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Abstract

The minimum cost subset k-connected subgraph problem is a cornerstone problem in the area
of network design with vertex connectivity requirements. In this problem, we are given a graph
G = (V,E) with costs on edges and a set of terminals T . The goal is to find a minimum cost
subgraph such that every pair of terminals are connected by k openly (vertex) disjoint paths. In
this paper, we present an approximation algorithm for the subset k-connected subgraph problem
which improves on the previous best approximation guarantee of O(k2 log k) by Nutov (FOCS
2009). Our approximation guarantee, α(|T |), depends upon the number of terminals:

α(|T |) =

{
O(k log2 k) if 2k ≤ |T | < k2

O(k log k) if |T | ≥ k2

So, when the number of terminals is large enough, the approximation guarantee improves signif-
icantly. Moreover, we show that, given an approximation algorithm for |T | = k, we can obtain
almost the same approximation guarantee for any instances with |T | > k. This suggests that
the hardest instances of the problem are when |T | ≈ k.

1 Introduction

We present an improved approximation algorithm for the minimum cost subset k-connected subgraph
problem. In this problem (subset k-connectivity, for short), we are given a graph G = (V,E) with
edge costs and a set of terminals T ⊆ V . The goal is to find a minimum cost subgraph such that
each pair of terminals is connected by k openly (vertex) disjoint paths. This is a fundamental
problem in network design which includes as special cases the minimum cost Steiner tree problem
(the case k = 1) and the minimum cost k vertex-connected spanning subgraph problem (the case
T = V ). However, the subset k-connectivity problem is significantly harder than these two special
cases. Specifically, an important result of Kortsarz, Krauthgamer and Lee [14] shows that the

problem does not admit an approximation guarantee better than 2log
1−ε n for any ε > 0 unless

NP ⊆ DTIME(nO(polylog(n))). In contrast, polylogarithmic approximation guarantees are known
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for the minimum cost k-vertex connected spanning subgraph problem. The first such result was
obtained by Fakcharoenphol and Laekhanukit [9] using the Halo-set decomposition, introduced
by Kortsarz and Nutov [15]. Subsequently, Nutov [17] improved the approximation guarantee to

O
(

log k · log n
n−k

)
.

Since the hardness result of Kortsarz et at. [14] no non-trivial approximation algorithm was
known for the general case of the subset-k-connectivity problem until the work of Chakraborty,
Chuzhoy and Khanna [3]. They presented an O(kO(k2) · log4 |T |)-approximation algorithm for the
rooted version of our problem, namely the rooted subset k-connectivity problem. There, given a root
vertex r and a set of terminals T , the goal is to find a minimum cost subgraph that has k openly
disjoint paths from the root vertex r to every terminal in T . Chakraborty et al. showed how to solve
the subset k-connectivity problem by applying the rooted subset k-connectivity algorithm k times,
thus obtaining an O(kO(k2) ·log4 |T |)-approximation algorithm. Recently, in a series of developments
[3, 7, 8, 21, 18], the approximation guarantees for the rooted subset k-connectivity problem has
been steadily improved. This has culminated in an O(k log k) guarantee due to Nutov [21], thus
implying an approximation guarantee of O(k2 log k) for the subset k-connectivity problem.

There is a trivial way to obtain an approximation bound of O(|T |2). So, with the current
progress on the rooted subset k-connectivity problem, the application of the rooted subroutine is
only useful when the number of terminals is large enough, say |T | ≥ 2k. The main contribution
of this paper is to show that, in this case, only a polylogarithmic number of applications of the
rooted subset k-connectivity algorithm are required to solve the subset k-connectivity problem.
Given an approximation algorithm for the rooted subset k-connectivity problem, we show that
only O(log2 k) applications of the algorithm are required, and we can save a factor of O(log k) since
some of these applications are applied to instances with lower costs. Moreover, as the number of
terminal increases above k2, we are able to save an additional O(log k) factor. Thus, given an
approximation algorithm for the rooted subset k-connectivity problem in [21] due to Nutov (and
with careful analysis), we achieve an α(|T |)-approximation guarantee where

α(|T |) =

{
O(k log2 k) if 2k ≤ |T | < k2

O(k log k) if |T | ≥ k2

As we may combine our algorithm with the trivial O(|T |2)-approximation algorithm for the case
|T | < 2k, we obtain an approximation guarantee of O(k2), which improves upon the previous best
approximation guarantee of O(k2 log k) for all cases. Moreover, for |T | ≥ 2k, we obtain a significant
improvement of a factor of k. Observe, however, that for the case |T | ≈ k the guarantee is still
quadratic. At first, this may seem paradoxical since we may hope that the problem is easier when
the number of terminals is small. Our results suggest that this is not the case. Indeed, it appears
that the hardest instances of subset k-connectivity may have at most k terminals. Precisely, we show
that, given an α(k)-approximation algorithm for the subset k-connectivity problem with |T | = k,
there is an (α(k) + f(k))-approximation algorithm for any instance with |T | > k, where f(k) is the
best known approximation guarantee for the rooted subset k-connectivity problem. Furthermore,
we give an approximation preserving reduction from the rooted subset k-connectivity problem to
the subset k-connectivity problem, showing a strong connection between the two problems.

