
1

COMP 250 Midterm exam:
When: Wednesday Feb 22nd, 6:00pm - 7:30pm
Where:
•  Last name starting with A to L: McIntyre room 522
•  Last name starting with M to Z: McIntyre room 504

What to bring:
•  0) A couple of pencils (not pen) to fill the scantron sheets
•  1) Your student ID card
•  2) A 1-page double side crib sheet (8.5 inches x 11 inches)
•  3) Your brain and energy!

Java programming

•  Everything we’ve covered in class could be
on the exam
– Methods
–  parameter passin
–  object oriented programming

Recursive algorithms
•  To write a recursive algorithm:

–  Find how the problem can be broken up in one or more
smaller problems of the same nature

–  Remember the base case!
•  Usually, better running times are obtained when

the size of the subproblems are approximately
equal
–  power(a,n) = a * power(a,n) ⇒ O(n)
–  power(a,n) = (power(a,n/2))2 ⇒ O(log n)

•  Fibonnaci, BinarySearch, Power, Integer
multiplication, MergeSort

Recursive algorithms

•  Fibonnaci
•  BinarySearch
•  Power
•  Integer multiplication
•  MergeSort
•  QuickSort

Induction proofs

•  To prove that a proposition P(n) holds for all n ≥ a:
–  Base case:

 Prove that P(a) holds
–  Induction step on n:

 Induction Hypothesis: Assume P(n) holds
 Prove that I.H. implies that P(n+1) holds

Proof of correctness of
iterative algorithms

Using Loop invariants:
1. Initialization: It is true prior to the first
iteration of the loop.
2. Maintenance: If it is true before an iteration
of the loop, it remains true before the next
iteration.
3. Termination: When the loop terminates, the
invariant gives us a useful property that helps
show that the algorithm is correct.

2

Running time

•  Primitive operations
–  Running time is constant, indep. of problem size

•  Assigning a value to a variable
•  Calling a method; returning from a method
•  Arithmetic operations, comparisons
•  Indexing into an array
•  Following object reference
•  Conditionals

•  Running time ≡ Number of primitive operations
•  Loops: Sum the running time of each iteration
•  findMin, selectionSort, insertionSort

Recurrences

•  For recursive algorithms, we express the
running time T(n) for an input of size n as a
function of T(a) for some a<n

•  Example:
– Binary search: T(n) = T(n/2) + a
– RecursiveFastMult.: T(n) = 3 T(n/2) + c n + d

Solving recurrences

•  Solving recurrence ≡ give explicit formula for T(n)
•  Substitution method:

– Replace occurrences of T() by their value
– Repeat until pattern emerges

•  Prove by induction that guess is correct

Big-Oh notation
•  f(n) is O(g(n)) iff there exist constants c and N such

that f(n) ≤ c g(n) for all n ≥ N
•  Proving that f(n) of O(g(n)), or f(n) is not O(g(n))
•  Tricks to establish if f(n) is O(g(n)):

–  Hierarchy of big-Oh classes, Simplification rules
–  Test of the limit of the ratio

•  NEW! Theta notation
f(n) is Θ(g(n)) iff f(n) is O(g(n)) and g(n) is Θ (f(n))
è f(n) and g(n) grow equally fast (within a
multiplicative constant)
•  NEW! Omega notation
f(n) is Ω(g(n)) iff g(n) is O(f(n))

List Abstract Data Type

•  Operations supported
•  Two possible implementations

– Array-based
– Linked lists

•  Advantages and disadvantages of each
implementations

Linked lists

•  Implementation (node: value, next)
•  Basic operations

–  getFirst(), get(n), getLast()
–  removeFirst(), removeLast(), remove(o)
–  addFirst(o), addLast(o), add(o)
–  empty(), size()

•  Advantages and disadvantages over arrays

3

Stacks

•  Last-in First-out data structure
•  Operations: push(o), pop(), top()
•  Applications:

– Back button on browser
–  checking parentheses
–  evaluating expressions (homework #3)

Queues

•  Queue:
– First-in First-out data structure
– Operations: enqueue, dequeue, front

•  Doubly-ended queue:
– Elements can be accessed, added, or removed at

both ends
•  Rotating array implementation

