
1

Computers playing games

One-player games
•  Puzzle: Place 8 queens on a chess board so that no two

queens attack each other (i.e. on the same row, same
column, or same diagonal)

for i1 ← 1 to 8 // row of 1st queen
 for i2 ← 1 to 8 // row of 2nd queen
 ...
 for i8 ← 1 to 8 // row of 8th queen

 if (isValid(i1,i2,...,i8)) print i1,i2,...,i8

If we had a n x n board, what would be the
running time?

Bactracking algorithm
•  Idea: place queens from first row to last, but stop as

soon as an invalid board is reached and backtrack to
the last valid board

•  Very similar to depth-first search
Algorithm placeQueens(partialBoard[8][8], row)
Input: A board with queens placed on rows 0...row-1
Output: Prints all valid configurations that can be reached from this board

 if (row=8) print partialBoard;
 else
 for i = 0 to 8-1 do
 partialBoard[row][i] = QUEEN;
 if (isValid(partialBoard)) then placeQueens(partialBoard, row+1)
 partialBoard[row][i] = EMPTY; // reset board to original position

Backtracking algorithms

Only 2057 partial boards
are considered, compared to
88 = 16 777 216 for the
original algorithm

Two-player games
•  Computers now beat humans in

–  backgammon (since 1980)
–  checkers (since 1994) (U. of Alberta)
–  chess (since 1997) (Prof. Monty Newborn)
–  bridge (since 2000 (?))
–  Go (since 2016)

•  Human still beat computers in:
–  Rugby

•  Human-computers are tied in:
–  3x3 Tic-tac-toe
–  Rock-paper-scissor (but see http://www.rpschamps.com)

Game trees

X's turn

O's turn

X's turn

...

2

Winning and Losing Positions
•  A winning position for X is a position such that if X

plays optimally, X wins even if O plays optimally
•  A losing position for X is a position such that if O

plays optimally, X loses even if it plays optimally.
•  Recursive definition: On X's move,

a position P is winning for X if
–  P is an immediate win (Leaf of game tree), OR
–  There exists a move that leads to a winning position for X
a position P is losing for X if
–  P is an immediate loss (Leaf of game tree), OR
–  All moves available to X leads to losing positions for X
a position P is a tie if
–  P is an immediate tie (Leaf of game tree), OR
–  No moves available to X lead to a win, but at least one

leads to a tie

Example

Evaluation functions
•  Game trees are too big to be searched exhaustively!

–  Chess has 10120 positions possible after 40 moves
•  Idea: Look at most K moves ahead.

–  Tree has height K. Leaves are not final positions
–  Estimate the potential of the leaves

•  Good position for white: large positive score
•  Good position for black: large negative score
•  Undecided position: score near zero
•  For chess:

–  1 point per pawn, 3 points for knights and bishops, ...

•  Select the move that leads toward the most promising
leaf.

•  Start again next turn.

Minimax principle

Minimax principle
Algorithm white(board, depth)
Input: The current board and the depth of the game tree to explore
Output: The value of the current position
if (depth=0) then return eval(board)
else
return max { black(b' , depth-1): b' is one move away from board}

Algorithm black(board, depth)
if (depth=0) return eval(board)
else
 return min { white(', depth-1): b' is one move away from board}