Related Work. Some very special cases of the subset k-connectivity problem are known to have
constant factor approximation algorithms. For k = 1, the minimum cost Steiner tree problem, the
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best known approximation guarantee is 1.39 due to Byrka, Grandoni, Rothvoß and Sanità [2]. For
k = 2, a factor two approximation algorithm was given by Fleischer, Jain and Williamson [10].
The subset k-connectivity problem also has an O(1)-approximation algorithm when edge costs sat-
isfy the triangle inequality; see Cheriyan and Vetta [6]. The most general problem in this area is
the vertex-connectivity survivable network design problem (VC-SNDP). In VC-SNDP, the connec-
tivity requirement for each pair of vertices can be arbitrary. Recently, Chuzhoy and Khanna [8]
showed that there is an O(k3 log n)-approximation algorithm for VC-SNDP. The problems where
requirements are edge and element connectivity (EC-SNDP and Element-SNDP) are also very well
studied. Both problems admit 2-approximation algorithms via iterative rounding. For EC-SNDP,
a 2-approximation algorithm was given by Jain [12]. For Element-SNDP a 2-approximation algo-
rithm was given by Fleischer, Jain and Williamson [10]. The vertex-cost versions of these problems
have also been studied in literature. Nutov [19] gave an approximation guarantee of O(k log |T |)
for vertex-cost EC-SNDP using a technique, called spider decomposition. Later on, in [21], Nutov
applied the spider decomposition technique to other vertex-cost problems, giving approximation
guarantees of O(k log |T |) for Element-SNDP, O(k2 log |T |) for the rooted subset k-connectivity
problem, O(k3 log |T |) for the subset k-connectivity problem and O(k4 log2 |T |) for VC-SNDP.

2 Preliminaries and Results

We begin with some formal definitions. Let G = (V,E) denote the graph for an instance of the
problem. For a set of edges F , the graph G′ = (V,E ∪ F ) is denoted by G+ F ; for a vertex v, the
graph obtained from G by removing v is denoted by G− v. For any set of vertices U ⊆ V , let Γ(U)
denote the set of neighbors of U ; that is, Γ(U) = {v ∈ V − U : ∃(u, v) ∈ E, u ∈ U}. Define a set
U∗ to be V − (U ∪ Γ(U)), which is the vertex-complement of U . For any pair of vertices s, t ∈ V ,
two s, t-paths are openly disjoint if they have no vertices except s and t in common. Let T ⊆ V
be a set of vertices called terminals. Without loss of generality, assume that no two terminals of T
are adjacent in G. This assumption can be easily justified by subdividing every edge joining two
terminals; that is, if there is an edge (s, t) joining two terminals, then we replace (s, t) by two new
edges (s, u) and (u, t) and set costs of the new edges so that c(s, t) = c(s, u) + c(u, t), where c(.) is
a cost function. The set of terminals T is k-connected in G if the graph G has k openly disjoint
s, t-paths between every pair of terminals s, t ∈ T . Thus, by Menger Theorem, the removal of any
set of vertices with size at most k − 1 leaves all the remaining terminals in the same component
of the remaining graph. By the subset connectivity of G on T , we mean the maximum integer `
such that T is `-connected in G. A deficient set is a subset of vertices U ⊆ V such that both U
and U∗ contain terminals of T and |Γ(U)| < k. Observe that the vertex-complement U∗ is also a
deficient set. Similarly, given a designated root vertex r, the graph is k-connected from r to T if G
has k openly disjoint r, t-paths for every terminal t ∈ T (r may or may not be in T ). By the rooted
connectivity of G from r to T , we mean the maximum integer ` such that G is `-connected from r
to T .

In the subset k-connectivity problem, we are given a graph G = (V,E) with a cost c(e) on each
edge e ∈ E, a set of terminals T ⊆ V , and an integer k ≥ 0. The goal is to find a set of edges
Ê ⊆ E of minimum cost such that T is k-connected in the subgraph Ĝ = (V, Ê). In the rooted
subset k-connectivity problem, our goal is to find a set of edges Ê ⊆ E of minimum cost such that
the subgraph Ĝ = (V, Ê) is k-connected from r to T , for a given root r.

Nutov [21] recently gave anO(k log k)-approximation algorithm for the rooted subset k-connectivity
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problem. The approximation guarantee improves by a logarithmic factor for the problem of increas-
ing the rooted connectivity of a graph by one.

Theorem 2.1 (Nutov 2009 [21]). There is an O(k log k)-approximation algorithm for the rooted
subset k-connectivity problem. Moreover, consider the restricted version of the problem where the
goal is to increase the rooted connectivity from ` to `+ 1. Then the approximation guarantee (with
respect to a standard LP) is O(`).

Our focus is upon the subset k-connectivity problem. The followings are our main results:

Theorem 2.2. For any set T of terminals, there is an α(|T |)-approximation algorithm for the
subset k-connectivity problem where

α(|T |) =


O(|T |2) if |T | < 2k (folklore)

O(k log2 k) if 2k ≤ |T | < k2

O(k log k) if |T | ≥ k2

In particular, there is an O(k2)-approximation algorithm for the general case of the subset k-
connectivity problem, and there is an O(k log k)-approximation algorithm when |T | ≥ k2.

Proposition 2.3. Consider the subset k-connectivity problem. Suppose there is an α(k)-approximation
algorithm for instances with |T | = k. Then there is an (α(k) + f(k))-approximation algorithm for
any instance with |T | > k, where f(k) is the best known approximation guarantee for the rooted
subset k-connectivity problem.

Theorem 2.4. There is an approximation preserving reduction such that, given an instance of the
rooted subset k-connectivity problem consisting of a graph G, a root vertex r and a set of terminals
T , outputs an instance of the subset k-connectivity problem consisting of a graph G′ and a set of
terminals T ∪ {r}.

The hardness result in Theorem 2.4 together with the hardness of the rooted subset k-connectivity
problem by Cheriyan, Laekhanukit, Naves and Vetta [4] implies the hardness of Ω(kε), for the subset
k-connectivity problem, where ε > 0 is some fixed constant.

Some results and proofs similar to the ones in this paper have appeared in previous literature;
see [5, 15, 16]. In particular, Lemma 3.10 and Lemma 3.13 appeared in [15] and [16], respectively.
The proofs of Proposition 2.3 is identical to that of the case T = V , which was given in [13] and
also in [1]. Our key new contributions are Lemmas 3.5, 3.9 and 3.8, which allow us to extend the
result in [15] to the subset k-connectivity problem.

