1 Review of big-Oh notation

Definition: f(n) is O(g) iff $\exists n_0 \in \mathbf{N}, \mathbf{c} \in \mathbf{R} : \mathbf{f}(\mathbf{n}) \leq \mathbf{c} \cdot \mathbf{g}(\mathbf{n}) \forall \mathbf{n} \geq \mathbf{n_0}$

Intuition: f(n) is O(g(n)) if f(n) grows at most as fast as some constant times g(n), for large n.

IMPORTANT: The running time of selection sort on an array of n elements was $1 + 5n + 13n^2$, which is $O(n^2)$. But it is also $O(n^3)$, and $O(n^4)$, and O(any) function that grows at least as fast as n^2). However, we usually try to give the snuggest big-Oh description possible.

2 Hierarchy of big-Oh classes

O(g(n)) can be seen as the set of all functions f(n) that are O(g(n)): $O(g(n)) = \{f(n) : \exists c, n_0, \forall n \geq n_0, f(n) \leq c \cdot g(n)\}.$

Then we can write $n^2 + 10n + 2 \in O(n^2)$.

We have the following (incomplete) hierarchy of big-Oh classes:

$$O(1) \subset O(\log n) \subset O(\sqrt{n}) \subset O(n) \subset O(n^k) \subset O(2^n)$$

- O(1): functions bounded above by a constant. $f(n) = 100 \in O(1)$, $10 + \sin(n) \in O(1)$. All primitive operations can be executed in time O(1).
- $O(\log n)$: logarithmic functions. Running time of binarySearch is $O(\log n)$.
- $O(\sqrt{n})$: square root of n. $2 + \sqrt{n+10} \in O(\sqrt{n})$
- O(n): linear functions. Running time of findMin is O(n)
- $O(n^k)$, for some integer k > 1: polynomials. Running time of selectionSort is $O(n^2)$.
- $O(a^n)$, for some a > 1: exponential functions. Running time of Fibonnaci recursive algorithm is $O(2^n)$.

3 Shortcuts

Always relying on O() definition to prove statements is tiring... Instead, we can use the following rules:

1. **Sum rule.** If $f_1(n) \in O(g(n))$ and $f_2(n) \in O(g(n))$ then $f_1(n) + f_2(n) \in O(g(n))$.

Proof:

if $f_1(n) \in O(g(n))$ and $f_2(n) \in O(g(n))$, there must exist constants c_1, n_1, c_2, n_2 such that $f_1(n) \le c_1 g(n) \ \forall n \ge n_1$ and $f_2(n) \le c_2 g(n) \ \forall n \ge n_2$. Thus, if we pick $c_3 = c_1 + c_2$ and $n_3 = \max(n_1, n_2)$, we have that if $n \ge n_3$, then $f(n) + g(n) \le c_1 g(n) + c_2 g(n) = (c_1 + c_2) g(n) = c_3 g(n)$. Thus $f_1(n) + f_2(n)$ is O(g(n)).

2. Constant factors rule. if $f_1(n) \in O(g(n))$ then $kf_1(n) \in O(g(n))$ for any constant k.

Example: $n^3 + 10n^2 + \log(n) \in O(n^3)$ because $10n^2 \in O(n^2) \subset O(n^3)$ and $\log(n) \in O(\log(n)) \subset O(n^3)$. By rule (1), $n^3 + 10n^2 + \log(n) \in O(n^3)$ **Example:** for any polynomial $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n^1 + a_0 n^0$,

Example: for any polynomial $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n^1 + a_0 n^0$, we have $p(n) \in O(n^k)$.

3. **Product rule.** if $d(n) \in O(f(n))$ and $e(n) \in O(g(n))$, then $d(n) \cdot e(n) \in O(f(n) \cdot g(n))$.

Example: $(1+10n) \cdot (2\log(n)+3) \in O(n \cdot \log(n))$, because...

4. $n^x \in O(a^n)$ for any fixed x > 0 and a > 1. However, $a^n \notin O(n^x)$ for any fixed x > 0 and a > 1.

Example: $n^{1000} \in O(1.0001^n)$. However, the constants c and n_0 for which $n^{1000} \le c \cdot 1.0001^n \ \forall n \ge n_0$ are very large.

- 5. $\log(n^x) \in O(\log(n))$ for any fixed x > 0. Proof: $\log(n^x) = x \log(n) \in O(\log(n))$ (by rule 2).
- 6. $\log_a(n) \in O(\log_b(n))$ for any fixed a > 1, b > 1. Proof: $\log_a(n) = \log_b(n)/\log_b(a) \in O(\log_b(n))$ (by rule 2).

4 More shortcuts

Theorem: Let f(n) and g(n) be two non-negative functions. Then

- 1. if $\lim_{n\to+\infty} f(n)/g(n) = 0$, then $f(n) \in O(g(n))$ and $g(n) \notin O(f(n))$.
- 2. if $\lim_{n\to+\infty} f(n)/g(n) = x \neq 0$, then $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$.
- 3. if $\lim_{n\to+\infty} f(n)/g(n) = +\infty$, then $g(n) \in O(f(n))$ and $f(n) \notin O(g(n))$.
- 4. if $\lim_{n\to+\infty} f(n)/g(n)$ does not exist, then we can't say anything

Reminder: l'Hopital rule:

 $\lim_{n\to+\infty} f(n)/g(n) = \lim_{n\to+\infty} \frac{df(n)/dn}{dg(n)/dn}$

Example: Prove that $\log(n) \in O(\sqrt{n})$.