COMP 250 Midterm exam:
When: Wednesday Feb 22nd, 6:00pm - 7:30pm
Where:
• Last name starting with A to L: McIntyre room 522
• Last name starting with M to Z: McIntyre room 504
What to bring:
• 0) A couple of pencils (not pen) to fill the scantron sheets
• 1) Your student ID card
• 2) A 1-page double side crib sheet (8.5 inches x 11 inches)
• 3) Your brain and energy!

Java programming
• Everything we’ve covered in class could be on the exam
 – Methods
 – parameter passing
 – object oriented programming

Recursive algorithms
• To write a recursive algorithm:
 – Find how the problem can be broken up in one or more smaller problems of the same nature
 – Remember the base case!
• Usually, better running times are obtained when the size of the subproblems are approximately equal
 – \text{power}(a,n) = a \times \text{power}(a,n) \Rightarrow O(n)
 – \text{power}(a,n) = (\text{power}(a,n/2))^2 \Rightarrow O(\log n)
• Fibonacci, BinarySearch, Power, Integer multiplication, MergeSort

Induction proofs
• To prove that a proposition \(P(n) \) holds for all \(n \geq a \):
 – \text{Base case:}
 Prove that \(P(a) \) holds
 – \text{Induction step on} \(n \):
 Induction Hypothesis: Assume \(P(n) \) holds
 Prove that I.H. implies that \(P(n+1) \) holds

Proof of correctness of iterative algorithms
Using \textbf{Loop invariants:}
1. Initialization: It is true prior to the first iteration of the loop.
2. Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
3. Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
Running time

- Primitive operations
 - Running time is constant, indep. of problem size
 - Assigning a value to a variable
 - Calling a method, returning from a method
 - Arithmetic operations, comparisons
 - Indexing into an array
 - Following object reference
-条件
- Running time \(\equiv \) Number of primitive operations
- Loops: Sum the running time of each iteration
- \(\text{findMin}, \text{selectionSort}, \text{insertionSort} \)

Recurrences

- For recursive algorithms, we express the running time \(T(n) \) for an input of size \(n \) as a function of \(T(a) \) for some \(a < n \)
- Example:
 - Binary search: \(T(n) = T(n/2) + a \)
 - RecursiveFastMult.: \(T(n) = 3 \ T(n/2) + c \ n + d \)

Solving recurrences

- Solving recurrence \(\equiv \) give explicit formula for \(T(n) \)
- Substitution method:
 - Replace occurrences of \(T() \) by their value
 - Repeat until pattern emerges
- Prove by induction that guess is correct

Big-Oh notation

- \(f(n) \ is \ O(g(n)) \) iff there exist constants \(c \) and \(N \) such that \(f(n) \leq c \ g(n) \) for all \(n \geq N \)
- Proving that \(f(n) \ of \ O(g(n)) \), or \(f(n) \ is \ not \ O(g(n)) \)
- Tricks to establish if \(f(n) \ is \ O(g(n)) \):
 - Hierarchy of big-Oh classes, Simplification rules
 - Test of the limit of the ratio
- NEW! Theta notation
 - \(f(n) \ is \ \Theta(g(n)) \) iff \(f(n) \ is \ O(g(n)) \) and \(g(n) \ is \ \Theta(f(n)) \)
 - \(f(n) \ and \ g(n) \ grow \ equally \ fast \ (within \ a \ multiplicative \ constant) \)
- NEW! Omega notation
 - \(f(n) \ is \ \Omega(g(n)) \) iff \(g(n) \ is \ O(f(n)) \)

List Abstract Data Type

- Operations supported
- Two possible implementations
 - Array-based
 - Linked lists
- Advantages and disadvantages of each implementations

Linked lists

- Implementation (node: value, next)
- Basic operations
 - getFirst(), get(n), getLast()
 - removeFirst(), removeLast(), remove(o)
 - addFirst(o), addLast(o), add(o)
 - empty(), size()
- Advantages and disadvantages over arrays
Stacks

- Last-in First-out data structure
- Operations: push(o), pop(), top()
- Applications:
 - Back button on browser
 - checking parentheses
 - evaluating expressions (homework #3)

Queues

- Queue:
 - First-in First-out data structure
 - Operations: enqueue, dequeue, front
- Doubly-ended queue:
 - Elements can be accessed, added, or removed at both ends
- Rotating array implementation