We remark that, at the time this paper is written, the approximation guarantee of the subset
k-connectivity problem was improved by Nutov [20] to O(k log k) for all k ≤ |T | − o(|T |).

Organization: In Section 3, we present an approximation algorithm for the subset k-connectivity
problem, which is the main result in this paper. In Section 3.7, we give a discussion that our al-
gorithm and analysis can be extended to the case k < |T | < 2k. To keep the presentation simple,
Section 3.7 is presented separately from the main result. In Section 4, we discuss the hardness of
the subset k-connectivity problem. To be precise, we show that the hardest instance of the subset
k-connectivity problem might be when |T | ≈ k, and we give an approximation preserving reduction
from the rooted subset k-connectivity problem to the subset k-connectivity problem.
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3 An approximation algorithm

Our main result in Theorem 2.2 breaks up into three cases where there are a small number, a
moderate number and a large number of terminals, respectively. Indeed, the first case is a folklore.
When there are a small number of terminals (|T | < 2k), we apply the following trivial O(|T |2)-
approximation algorithm. We find k openly disjoint paths of minimum cost between every pair of
terminals by applying a minimum cost flow algorithm. Let opt denote the cost of the optimal solu-
tion to the subset k-connectivity problem. Since any feasible solution to the subset k-connectivity
problem has k openly disjoint paths between every pair of terminals, the cost incurred by finding
a minimum cost collection of k openly disjoint paths between any pair of terminals is at most opt.
Since we have at most |T |2 pairs, this incurs a total cost of O(|T |2 · opt).

The remaining two cases are similar. Things are slightly easier, though, when there are large
number of terminals (|T | ≥ k2), leading to a slightly better guarantee than when there are a moder-
ate number of terminals (2k ≤ |T |). We devote most of this section to presenting an approximation
algorithm for the moderate case. (In Section 3.6, we show the improvement for the case of a large
number of terminals.)

Our algorithm works by repeatedly increasing the subset connectivity of a graph by one. We
start with a graph that has no edges. Then we apply k outer iterations. Each outer iteration
increases the subset connectivity (of the current graph) by one by adding a set of edges of ap-
proximately minimum cost. The analysis of the outer iterations applies linear programming (LP)
scaling and incurs a factor of O(log k) in the approximation guarantee for the k outer iterations.
The analysis based on LP-scaling can be seen in [22, 6, 15, 9] and also in [11, 16].

The following is a standard LP-relaxation for the subset k-connectivity problem.

min
∑
e∈E

cexe

s.t.
∑

e∈δ(U,W )

xe ≥ k − |V − (U ∪W )| ∀(U,W ) ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

where δ(U,W ) = {(u,w) ∈ E : u ∈ U,w ∈ W} is a set of edges with one endpoint in U and the
other endpoint in W , and S = {(U,W ) ∈ V × V : U ∩W = ∅, U ∩ T 6= ∅,W ∩ T 6= ∅}.

Lemma 3.1. Suppose there is a β(`)-approximation algorithm for the problem of increasing the
subset connectivity of a graph from ` to ` + 1 with respect to a standard LP, where β(`) is a
non-decreasing function.Then there is an O(β(k) log k)-approximation algorithm for the subset k-
connectivity problem.

We are left with the key problem of increasing the subset connectivity (of the current graph) by
one by adding a set of edges of approximately minimum cost. Throughout this section, we assume
that the set of terminals T is `-connected in the current graph, and |T | ≥ 2k ≥ 2`. Also, we assume
that no two terminals are adjacent in the input graph G = (V,E).

Assumption: The set of terminals T is `-connected in the current graph Ĝ = (V, Ê). Moreover,
no two terminals are adjacent in the input graph G.

Our algorithm solves the problem of increasing the subset connectivity of a graph by one by
applying a number of so-called inner iterations. To describe our algorithm, we need some definitions
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and subroutines. Thus, we defer the description of our algorithm to Section 3.5. In Section 3.1, we
give important definitions and structures of subset `-connected graphs called “cores” and “halo-
families”. Our algorithm requires two subroutines. The first one is the subroutine that employs
the rooted subset (`+ 1)-connectivity algorithm to cover halo-families. This subroutine is given in
Section 3.2. The second one is the subroutine for decreasing the number of cores to O(`), which is
given in Section 3.3. Then we introduce a notion of “thickness” in Section 3.4. This notion guides
us how to use the rooted subset (`+1)-connectivity algorithm efficiently. Finally, in Section 3.5, we
present an O(k log2 k)-approximation algorithm for the case |T | ≥ 2k. By slightly modifying the
algorithm and analysis, we show in Section 3.6 that our algorithm achieves a better approximation
guarantee of O(k log k) when |T | ≥ k2.

3.1 Subset `-connected graphs: deficient sets, cores, halo-families and halo-sets

In this section, we discuss some key properties of deficient sets that will be exploited by our
approximation algorithm.

Assume that the set of terminals T is `-connected in the graph G = (V,E). Then G has
|Γ(U)| ≥ ` for all U ⊆ V such that U ∩ T 6= ∅ and U∗ ∩ T 6= ∅. Moreover, by Menger Theorem, G
is subset (`+ 1)-connected if and only if G has no deficient set.

A key property of vertex neighborhoods is that the function |Γ(·)| on subsets of V is submodular.
In other words, for any subsets of vertices U,W ⊆ V ,

|Γ(U ∪W )|+ |Γ(U ∩W )| ≤ |Γ(U)|+ |Γ(W )|.

We call a deficient set U ⊆ V small1 if |U ∩ T | ≤ |U∗ ∩ T |.

