Big-O notation

Lecture 10

Running time of selection sort

- We showed that running selection sort on an array of n elements takes in the worst case
 \(T(n) = 1 + 15n + 5n^2 \) primitive operations
- When n is large, \(T(n) \approx 5n^2 \)
- When n is large,
 \(T(2n) / T(n) \approx 5(2n)^2 / 5n^2 = 4 \)
 Doubling n quadruples \(T(n) \)
 N.B. That is true for any coefficient of \(n^2 \) (not just 5)

<table>
<thead>
<tr>
<th>n</th>
<th>T(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>661</td>
</tr>
<tr>
<td>20</td>
<td>2301</td>
</tr>
<tr>
<td>30</td>
<td>4951</td>
</tr>
<tr>
<td>40</td>
<td>8601</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>5015001</td>
</tr>
<tr>
<td>2000</td>
<td>20030001</td>
</tr>
</tbody>
</table>

Big-O notation

- Goals:
 – Simplify the discussion of algorithm running times
 – Describe how the running time of an algorithm increases as a function of n (the size of the problem), when n is LARGE
 – Get rid of terms that become insignificant when n is large
- We will say things like:
 The worst-case running time of selectionSort on an array of n elements is \(O(n^2) \)
 The worst-case running time of mergeSort on an array of n elements is \(O(n \log(n)) \)

Big-O definition

- Let \(f(n) \) and \(g(n) \) be two non-negative functions defined on the natural numbers \(\mathbb{N} \)
- We say that \(f(n) \) is \(O(g(n)) \) if and only if:
 - There exists an integer \(n_0 \) and a real number \(c \) such that: for all \(n \geq n_0 \), \(f(n) \leq c \cdot g(n) \)
 More mathematically, we would write
 - \(\exists n_0 \in \mathbb{N} \), \(\exists c \in \mathbb{R} : \forall n \geq n_0, f(n) \leq c \cdot g(n) \)
- N.B. The constant \(c \) must \textit{not} depend on \(n \)

Intuition and visualization

“\(f(n) \) is \(O(g(n)) \)” iff there exists a point \(n_0 \) beyond which \(f(n) \) is less than some fixed constant times \(g(n) \)

\[f(n) = 5 + 3n^2 \]
\[g(n) = 1 + n^2 \]

\(f(n) \) is \(O(g(n)) \), because there exists \(n_0 = 2 \) and \(c = 4 \) such that for all \(n \geq n_0 \), \(f(n) \leq c \cdot g(n) \)
Proving big-O relations

- To prove that \(f(n) \) is \(O(g(n)) \), we must find \(n_0 \) and \(c \) such that \(f(n) \leq c \cdot g(n) \).
- Example: Prove that \(5 + 3n^2 \) is \(O(1 + n^2) \)

 We need to pick \(c \) greater than 3. Let’s pick \(c = 5 \).

 If we choose \(n_0 = 1 \), we get that if \(n \geq n_0 \), then

 \[
 5 + 3n^2 \leq 5 + 5n^2 \quad \text{(since } n \geq n_0)
 \]

 \[
 = 5(1 + n^2)
 \]

 \[
 = c(1 + n^2)
 \]

Examples

- Prove that \(2n + 3 \) is \(O(n) \)

Examples

- Prove that \(f(n) = 10^{100} \) is \(O(1) \)

Examples

- Prove that \(n \sin(n) + 1 \) is \(O(n) \)

Proving that \(f(n) \) is \textit{not} \(O(g(n)) \)

- To prove that \(f(n) \) is \textit{not} \(O(g(n)) \), one must show that for any \(n_0 \) and \(c \), there exists an \(n \geq n_0 \) such that \(f(n) > c \cdot g(n) \).

- Procedure: Assume \(n_0 \) and \(c \) are given, and find a value of \(n \) such that \(f(n) > c \cdot g(n) \). The value of \(n \) will usually depend on \(n_0 \) and \(c \).
Examples
• Prove that $n \sin(n) + 1$ is $O(n)$

Examples
• Prove that 2^n is not $O(n^3)$