COMP 250 Midterm exam:

When: Wednesday Feb 22nd, 6:00pm - 7:30pm Where:

- Last name starting with A to L: McIntyre room 522
- · Last name starting with M to Z: McIntyre room 504

What to bring:

- 0) A couple of pencils (not pen) to fill the scantron sheets
- 1) Your student ID card
- 2) A 1-page double side crib sheet (8.5 inches x 11 inches)
- 3) Your brain and energy!

Java programming

- · Everything we've covered in class could be on the exam
 - Methods
 - parameter passin
 - object oriented programming

Recursive algorithms

- To write a recursive algorithm:
 - Find how the problem can be broken up in one or more smaller problems of the same nature Remember the base case!
- Usually, better running times are obtained when the size of the subproblems are approximately equal
 - power(a,n) = a * power(a,n) \Rightarrow O(n)
 - power(a,n) = (power(a,n/2))² \Rightarrow O(log n)
- · Fibonnaci, BinarySearch, Power, Integer multiplication, MergeSort

Recursive algorithms

- Fibonnaci
- · BinarySearch
- Power
- Integer multiplication
- MergeSort
- QuickSort

Induction proofs

- To prove that a proposition P(n) holds for all $n \ge a$:
 - Base case:
 - Prove that P(a) holds
 - Induction step on n: Induction Hypothesis: Assume P(n) holds Prove that I.H. implies that P(n+1) holds

Proof of correctness of iterative algorithms

Using Loop invariants:

1. Initialization: It is true prior to the first iteration of the loop.

2. Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

3. Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Running time

· Primitive operations

- Running time is constant, indep. of problem size

 - Assigning a value to a variable
 Calling a method; returning from a method
 Arithmetic operations, comparisons
 - · Indexing into an array
 - · Following object reference · Conditionals
- Running time = Number of primitive operations
- · Loops: Sum the running time of each iteration
- · findMin, selectionSort, insertionSort

Recurrences

- For recursive algorithms, we express the running time T(n) for an input of size n as a function of T(a) for some a<n
- Example:
 - Binary search: T(n) = T(n/2) + a
 - RecursiveFastMult.: T(n) = 3 T(n/2) + c n + d

Solving recurrences

- Solving recurrence = give explicit formula for T(n)Substitution method:
 - Replace occurrences of T() by their value
 - Repeat until pattern emerges
- Prove by induction that guess is correct

Big-Oh notation

- f(n) is O(g(n)) iff there exist constants c and N such that $f(n) \le c g(n)$ for all $n \ge N$
- Proving that f(n) of O(g(n)), or f(n) is not O(g(n))
- Tricks to establish if f(n) is O(g(n)): - Hierarchy of big-Oh classes, Simplification rules - Test of the limit of the ratio
- NEW! Theta notation

$f(n) \text{ is } \Theta(g(n)) \text{ iff } f(n) \text{ is } O(g(n)) \text{ and } g(n) \text{ is } \Theta\left(f(n)\right)$

- \rightarrow f(n) and g(n) grow equally fast (within a multiplicative constant)
- NEW! Omega notation
- f(n) is $\Omega(g(n))$ iff g(n) is O(f(n))

List Abstract Data Type

- · Operations supported
- Two possible implementations
 - Array-based
 - Linked lists
- · Advantages and disadvantages of each implementations

Linked lists

- Implementation (node: value, next)
- · Basic operations
 - getFirst(), get(n), getLast()
 - removeFirst(), removeLast(), remove(o)
 - addFirst(o), addLast(o), add(o)
 - empty(), size()
- · Advantages and disadvantages over arrays

Stacks

- Last-in First-out data structure
- Operations: push(o), pop(), top()
- Applications:
 - Back button on browser
 - checking parentheses
 - evaluating expressions (homework #3)

Queues

- Queue:
 - First-in First-out data structure
 - Operations: enqueue, dequeue, front
- Doubly-ended queue:
 - Elements can be accessed, added, or removed at both ends
- Rotating array implementation