Proposition 3.2. For any small deficient set U , |U ∩ T | ≤ |T |/2 and |U∗ ∩ T | ≥ (|T | − `)/2.

Proof. The first inequality follows from the definition of small deficient sets. Consider the second
inequality. We have

|U∗ ∩ T | ≥ |U ∩ T |+ |U
∗ ∩ T |

2
=
|T | − |Γ(U) ∩ T |

2
≥ |T | − `

2

Lemma 3.3 (Uncrossing Lemma). Consider any two distinct deficient sets U,W ⊆ V . If U ∩W ∩
T 6= ∅ and U∗ ∩W ∗ ∩ T 6= ∅, then both U ∩W and U ∪W are deficient sets. Moreover, if U or W
is a small deficient set, then U ∩W is a small deficient set.

Proof. Suppose U ∩W ∩ T 6= ∅ and U∗ ∩W ∗ ∩ T 6= ∅. Note that

U∗ ∩W ∗ ∩ T = (V − (U ∪ Γ(U))) ∩ (V − (W ∪ Γ(W ))) ∩ T
= (V − (U ∪W ∪ Γ(U) ∪ Γ(W ))) ∩ T
= (V − ((U ∪W ) ∪ Γ(U ∪W ))) ∩ T
= (U ∪W )∗ ∩ T.

1There is another way to define a small deficient set. For example, in [20], Nutov defined a small deficient set as

a deficient set U such that |U ∩ T | ≤ |T |−`
2

.
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Moreover, (U ∪W )∗ ⊆ (U ∩W )∗. This means that

(U ∩W ) ∩ T 6= ∅, (U ∪W ) ∩ T 6= ∅, (U ∪W )∗ ∩ T 6= ∅ and (U ∩W )∗ ∩ T 6= ∅.

Hence, by Menger Theorem, we have |Γ(U ∪W )| ≥ ` and |Γ(U ∩W )| ≥ `. Moreover, since U,W
are deficient sets, we have |Γ(U)| = |Γ(W )| = `. It then follows by the submodularity of |Γ(.)| that

2` ≤ |Γ(U ∪W )|+ |Γ(U ∩W )| ≤ |Γ(U)|+ |Γ(W )| = 2`.

Thus, |Γ(U ∩W )| = |Γ(U ∪W )| = `. This implies that both U ∪W and U ∩W are deficient
sets. Moreover, suppose U or W is a small deficient set. Without loss of generality, assume that U
is a small deficient set. Then U ∩W is a small deficient set because U ∩W ⊆ U . Thus,

|U ∩W ∩ T | ≤ |U ∩ T | ≤ |U∗ ∩ T | ≤ |(U ∩W )∗ ∩ T |

By a core, we mean a small deficient set C that is inclusionwise minimal. In other words, C is
a core if it is a small deficient set that does not contain another such set. It can be seen that any
small deficient set U contains at least one core.

The halo-family of a core C, denoted by Halo(C), is the set of all small deficient sets that
contain C and contain no other cores; that is,

Halo(C) = {U : U is a small deficient set, C ⊆ U , and there is no core D 6= C such that D ⊆ U}.

The halo-set of a core C, denoted by H(C), is the union of all the sets in Halo(C); that is,

H(C) =
⋃
{U : U ∈ Halo(C)}

An example of cores, halo-families and halo-sets is illustrated in Figure 1.

Remark: We remark that cores and halo-sets of subset `-connected graphs can be computed in
polynomial time. In fact, algorithms for computing cores and halo-sets of the k-vertex connected
spanning subgraph problem also apply to the subset k-connectivity problem. See [15, 9, 16].

Some important properties of cores and halo-families that we will require are stated below.

Lemma 3.4 (Disjointness Lemma). Consider any two distinct cores C and D. For any deficient
sets U ∈ Halo(C) and W ∈ Halo(D), either U ∩W ∩ T = ∅ or U∗ ∩W ∗ ∩ T = ∅.

Proof. Suppose to the contrary that U ∩W ∩ T 6= ∅ and U∗ ∩W ∗ ∩ T 6= ∅. Then, by Lemma 3.3,
U ∩W is a small deficient set. Thus, U ∩W contains a core. This core is either C or D or another
core distinct from C and D. In each case, we have a contradiction.

The next result gives an upper bound on the number of halo-sets that contain a chosen terminal,
which is a key for the design of our algorithm.

Lemma 3.5 (Upper bound). For any terminal t ∈ T , the number of cores C such that t ∈ H(C)

is at most 2(|T |−1)
|T |−` .
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C
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t3 t4
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r

v3

v1

t1

Figure 1: The figure shows an example of cores, halo-families and halo-sets for ` = 1. In the figure,
we are given a graph Ĝ = (V, Ê). The graph Ĝ is a tree constructed by adding a vertex r as a root.
Then we add terminals t1, t2, t3, t4 and add paths (t1, v1, r), (t2, v1, r), (t3, v3, v2, r) and (t4, v4, r)
connecting terminals to the root vertex. Clearly, T = {t1, t2, t3, t4} is `-connected in Ĝ. Every
leaf vertex of the tree Ĝ forms a core. For example, C = {t3} is a core. The halo-family of C is
Halo(C) = {{t3}, {t3, v3}, {t3, v2, v3}}, and the halo-set of C is H(C) = {t3, v2, v3}. Observe that
the set {t1, t2} is a small deficient set, but it does not belong to any halo-family.

