1 Review of big-Oh notation
Definition: f(n)is O(g) iff Ing € N,c € R: f(n) <c-g(n)Vn > ng

Intuition: f(n) is O(g(n)) if f(n) grows at most as fast as some constant
times g(n), for large n.

IMPORTANT: The running time of selection sort on an array of n elements
was 1+ 5n+ 13n2, which is O(n?). But it is also O(n?®), and O(n?), and O(any
function that grows at least as fast as n?). However, we usually try to give the
snuggest big-Oh description possible.

2 Hierarchy of big-Oh classes

O(g(n)) can be seen as the set of all functions f(n) that are O(g(n)): O(g(n)) =

{f(n) : E'C, TL(),VTL > n()vf(n) <c- g(n)}
Then we can write n? + 10n + 2 € O(n?).
We have the following (incomplete) hierarchy of big-Oh classes:

O(1) € O(logn) € O(v/n) C O(n) C O(n*) C O(2")

e O(1): functions bounded above by a constant. f(n) = 100 € O(1), 10 +
sin(n) € O(1). All primitive operations can be executed in time O(1).

O(logn): logarithmic functions. Running time of binarySearch is O(log n).
e O(y/n): square root of n. 2+ v/n+10 € O(y/n)
O(n): linear functions. Running time of findMin is O(n)

e O(n"), for some integer k > 1: polynomials. Running time of selectionSort

is O(n?).

e O(a™), for some a > 1: exponential functions. Running time of Fibonnaci
recursive algorithm is O(2").

3 Shortcuts

Always relying on O() definition to prove statements is tiring... Instead, we can
use the following rules:

1. Sum rule. If fi(n) € O(g(n)) and fa(n) € O(g(n)) then f1(n) + fa(n) €
O(g(n)).

Proof:



4

if fi(n) € O(g(n)) and fa(n) € O(g(n)), there must exist constants
c1,n1, C2,ng such that fi(n) < ci1g(n) Vn > ny and fa(n) < cag(n) Yn >
ng. Thus, if we pick ¢s = ¢1 + ¢2 and ng = max(ni,ns2), we have that if
n > ng, then f(n) +g(n) < c1g(n) + c2g(n) = (c1 + c2)g(n) = csg(n).
Thus fi(n) + f2(n) is O(g(n)).

Constant factors rule. if f1(n) € O(g(n)) then kfi(n) € O(g(n)) for
any constant k.

Example: n3 + 10n? + log(n) € O(n?®) because

10n2 € O(n?) C O(n3) and log(n) € O(log(n)) C O(n?).

By rule (1), n® + 10n? + log(n) € O(n?

Example: for any polynomial p(n) = apn* +as_1n* =1 +...+ain' +aen®,
we have p(n) € O(nF).

Product rule. if d(n) € O(f(n)) and e(n) € O(g(n)), then d(n) - e(n) €

O(f(n) - g(n)).
Example: (14 10n) - (2log(n) + 3) € O(n - log(n)), because...

n® € O(a™) for any fixed x > 0 and a > 1. However, a” ¢ O(n”) for any
fixed z > 0 and a > 1.

Example: n'%? ¢ O(1.0001"). However, the constants ¢ and ng for
which n'%90 < ¢.1.0001™ Vn > ng are very large.

log(n®) € O(log(n)) for any fixed z > 0.
Proof: log(n®) = xlog(n) € O(log(n)) (by rule 2).

log,(n) € O(logy(n)) for any fixed a > 1,b > 1.
Proof: log,(n) = logy(n)/logs(a) € O(logy(n)) (by rule 2).

More shortcuts

Theorem: Let f(n) and g(n) be two non-negative functions. Then

1. i i oo £(n)/g(n) = 0, then f(n) € O(g(n)) and g(n) ¢ O(f(n).
2. if lim,—, 4o f(n)/g(n)
3. (n)/g(n)
4

x # 0, then f(n) € O(g(n)) and g(n) € O(f(n)).
if lim,, 400 f(n)/g(n) = 400, then g(n) € O(f(n)) and f(n) ¢ O(g(n)).

. if limy, 400 f(n)/g(n) does not exist, then we can’t say anything

Reminder: I’'Hopital rule:

df (n)/dn

limy,— 4o f(n)/g(n) = limy— 4 dg(n)/dn
Example: Prove that log(n) € O(y/n).



