Cryptography

• Alice wants to send a secret message to Bob
 – but has no safe communication channel.
 – How to make sure that even if Eve intercepts the message, she will not be able to understand it?

• Applications:
 – Military (since before the Ancient Egypt)
 – eCommerce

Secret-key encryption

• Idea:
 – Alice uses a secret algorithm to encrypt her message M into an encrypted message $\text{encr}(M)$.
 – Bob knows the algorithm used by Alice for the encryption. Upon receiving $\text{encr}(M)$, he can invert the process and recover M.
 – Eve does not know the encryption algorithm used by Alice, so it is difficult for her to decrypt $\text{encr}(M)$.

• Example: Caesar's cypher
 – Shift each letter by a fixed amount
 – Example: "Rome" \rightarrow "Bywo" (shift = 10)
 – Problem: Too easy to break! How?

Better secret-key encryption

• Substitution cypher: map each letter to some other letter

 \[
 \begin{array}{cccccccccccc}
 A & B & C & D & E & F & G & H & I & J & K & L \\
 M & N & O & P & Q & R & S & T & U & V & W & X \\
 Y & Z & A & B & C & D & E & F & G & H & I & J \\
 \end{array}
 \]

• Frequency attack: Given a long encrypted English text:
 – The most common letters probably correspond to E, T, 0...
 – Most common pairs of letters: TH, ER, IN...
 – Guess the rest

• Solution: Change the permutation frequently
 – Problem: It takes a big code book to remember all the permutations.
 – Enigma encryption machine
Problems with secret-key schemes

- Alice and Bob need to share knowledge of a key that nobody else knows
- If Alice can't meet Bob personally and they can't communicate on a safe channel, how can they agree on a key?

Public-key cryptography

- Idea: Alice and Bob don't need to agree on a key
 - Bob has a public key e that is visible to everyone. People who want to send messages to Bob will use e to encrypt their message.
 - Bob also has a secret key d that nobody else knows (not even Alice)
 - To encrypt her message, Alice uses Bob's public key e to encrypt her message M into $\text{encr}(M)$. She doesn't need to know d.
 - Eve can intercept $\text{encr}(M)$, but without the knowledge of d, decrypting $\text{encr}(M)$ is very difficult.
 - Bob can easily decrypt $\text{encr}(M)$ because he knows the secret key d

RSA cryptography system

- Rivest-Shamir-Adleman (1978)
- Bob chooses two large primes p and q, and chooses $e = p \cdot q$ to be the public key
- Define $\mathbb{G} = (p-1) \cdot (q-1)$
- Bob chooses a private key d such that $3d \mod \mathbb{G} = 1$. (There are efficient algorithms to do so).
- Alice encodes her message as an integer M. She encrypts M as $\text{encr}(M) = M^e \mod e$
- Bob decrypts $\text{encr}(M)$ as follows:
 $\text{decr}(M) = \text{encr}(M)^d \mod e$
 $= (M^e \mod e)^d \mod e$
 $= M^{3d} \mod e$
 $= M$ (because of Fermat's Little theorem and Chinese Remainder Theorem)
- Nobody knows efficient algorithms to decrypt $\text{encr}(M)$ without knowing the factors p and q of the public key e

RSA - Example

- Bob chooses primes $p = 17$, $q = 23$.
- $e = 17 \cdot 23 = 391$ is Bob's public key
- $\mathbb{G} = (17-1) \cdot (23-1) = 352$
- Bob chooses his private key d so that $3d \mod \mathbb{G} = 1$. For example, $d = 235$.
- Suppose Alice wants to send $M=24$. She encrypts it as $\text{encr}(M) = M^e \mod e = 24^3 \mod 391 = 139$
- If Eve sees $\text{encr}(M) = 139$, she can't easily recover $M = 24$ because she doesn't know p, q, or d.
- Upon receiving $\text{encr}(M) = 139$, Bob decrypts it as: $\text{encr}(M)^d \mod e = 139^{235} \mod 391 = 24$

Wow! That's a BIG number!
Fast modular exponentiation

How can I compute $139^{235} \mod 391$?

Not by computing 139^{235} and then taking mod 391!

$\mod n = ((a \mod n) \times (b \mod n)) \mod n$

Decompose 235 as a sum of powers of 2:

$$235 = 128 + 64 + 32 + 8 + 2 + 1$$

$$139^{235} \mod 391 =$$

$$= (139^{128} \times 139^{64} \times 139^{32} \times 139^{8} \times 139^{2} \times 139^{1}) \mod 391$$

Use a variant of the Power method you wrote:

$$139^{1} \mod 391 = 139,$$
$$139^{2} \mod 391 = (139*139) \mod 391 = 162,$$
$$139^{4} \mod 391 = (162*162) \mod 391 = 47,$$
$$139^{8} \mod 391 = (47*47) \mod 391 = 254,$$
$$139^{16} \mod 391 = (254*254) \mod 391 = 1,$$
$$139^{32} \mod 391 = (1*1) \mod 391 = 1,$$
$$139^{64} \mod 391 = (1*1) \mod 391 = 1,$$
$$139^{128} \mod 391 = (1*1) \mod 391 = 1.$$

Thus,

$$139^{235} \mod 391 = (1 \times 1 \times 1 \times 254 \times 162 \times 139) \mod 391 = 24$$

RSA - Summary

• RSA relies completely on the fact that it is difficult to factorize large integers
 • If Eve could factorize Bob's public key e into $p \times q$, she could compute $\phi = (p-1)(q-1)$, and then find d, from which she could easily decrypt $encr(M)$.
 • Nobody knows a polynomial-time algorithm to factorize large integers, so the message is safe.
 • Quantum computers can factorize large integers very quickly, but we don't know how to build them.