Proof. Let C1, C2, . . . , Cq be distinct cores such that t ∈ H(Ci) for all i = 1, 2, . . . , q. For each
i = 1, 2, . . . , q, since t is in the halo-set H(Ci), there must exist a deficient set Ui in the halo-family
Halo(Ci) that contains t. It then follows that t ∈

⋂q
i=1 Ui. By the Disjointness Lemma (Lemma 3.4),

for i 6= j, Ui ∩ Uj ∩ T 6= ∅ only if U∗i ∩ U∗j ∩ T = ∅. This is because Ui and Uj are deficient sets of
different halo-families. For i = 1, 2, . . . , q, observe that Ui is small. Hence, by Proposition 3.2, we
have |U∗i ∩ T | ≥ (|T | − `)/2. Thus, the upper bound on the number halo-sets that contain t is

|T | − 1

(|T | − `)/2
=

2(|T | − 1)

|T | − `

3.2 Covering halo-families via rooted subset (`+ 1)-connectivity

We say that an edge e = (u, v) covers a deficient set U if e connects U and U∗; that is, u ∈ U and
v ∈ U∗. Clearly, e covers U if e covers U∗. Observe that if e covers U , then after adding the edge
e to the current graph, U is no longer a deficient set. Now, consider any core C. We say that a set
of edges F covers the halo-family of C if each deficient set U in Halo(C) is covered by some edge of
F . For a terminal r ∈ T , we say that the terminal r hits the halo-family Halo(C) if r is in C or r is
in the vertex-complement of the halo-set of C; that is, r hits Halo(C) if r ∈ C or r ∈ H(C)∗. For a
set of terminals S ⊆ T , we say that S hits a halo-family Halo(C) if there is a terminal r ∈ S that
hits Halo(C). The following lemma shows that if r hits the halo-family Halo(C), then we can find
a set of edges F that covers Halo(C) by applying the rooted subset (`+ 1)-connectivity algorithm
with r as the root.

Lemma 3.6. Consider a set of edges F whose addition to Ĝ makes the resulting graph Ĝ + F
(`+ 1)-connected from a terminal r to T . Let C be any core. If r ∈ C or r ∈ H(C)∗, then F covers
all deficient sets in the halo-family of C.
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Proof. Consider the graph Ĝ+F . By the construction, Ĝ+F has (`+1) openly disjoint paths from
r to every terminal of T . This means that F covers all deficient sets of Ĝ that contains r. If r ∈ C,
then r ∈ U for all deficient sets U ∈ Halo(C). So, F covers Halo(C). Similarly, If r ∈ H(C)∗, then
r ∈ U∗ for all deficient sets U ∈ Halo(C). So, again, F covers Halo(C) because an edge e ∈ F
covers U∗ if and only if e covers U , and the lemma follows.

3.3 Preprocessing to decrease the number of cores

In this section, we describe the preprocessing algorithm that decreases the number of cores to

O
(
`|T |
|T |−`

)
. We apply the following root padding algorithm in the preprocessing step.

The root padding algorithm: The algorithm takes as an input a graph G = (V,E) with
the given edge costs, a subset of terminals R ⊆ T , and a connectivity parameter ρ ≤ |R|. We
construct a padded graph by adding a new vertex r̂ and new edges of zero cost from r̂ to each
terminal of R. Then we apply the rooted subset ρ-connectivity algorithm to the padded graph with
the set of terminals T and the root r̂. We denote a solution subgraph (of the padded graph) by
Ĝ = (V ∪ {r̂}, F ∪ {(r̂, t) : t ∈ R}), where F ⊆ E. Then the algorithm outputs the subgraph (of
the original graph) Ĝ− r̂ = (V, F ). The following result shows that, in the resulting graph Ĝ, every
deficient set contains at least one terminal of R.

Lemma 3.7 (root padding). Suppose we apply the root padding algorithm as above, and it finds a
subgraph Ĝ− r̂ = (V, F ). Then every deficient set of Ĝ− r̂ (with respect to ρ-connectivity of T in
Ĝ− r̂) contains at least one terminal of R.

Proof. Observe that Ĝ has ρ openly disjoint r̂, t-paths, for all t ∈ T . Suppose U ⊆ V is a deficient
set of Ĝ− r̂ that contains none of terminals of R. Thus, U contains another terminal t ∈ T −R and
|Γ(U)| < ρ. Then (Ĝ− r̂)− Γ(U) has no path between t and a terminal of R. This also holds for
Ĝ−Γ(U) because adding r̂ and the edges from r̂ to every terminals of R cannot give a path between
t and a terminal of R. This is a contradiction since Ĝ should have ρ openly disjoint r̂, t-paths.

Remark: Consider an instance Πroot of the rooted subset k-connectivity problem that is obtained
from an instance Πsubset of the subset k-connectivity problem by either (1) picking one of the
terminals as the root or (2) applying the root padding algorithm using any k terminals of Πsubset.
Then the cost of the optimal solution to Πroot is at most the cost of the optimal solution to Πsubset

because any feasible solution to Πsubset gives a feasible solution to Πroot (but not vice-versa).

Next, recall that |T | ≥ 2`. We apply the root padding algorithm in Lemma 3.7 to any subset R
of (`+ 1) terminals with ρ = (`+ 1). By Theorem 2.1, this incurs a cost of at most O((k log k) ·opt)
Moreover, the algorithm adds a set of edges to the current graph such that every deficient set of the
resulting graph contains at least one terminal of R. Thus, each core of the resulting graph contains

at least one terminal of R. By Lemma 3.5, each terminal is in O
(
|T |
|T |−`

)
= O(1) halo-sets. Hence,

the number of cores in the resulting graph is at most O(`). This gives the next result.

Lemma 3.8. Given a subset `-connected graph, where |T | ≥ 2`, there is an f(k)-approximation
algorithm that decreases the number of cores to O(`), where f(k) is the best known approximation
guarantee for the rooted subset k-connectivity problem.
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3.4 Thickness of terminals

Consider a graph Ĝ such that T is `-connected in Ĝ. We define the thickness of a terminal t ∈ T to
be the number of halo-families Halo(C) such that t ∈ Γ(H(C)). Thus, the thickness of a terminal
t is |{Halo(C) : C is a core, t ∈ Γ(H(C))}|.

