to let any part of a program access

members of a class
–  It might disrupt the internal consistency of the object

(e.g. one may increase the number of victories without
increasing the number of points)

–  We want to hide as much as possible the inside of a
class, to enforce abstraction.

•  Solution:
–  Make these members private (they can only be used

from inside the class)
–  Allow access to these members only through predefined

public methods

public class SportTeam {
 public String homeTown; // can be changed from within any class
 private int victories, losses, points; // can only be changed from within

 // the SportTeam
 public SportTeam() { /* see previous page */}
 public SportTeam(String town) { /* see previous page */}
 public String toString() { /* see previous page */}
 public void addWin() {
 victories++;
 points+=2;
 }
 public static void main(String[] args) {
 // now we can declare variables of type SportTeam
 SportTeam expos, alouettes;
 expos = new SportTeam();
 alouettes = new SportTeam("Montreal");
 alouettes.addWin();
 String report = alouettes.toString();
 }
}

public class SportTeam {
 ... (from previous slides)
}

public class League {
 int nbTeams;
 public SportTeam teams[]; // an array of SportTeam

 League(int n) { // constructor
 nbTeams = n;

 for (int i = 0 ; i < n ; i++) teams[i] = new SportTeam();
 }

 public static void main(String args[]) {
 League NHL = new league(30);

 NHL.teams[0].hometown = “Montreal”;
 NHL.teams[0].addWin();
 }
}

Assignments and equality testing

public static void main(String[] args) {
 SportTeam expos, alouettes;
 SportTeam baseball, football;
 expos = new SportTeam();
 alouettes = new SportTeam("Montreal");
 alouettes.addWin();
 baseball = new SportTeam();
 football = alouettes;
 if (expos == baseball) System.out.println("expos == baseball");
 if (football == alouettes) System.out.println("alouettes == football");
 football.addWin();
 System.out.println(alouettes.toString());
 System.out.println(football.toString());
 football = new SportTeam("Toronto");
 System.out.println(alouettes.toString());
 System.out.println(football.toString());
}

Non-primitive types are just references to objects!

This
•  Sometimes, it can be useful for an object to refer to

itself:
–  the this keyword refers to the current object

•  We could rewrite the constructor as:
public SportTeam() {
 this.victories = this.losses = this.points = 0;
 this.homeTown = new String("Unknown");
 }

•  If there was a league object that needed to be
updated:
–  league.addTeam(this);

5

Static members
•  Normally, each object has its own copy of

all the members of the class, but...
•  Sometimes we want to have members that

shared by all objects of a class
•  The static qualifier in front of a member

(or method) means that all objects of that
class share the same member

public class SportTeam {
 public String homeTown;
 private int victories, losses, points;
 static public double exchangeRate; /* all objects of type SportTeam share
 the same exchangeRate */
 public SportTeam() { /* see previous page */}
 public SportTeam(String town) { /* see previous page */}
 public String toString() { /* see previous page */}
 public addWin() { /* see previous page */}
 public static void main(String[] args) {
 // now we can declare variables of type SportTeam
 SportTeam expos, alouettes;
 SportTeam.exchangeRate = 1.57; /* static members can be used without

 an actual object */
 expos = new SportTeam();
 alouettes = new SportTeam("Montreal");
 expos.exchangeRate = 1.58; // or from one particular object
 System.out.println("Rate from expos: " + expos.exchangeRate);
 System.out.println("Rate from alouettes: " + alouettes.exchangeRate);

 }
}

Inheritance

•  Suppose you need to write a class X whose role
would be very similar to an existing class Y. You
could
–  Rewrite the whole code anew

•  Time consuming, introduces new bugs, makes maintenance a
headache

–  Copy the code of Y into X, then make your changes
•  Maintenance problem: you need to maintain both X and Y

–  Inherit the code from Y, but override certain methods
•  Code common to X and Y is kept in Y. New methods are

added in X

Inheritance - Example

•  You want to extend SportTeam to make it
specific to certain sports
– HockeyTeam

•  Has all the members defined in sportTean, but also
number of ties.

