
1 Review of big-Oh notation

Definition: f(n) is O(g) iff ∃n0 ∈ N, c ∈ R : f(n) ≤ c · g(n)∀n ≥ n0

Intuition: f(n) is O(g(n)) if f(n) grows at most as fast as some constant
times g(n), for large n.

IMPORTANT: The running time of selection sort on an array of n elements
was 1 + 5n + 13n2, which is O(n2). But it is also O(n3), and O(n4), and O(any
function that grows at least as fast as n2). However, we usually try to give the
snuggest big-Oh description possible.

2 Hierarchy of big-Oh classes

O(g(n)) can be seen as the set of all functions f(n) that are O(g(n)): O(g(n)) =
{f(n) : ∃c, n0,∀n ≥ n0, f(n) ≤ c · g(n)}.

Then we can write n2 + 10n + 2 ∈ O(n2).
We have the following (incomplete) hierarchy of big-Oh classes:

O(1) ⊂ O(log n) ⊂ O(
√

n) ⊂ O(n) ⊂ O(nk) ⊂ O(2n)

• O(1): functions bounded above by a constant. f(n) = 100 ∈ O(1), 10 +
sin(n) ∈ O(1). All primitive operations can be executed in time O(1).

• O(log n): logarithmic functions. Running time of binarySearch is O(log n).

• O(
√

n): square root of n. 2 +
√

n + 10 ∈ O(
√

n)

• O(n): linear functions. Running time of findMin is O(n)

• O(nk), for some integer k > 1: polynomials. Running time of selectionSort
is O(n2).

• O(an), for some a > 1: exponential functions. Running time of Fibonnaci
recursive algorithm is O(2n).

3 Shortcuts

Always relying on O() definition to prove statements is tiring... Instead, we can
use the following rules:

1. Sum rule. If f1(n) ∈ O(g(n)) and f2(n) ∈ O(g(n)) then f1(n) + f2(n) ∈
O(g(n)).

Proof:

1



if f1(n) ∈ O(g(n)) and f2(n) ∈ O(g(n)), there must exist constants
c1, n1, c2, n2 such that f1(n) ≤ c1g(n) ∀n ≥ n1 and f2(n) ≤ c2g(n) ∀n ≥
n2. Thus, if we pick c3 = c1 + c2 and n3 = max(n1, n2), we have that if
n ≥ n3, then f(n) + g(n) ≤ c1g(n) + c2g(n) = (c1 + c2)g(n) = c3g(n).
Thus f1(n) + f2(n) is O(g(n)).

2. Constant factors rule. if f1(n) ∈ O(g(n)) then kf1(n) ∈ O(g(n)) for
any constant k.
Example: n3 + 10n2 + log(n) ∈ O(n3) because
10n2 ∈ O(n2) ⊂ O(n3) and log(n) ∈ O(log(n)) ⊂ O(n3).
By rule (1), n3 + 10n2 + log(n) ∈ O(n3)
Example: for any polynomial p(n) = aknk +ak−1n

k−1 + ...+a1n
1 +a0n

0,
we have p(n) ∈ O(nk).

3. Product rule. if d(n) ∈ O(f(n)) and e(n) ∈ O(g(n)), then d(n) · e(n) ∈
O(f(n) · g(n)).
Example: (1 + 10n) · (2 log(n) + 3) ∈ O(n · log(n)), because...

4. nx ∈ O(an) for any fixed x > 0 and a > 1. However, an /∈ O(nx) for any
fixed x > 0 and a > 1.
Example: n1000 ∈ O(1.0001n). However, the constants c and n0 for
which n1000 ≤ c · 1.0001n ∀n ≥ n0 are very large.

5. log(nx) ∈ O(log(n)) for any fixed x > 0.
Proof: log(nx) = x log(n) ∈ O(log(n)) (by rule 2).

6. loga(n) ∈ O(logb(n)) for any fixed a > 1, b > 1.
Proof: loga(n) = logb(n)/logb(a) ∈ O(logb(n)) (by rule 2).

4 More shortcuts

Theorem: Let f(n) and g(n) be two non-negative functions. Then

1. if limn→+∞ f(n)/g(n) = 0, then f(n) ∈ O(g(n)) and g(n) /∈ O(f(n)).

2. if limn→+∞ f(n)/g(n) = x 6= 0, then f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

3. if limn→+∞ f(n)/g(n) = +∞, then g(n) ∈ O(f(n)) and f(n) /∈ O(g(n)).

4. if limn→+∞ f(n)/g(n) does not exist, then we can’t say anything

Reminder: l’Hopital rule:
limn→+∞ f(n)/g(n) = limn→+∞

df(n)/dn
dg(n)/dn

Example: Prove that log(n) ∈ O(
√

n).

2