The following lemmas show the existence of a terminal with low thickness.

Lemma 3.9. For every core C, |Γ(H(C))| ≤ `.

Proof. We use induction on the number of deficient sets in Halo(C). For the induction basis,
Halo(C) has one deficient set U , and H(C) = U . Then Γ(H(C)) = Γ(U) has size ` since the graph
is subset `-connected.

Suppose that U is the union of j deficient sets that each contains the core C, and suppose that
|Γ(U)| ≤ `. Consider another deficient set W that contains C. Our goal is to show that Γ(U ∪W )
has size at most `. If W ⊆ U , then we are done. Otherwise, we apply the submodularity of |Γ(·)|.
Observe that U ∩W contains a terminal since U ∩W ⊇ C, and (U ∩W )∗ contains a terminal since
(U ∩W )∗ ⊇W ∗ and W ∗ contains a terminal. Hence, Γ(U ∩W ) has size at least `. Thus, we have

2` ≥ |Γ(U)|+ |Γ(W )| ≥ |Γ(U ∪W )|+ |Γ(U ∩W )| ≥ |Γ(U ∪W )|+ `.

This implies that Γ(U ∪W ) has size at most `, and the lemma follows.

The following lemma shows the existence of a terminal with low thickness.

Lemma 3.10. Consider a subset `-connected graph. Let q denote the number of halo-families.
Then there exists a terminal t ∈ T with thickness at most `q

|T | .

Proof. Consider the following bipartite incidence graph B of terminals and halo-families: B has
a vertex for each terminal and each halo-family, and it has an edge between a terminal t and a
halo-family Halo(C) if and only if t ∈ Γ(H(C)). The previous lemma shows that each halo-family is
adjacent to at most ` terminals in B. Hence, B has at most `q edges. Therefore, B has a terminal
that is adjacent to at most `q

|T | cores; that is, there exists a terminal with the required thickness.

3.5 An O(k log2 k)-approximation algorithm for |T | ≥ 2k

In this section, we describe our approximation algorithm for the case of a moderate number of
terminals. Recall that we solve the problem by iteratively increasing the subset connectivity of a
graph by one. Initially, we apply the algorithm in Section 3.3 to decrease the number of core to
O(`). Then we apply inner iterations until all the deficient sets are covered. At the beginning of
each inner iteration, we compute the cores and the halo-sets. Then we apply a covering-procedure
to find a set of edges that covers all the computed halo-families. This completes one inner iteration.
Note that an inner iteration may not cover all of the deficient sets because deficient sets that contain
two or more of the initial cores (those computed at the start of the inner iteration) may not be
covered. So, we have to repeatedly apply inner iterations until no core is present. See Algorithm 1.

We now describe the covering-procedure. The procedure first finds a set of terminals S ⊆ T
that hits all the computed halo-families. Then it applies the rooted subset (` + 1)-connectivity
algorithm (Theorem 2.1) from each terminal of S. Let F be the union of all edges found by the
rooted subset (`+ 1)-connectivity algorithm. Then, by Lemma 3.6, F covers all the halo-families.

The key idea of our algorithm is to pick a terminal r̂ with a minimum thickness. Observe that
a halo-family Halo(C) is not hit by r̂ only if

10



Algorithm 1 An approximation algorithm for moderate and large number of terminals

for ` = 0, 1, . . . , k − 1 do . (outer iterations)
(* Increase the subset connectivity of a graph by one. *)
Decrease the number of cores to O(`).
while the number of cores is greater than 0 do . (inner iterations)

Compute cores and halo-sets.
Apply a covering-procedure to cover all the halo-families

end while
end for

(1) its halo-set H(C) has r̂ as a neighbor (that is, r̂ ∈ Γ(H(C))) or

(2) its halo-set H(C) contains r̂, but its core C does not contain r̂.

The number of halo-families Halo(C) such that r̂ ∈ Γ(H(C)) may be large, but the number of
halo-families whose halo-sets contain r̂ is O(1), assuming that |T | ≥ 2`. Hence, we only hit halo-
families of the second case by picking one terminal from each core C whose halo-set contains r̂.
Thus, the number of terminals picked is O(1). We call this a micro iteration. Then the remaining
halo-families are the halo-families whose halo-sets have r̂ as a neighbor. We repeatedly apply micro
iterations until we hit all of the halo-families computed at the start of the inner iteration.

To be precise, initially let S = ∅. In each micro iteration, we add to S a terminal r̂ of minimum
thickness (with respect to halo-families that are not hit by S). Then, for each core C such that
r̂ ∈ H(C) − C, we add to S any terminal in C ∩ T . We repeatedly apply micro iterations until
S hits all the halo-families. At the termination, we apply the rooted subset (` + 1)-connectivity
algorithm (Theorem 2.1) from each terminal of S, and we return all the set of edges found by the
algorithm as an output. The covering-procedure is presented in Figure 2.

Algorithm 2 Covering-procedure

S ← ∅.
while some halo-family is not hit by S do . (micro iteration)

Add to S a terminal r̂ with a minimum thickness.
for each halo-family Halo(C) (not hit by S) such that r̂ ∈ H(C)− C do

Add to S any terminal r ∈ C.
end for

end while
for each terminals r in S do

Apply the rooted subset (`+ 1)-connectivity algorithm from r.
end for

3.5.1 Analysis

The feasibility of a solution directly follows from the condition of the inner iteration; that is, the
inner iteration terminates when a current graph has no core. So, at the termination of the inner
iteration, the resulting graph has no deficient set. Thus, the subset connectivity of the graph
becomes `+ 1. Applying the outer iteration k times, the final graph is then subset k-connected.
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It remains to analyze the cost of the solution subgraph. First, we analyze the number of times
that the covering-procedure applies the rooted subset (` + 1)-connectivity algorithm. Then we
analyze the total cost incurred by all inner iterations, which is the cost for increasing the subset
connectivity of a graph by one. Finally, we apply Theorem 3.1 to analyze the final approximation
guarantee.

