
Graphs 17-03-16 13:14 

1 

17-03-16 08:24 Graphs 1 

Graphs 

ORD 

DFW 

SFO 

LAX 

80
2 

17
43

 

1843 

1233 

337 

Lecture notes adapted from Goodrich and Tomassia  

17-03-16 08:24 Graphs 2 

Graph 
A graph is a pair (V, E), where 
n  V is a set of nodes, called vertices 
n  E is a collection of pairs of vertices, called edges 

Example: 
n  A vertex represents an airport and stores the airport code 
n  An edge represents a flight route between two airports 

ORD PVD 

MIA 
DFW 

SFO 

LAX 

LGA 

HNL 

17-03-16 08:24 Graphs 3 

Edge Types 
Directed edge 
n  ordered pair of vertices (u,v) 
n  first vertex u is the origin 
n  second vertex v is the destination 
n  e.g., a flight 

Undirected edge 
n  unordered pair of vertices (u,v) 
n  e.g., a street 

Directed graph: all edges are directed 
Weighted edge: has a real number 
associated to it 
n  e.g. distance between cities 
n  e.g. bandwidth between internet routers 

Weighted graph: all edges have weights 
  

ORD PVD 

ORD PVD 

ORD PVD 
849 

miles 

17-03-16 08:24 Graphs 4 

Labeled graphs 
Labeled graphs: vertices have identifiers 

n  Note: Geometric layout doesn’t matter - 
only connections matter  

Unlabeled graph: vertices have no 
identifiers 

ORD PVD 

MIA 
DFW 

SFO 

LAX 

LGA 
HNL 

= 

ORD 
PVD 

MIA 

DFW 

SFO 

LAX LGA 

HNL 

= 

17-03-16 08:24 Graphs 5 

Applications 

17-03-16 08:24 Graphs 6 

Terminology 
Endpoints of an edge 
n  U and V are the endpoints of a 

Edges incident on a vertex 
n  a, b, and d are incident on V 

Adjacent vertices 
n  Connected by an edge 
n  U and V are adjacent 

Degree of a vertex 
n  Number of incident edges 
n  X has degree 5  

Parallel edges 
n  h and i are parallel edges 

Self-loop 
n  j is a self-loop 

X U 

V 

W 

Z 

Y 

a 

c 

b 

e 

d 

f 

g 

h 

i 

j 



Graphs 17-03-16 13:14 

2 

17-03-16 08:24 Graphs 7 

P1 

Terminology (cont.) 
Path 
n  sequence of adjacent vertices 

Simple path 
n  path such that all its vertices 

are distinct 

Examples 
n  P1=(V, X, Z) is a simple path 
n  P2=(U, W, X, Y, W, V) is a 

path that is not simple 

Graph is connected iff 
n  For all pair of vertices u and 

v, there is a path between u 
and v 

X U 

V 

W 

Z 

Y 

a 

c 

b 

e 

d 

f 

g 

h P2 

17-03-16 08:24 Graphs 8 

Terminology (cont.) 
Cycle 
n  path that starts and ends at 

the same vertex 

Simple cycle 
n  cycle where each vertex is 

distinct 

Examples 
n  C1=(V, X, Y, W, U, ↵) is a 

simple cycle 
n  C2=(U, W, X, Y, W, V, ↵) is a 

cycle that is not simple 

A tree is a connected 
acyclic graph 

C1 

X U 

V 

W 

Z 

Y 

a 

c 

b 

e 

d 

f 

g 

h C2 

17-03-16 08:24 Graphs 9 

Properties 
Notation 

   |V|  number of vertices 
   |E|  number of edges 
deg(v)  degree of vertex v 

Property 1 

Σv ∈ V   deg(v) = 2|E| 
Why? 
 

Property 2 
In an undirected graph 

with no self-loops 
and no multiple 
edges 

   |E| ≤ |V| (|V| - 1)/2 

Why? 

Example 
n  |V| = 4 
n  |E| = 6 
n  deg(v) = 3 

17-03-16 08:24 Graphs 10 

Data structure for graphs - 
Adjacency lists 

Graph can be stored as 
n  A dictionary of pairs (key, info) where 
n  key = vertex identifier 
n  info contains a list (called adj) of adjacent vertices 

Example: if the dictionary is implemented as a linked-list 

ORD 

DFW 

SFO 

LAX 

LGA 

SFO |  LAX |  ORD |  DFW |  LGA |  

ORD 

LAX 

SFO 

ORD 

DFW 

SFO 

LAX 

DWF 

LAX 

ORD 

LGA 

DFW 

vertices 

17-03-16 08:24 Graphs 11 

Adjacency lists - Operations 

addVertex(key k):     
 vertices.insert(k, emptyList) 

addEdge(key k, key l): 
  vertices.find(k).adj.insert(l) 
  vertices.find(l).adj.insert(k) 
areAdjacent(key k, key l): 

  return vertices.find(k).adj.find(l) 

17-03-16 08:24 Graphs 12 

Data structure for graphs - 
Adjacency matrix 

Define some order on the vertices, for example: 
 DFW, LAX, LGA, ORD, SFO  

Graph with n vertices is stored as 
n  n x n array M of boolean, where 
n  M[i][j] =   1 if there is an edge between i-th and j-th vertices  

     0 otherwise 

ORD 

DFW 

SFO 

LAX 

LGA 

        DFW LAX LGA ORD SFO 
DFW  0      1     1     1      0  
LAX   1      0     0     1      1 
LGA    1      0     0     0      0 
ORD    1      1     0     0      1 
SFO    0      1     0     1      0 



Graphs 17-03-16 13:14 

3 

17-03-16 08:24 Graphs 13 

Adjacency matrix - Operations 

addEdge(i,j):  matrix[i][j] = 1 
removeEdge(i,j):  matrix[i][j] = 0 
Not very good for inserting/removing 
vertices: requires shifting elements of 
matrix.  
Requires space O(n2) 

17-03-16 08:24 Graphs 14 

Lists vs Matrices 

Adjacency lists are better if: 
n  You frequently need to add/remove vertices 
n  The graph has few edges 
n  Need to traverse the graph 

Adjacency matrices are better if  
n  you frequently need to  

w  add/remove edges, but NOT vertices 
w  Check for the presence/absence of an edge between i,j 

n  matrix is small enough to fit in memory 