•  Number of points = 3 * victories + 1 * ties
– BaseballTeam

•  Has all the members defined in SportTeam, but also
number of homeruns

SportTeam (parent class)

Data: hometown, victories, losses,
points

Methods: toString, addWin

HockeyTeam (subclass of SportTeam)

Data: Same as parent + ties

Methods: Same as parent but new
addWin, addTie

BaseballTeam (subclass of SportTeam)

Data: Same as parent + homeruns

Methods: Same as parent

ProfessionalHockeyTeam (subclass of
HockeyTeam)

Data: Same as parent + salaries

Methods: Same as parent + sellTo

public class HockeyTeam extends SportTeam {
 private int ties;
 public HockeyTeam() { // constructor for HockeyTeam
 super(); // super() calls the constructor of the superclass
 ties=0;
 }

 public void addWin() {
 super.addWin(); /* This calls the addWin method provided by the

 parent class */
 points++; /* Since points is private, this wouldn't compile.
 We need to declare points as "protected"

 instead of private to allow access to subclasses */
 }

 public void addTie() {
 ties++;

 points++;
 }
}

6

Types and dispatch

public static void main(String args[]) {
 HockeyTeam habs;
 habs = new HockeyTeam();
 habs.hometown = "Montreal";
 habs.addWin(); /* The addWin method called is the one

 from HockeyTeam. habs.points is 3*/
 habs.addTie(); // ties is now 1, points is 4
 System.out.println(habs.toString()); /* HockeyTeam doesn't provide a

 toString() method but SportTeam
 does, so that's the one called

*/
 SportTeam bruins = new HockeyTeam(); /* this is legal because HockeyTeam

 is a subtype of SportTeam */
 bruins.addWin(); // bruins.points is now 3
 HockeyTeam leafs = new SportTeam(); /* this is NOT legal because

 SportTeam is not a subtype of
 HockeyTeam */

}

Exceptions - When things go wrong
•  Some things are outside programmer's control:

–  User types "Go expos" when asked to enter number of victories
–  Try to open a file that doesn't exist
–  Try to compute sqrt(-1)
–  ...

•  Exception mechanism allows to deal with these situations
gracefully
–  When problem is detected, the code throws an exception
–  The execution of the program stops. JVM looks for somebody to

catch the exception
–  The code that catches the exception handles the problem, and

execution continues from there
–  If no code catches exception, the program stops with error message

•  An exception is an object that contains information about
what went wrong.

Throwing exceptions

Syntax:
try {
 <block of code>
}
catch (exceptiontype1 e1) {
 <block of code>
}
catch (exceptiontype2 e2) {
 <block of code>
}
...
finally {
 <block of code>
}

static double mySqrt(double x) {

 try {

 if (x<=0) throw new

 ArithmeticException(”Sqrt is defined

 only for positive numbers");

 /* Code for computing sqrt goes here */

 }

 catch (ArithmeticException e) {

 System.out.println("The mySqrt operation
 failed with error: ” + e);

 return 0;

 }

}

Methods throwing exceptions

static double mySqrt(double x)
 throws ArithmeticException {

 if (x<0) {

 throw new ArithmeticException(”Sqrt of "
 + x + " is not defined");

 }

 /* Code for computing sqrt goes here */

}

•  Sometimes, it is not appropriate for a method to handle the
exception it threw

•  Methods can throw exceptions back to the caller:

public static void main(String args[]) {
 double x = 0, y = 0, z = 0 ;
 try {
 x = mySqrt(10);
 y = mySqrt(-2);
 z = mySqrt(100);
 }
 catch (ArithmeticException e) {
 System.out.println(e.toString());
 }
 // what is the value of x, y, z now?
 // x is 1, y and z are zero

Java resources
•  Java Application Programming Interface (API)

•  Java books: 1594 different books on Amazon
–  The Java Programming Language -- by Ken Arnold (Author), et al;

 By the authors of Java itself. The ultimate reference. Not easy to
read for beginners.

–  Java in a Nutshell, Fourth Edition, by David Flanagan
 A text version of the Java API

http://docs.oracle.com/javase/7/docs/api//