Consider any micro iteration of the covering-procedure. By Lemma 3.5, r̂ is contained in at
most O(1) halo-sets, assuming that |T | ≥ 2`. Hence, we have to apply the rooted subset (` + 1)-
connectivity algorithm O(1) times.

We now analyze the number of micro iterations needed to hit all of the halo-families. Let hi
denote the number of halo-families that are not hit by S at the beginning of the i-th micro iteration.
Recall that the number of cores after the preprocessing step is O(`). Thus, h1 = O(`). We claim
that, at the i-th iteration, the number of halo-families that are not hit by S is at most h1/2

i−1.

Lemma 3.11. Consider the i-th micro iteration. The number of halo-families that are not hit by
terminals of S at the start of the iteration is h1/2

i−1.

Proof. We proceed by induction on i. It is trivial for i = 1. Suppose that the assertion is true
for the (i − 1)-th micro iteration for some i > 1. Consider the (i − 1)-th micro iteration. Since
we choose a vertex r̂ with a minimum thickness, by Lemma 3.10, the thickness of r̂ is at most
hi−1`
|T | . Note that `/|T | ≤ 1/2 since |T | ≥ 2`. This means that r̂ is a neighbor of at most hi−1/2

halo-sets. At the end of the micro iteration, halo-families that are not hit by terminals of S are
halo-families whose halo-sets have r̂ as a neighbor. Thus, the number of remaining halo-families is
at most hi−1/2. Hence, we have

hi ≤ hi−1
(

1

2

)
≤

(
h1

(
1

2

)i−2)(1

2

)
= h1

(
1

2

)i−1

Lemma 3.11 implies that the maximum number of micro iterations (within the covering-procedure)
is O(log h1) = O(log `). So, in each inner iteration, we have to call the rooted subset (` + 1)-
connectivity algorithm O(log `) times.

Lastly, we analyze the total cost incurred by all inner iterations, which is the cost for increasing
the subset connectivity of a graph by one. We may apply Theorem 2.1 directly to analyze the
cost of the solution. However, this leads to a bound slightly weaker than what we claimed. To
get the desired bound, we apply a stronger version of Nutov’s theorem [21]. In particular, the
approximation guarantee of Nutov’s algorithm depends on the size of a smallest deficient set. To
be precise, the size of a smallest deficient set is defined by

min{|U ∩ T | : U is a deficient set}.

Lemma 3.12 (Nutov 2009 [21]). Consider the problem of increasing the rooted subset connectivity
of a graph from ` to `+1. Let φ = min{|U ∩T | : U is a deficient set}. That is, each deficient set of
the initial graph contains at least φ terminals. Then there is an O(`/φ)-approximation algorithm.

Now, we analyze the size of a smallest deficient set of a graph at the beginning of each inner
iteration. Consider the cores at any inner iteration. We call cores at the beginning of the iteration
old cores and call cores at the end of the iteration new cores. We claim that every new core Ĉ
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contains at least two old cores C and D that are disjoint on T . This follows from the following
lemma.

Lemma 3.13. No small deficient set contains two distinct cores C and D such that C∩D∩T 6= ∅.

Proof. Suppose to the contrary that there is a small deficient set U that contains two distinct cores
C and D such that C ∩D ∩ T 6= ∅. Since C ∩D ∩ T 6= ∅, by Lemma 3.4, C∗ ∩D∗ ∩ T = ∅; that is,
C∗ ∩D∗ has no terminals. Since U contains both C and D, it follows that U∗ is contained in both
C∗ and D∗. Hence, U∗ has no terminals. This contradicts the fact that U is a deficient set.

Lemma 3.13 implies that no new cores contain two old cores that are intersecting on T . This is
because new cores are small deficient sets of the old graph. Moreover, since all small deficient sets
that contain only one core have been covered, new cores must contain at least two old cores that
are disjoint on T . Thus, the size of a smallest deficient set increases by a factor of 2. This implies
the following lemma.

Lemma 3.14. Consider the j-th inner iteration. At the beginning of the iteration, the size of a
smallest deficient set of the current graph is at least 2j−1.

Proof. As in the above discussion, the size of a smallest deficient set increases by a factor of two
in each inner iteration. In more detail, consider the size of a smallest deficient set at the beginning
and the end of an inner iteration. We call the graph at the beginning of the iteration an “old graph”
and the graph at the end of the iteration a “new graph”. Let U and U ′ denote smallest deficient
sets of the old and the new graph, respectively. By the size argument, we conclude that U and
U ′ are cores of the old and the new graph. At the end of the inner iteration, small deficient sets
containing one core are all covered. Thus, U ′ contains two distinct cores C and C ′ of the old graph.
Moreover, Lemma 3.13 implies that C and C ′ have no terminals in common. By the minimality of
U , we have |C ∩T | ≥ |U ∩T | and |C ′ ∩T | ≥ |U ∩T |. Thus, |U ′ ∩T | ≥ |C ∪T |+ |C ′ ∩T | ≥ 2|U ∩T |
as claimed.

Now, we prove the lemma by induction. At the first inner iteration, each deficient set contains
at least one terminal. Thus, the statement holds for the base case. Assume that the assertion is
true for the (j − 1)-th inner iteration; that is, at the beginning of the (j − 1)-th inner iteration,
any deficient set U has at least 2j−2 terminals. By the above claim, this number increases by a
factor of two at the end of the iteration. Thus, at the beginning of the j-th iteration, the size of a
smallest deficient sets is 2j−1, proving the lemma.

