Graphs

Graphs

A graph is a pair (V, E), where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges

Example:
- A vertex represents an airport and stores the airport code
- An edge represents a flight route between two airports

Edge Types

- Directed edge: ordered pair of vertices (u, v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge: unordered pair of vertices (u, v)
 - e.g., a street
- Directed graph: all edges are directed
- Weighted edge: has a real number associated to it
 - e.g., distance between cities
 - e.g., bandwidth between internet routers
- Weighted graph: all edges have weights

Labeled graphs

Labeled graphs: vertices have identifiers
- Note: Geometric layout doesn’t matter—only connections matter

Unlabeled graph: vertices have no identifiers

Applications

Terminals

Endpoints of an edge
- U and V are the endpoints of a

Edges incident on a vertex
- a, b, and d are incident on V

Adjacent vertices
- Connected by an edge
- U and V are adjacent

Degree of a vertex
- Number of incident edges
- X has degree 5

Parallel edges
- h and i are parallel edges

Self-loop
- j is a self-loop
Terminology (cont.)

- **Path**
 - sequence of adjacent vertices
- **Simple path**
 - path such that all its vertices are distinct
- **Examples**
 - \(P_1 = (V, X, W, Y, V) \) is a simple path
 - \(P_2 = (U, W, X, Y, W, V) \) is a path that is not simple
- **Graph is connected iff**
 - For all pair of vertices \(u \) and \(v \), there is a path between \(u \) and \(v \)

Properties

- **Property 1**
 - \[\sum_{v \in V} \deg(v) = 2|E| \]
 - Why?
- **Property 2**
 - In an undirected graph with no self-loops and no multiple edges
 - \[|E| = \frac{|V|(|V| - 1)}{2} \]
 - Why?

Adjacency lists - Operations

- \(\text{addVertex(key } k) \):
 - \(\text{vertices.insert}(k, \text{emptyList}) \)
- \(\text{addEdge(key } k, \text{key } l) \):
 - \(\text{vertices.find}(k).\text{adj.insert}(l) \)
 - \(\text{vertices.find}(l).\text{adj.insert}(k) \)
- \(\text{areAdjacent(key } k, \text{key } l) \):
 - return \(\text{vertices.find}(k).\text{adj.find}(l) \)

Data structure for graphs - Adjacency lists

- Graph can be stored as
 - A dictionary of pairs \((key, info)\) where
 - \(key = \text{vertex identifier} \)
 - \(info \) contains a list \((\text{called.adj})\) of adjacent vertices
- Example: if the dictionary is implemented as a linked-list:

Data structure for graphs - Adjacency matrix

- Define some order on the vertices, for example:
 - DFW, LAX, LGA, ORD, SFO
- Graph with \(n \) vertices is stored as
 - \(n \times n \) array \(M \) of boolean, where
 - \(M[i][j] = 1 \) if there is an edge between \(i \)-th and \(j \)-th vertices
 - \(0 \) otherwise

Example:

```
<table>
<thead>
<tr>
<th></th>
<th>DFW</th>
<th>LAX</th>
<th>LGA</th>
<th>ORD</th>
<th>SFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFW</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LAX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LGA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ORD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SFO</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Adjacency matrix - Operations

- **addEdge(i,j):** \[\text{matrix}[i][j] = 1 \]
- **removeEdge(i,j):** \[\text{matrix}[i][j] = 0 \]
- Not very good for inserting/removing vertices: requires shifting elements of matrix.
- Requires space \(O(n^2) \)

Lists vs Matrices

- Adjacency lists are better if:
 - You frequently need to add/remove vertices
 - The graph has few edges
 - Need to traverse the graph
- Adjacency matrices are better if
 - You frequently need to
 - add/remove edges, but NOT vertices
 - Check for the presence/absence of an edge between \(i \) and \(j \)
 - Matrix is small enough to fit in memory