By Lemma 3.12 and 3.14, at the j-th inner iteration, the cost incurred by the rooted subset
(` + 1)-connectivity algorithm is O(`/2j−1). Combining everything together, the approximation
guarantee for the problem of increasing the subset connectivity of a graph by one is

O

(
`

20
log `+

`

21
log `+ . . .

)
= O(` log `).

Thus, by Theorem 3.1, our algorithm achieves an approximation guarantee of O(k log2 k), as-
suming that |T | ≥ 2k.
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3.6 An O(k log k)-approximation algorithm for |T | ≥ k2.

To finish, we show that if the number of terminals is large, then we get a slightly better performance
guarantee. Observe that if |T | ≥ k2, then, by Lemma 3.10, there is a terminal r̂ with a thickness of

at most q`
|T | ≤

2`2

`2
= 2. Moreover, by Lemma 3.5, each terminal is contained in at most 2|T |

|T |−` = O(1)

halo-sets. Thus, the number of halo-families that are not hit by r̂ is O(1). This means that we
can hit all the remaining halo-families by choosing O(1) terminals; that is, for each halo-family, we
choose one terminal from its core. So, we can skip the micro iterations of the covering-procedure,
and the approximation guarantee becomes O(k log k).

3.7 Analysis for the case k < |T | < 2k

Our algorithm in Section 3.5 indeed applies to the case k < |T | < 2k with an approximation

guarantee of O

((
|T |
|T |−k

)2
k log2 k

)
. To see this, we leave the bounds in Lemma 3.5 and Lemma 3.10

untouched. Then we have

• Each terminal is contained in at most O
(
|T |
|T |−k

)
halo-families.

• There is a terminal with a thickness of O
(
`q
|T |

)
, where q is the number of halo-families.

Recall the micro iterations of the covering-procedure. In each micro iteration, we choose

O
(
|T |
|T |−`

)
terminals, and the number of halo-families (which are not hit) decreases by a factor

of |T |` . Here the number of micro iterations is not logarithmic because |T |` is not constant when

|T | ≈ `. To analyze the upper bound, we write `
|T | as 1− 1

|T |/(|T |−`) and apply an equation:

lim
x→∞

(
1− 1

x

)x
=

1

e

Thus, we need O
(
|T |
|T |−`

)
micro iterations to decrease the number of halo-families (which are not hit)

by a factor of e. This means that the covering-procedure terminates in O
(
|T |
|T |−` log q

)
iterations,

where q is the number of halo-families. (Note that, in this case, we do not need the preprocessing
step because the number of halo-families is at most |T |2 = O(k2).) So, the covering-procedure has

to call the rooted subset (`+1)-connectivity algorithm for O

((
|T |
|T |−`

)2
log k

)
times. Following the

analysis in Section 3.5.1, we have an approximation guarantee of O

((
|T |
|T |−k

)2
k log2 k

)
as claimed.

4 Hardness of the subset k-connectivity problem

In this section, we discuss the hardness of the subset k-connectivity problem. First, we will show in
Section 4.1 that the hardest instance of the subset k-connectivity problem might be when k ≈ |T |;
that is, we prove Proposition 2.3. Then we will present in Section 4.2 an approximation preserving
reduction from the rooted subset k-connectivity problem to the subset k-connectivity problem; that
is, we prove Theorem 2.4.
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4.1 The hardest instance

We will show that an α(k)-approximation algorithm for the case |T | = k implies an (α(k) + f(k))-
approximation algorithm for all instances with |T | > k, where f(k) is the best known approximation
guarantee for the rooted subset k-connectivity problem. In particular, instances with |T | ≈ k might
be the hardest cases of the subset k-connectivity problem.

Suppose there is an α(k)-approximation algorithm A for the subset k-connectivity problem for
the case |T | = k. We apply A to solve an instance of the subset k-connectivity problem with |T | > k
as follows. Let G = (V,E) be a given graph and T ⊆ V be a set of terminals, where |T | > k. First,
we take any subset R of k terminals from T . Then we apply the algorithm A to this instance with
R as the set of terminals; this results in a graph GR = (V,ER). Clearly, R is k-connected in GR.
Now, we make the remaining terminals connected to R by applying the rooted subset k-connectivity
algorithm. To be precise, we construct a padded graph by adding a new vertex r̂ and new edges of
zero cost from r̂ to each terminal of R. Then we apply the rooted subset k-connectivity algorithm
to the padded graph with the set of terminals T and the root r̂. Denote a solution subgraph (of
the padded graph) by Gpad = (V ∪ {r̂}, Eroot ∪ {(r̂, t) : t ∈ R}), where Eroot ⊆ E. The algorithm

outputs the union of the two subgraphs, namely Ĝ = (V,ER ∪ Eroot).
We claim that the set of all terminals T is k-connected in Ĝ. Suppose not. Then there is a set

of vertices X ⊆ V of size k − 1 that separates some terminals s, t ∈ T − X; that is, s and t are
not connected in Ĝ −X. Consider the padded subgraph Gpad. By the construction, since Gpad is
k-connected from r̂ to T , both s and t have paths to r̂ in Gpad −X. Moreover, each of these two
paths must visit some terminals s′ and t′ in R, respectively. If s′ = t′, then s and t are connected
by the union of these paths. So, we have a contradiction. If s′ 6= t′, then we can join these two
paths by an s′, t′-path in GR −X. Such s′, t′-path exists because R is k-connected in GR, meaning
that X cannot separates a pair of terminals in R. Thus, s and t are connected, and we again have
a contradiction.

Now, consider the cost. The approximation factor incurred by the algorithm A is α(k), and
the approximation factor incurred by the rooted subset k-connectivity algorithm is f(k). Thus, the
above algorithm gives an approximation guarantee of (α(k) + f(k)) as claimed.

4.2 A reduction from the rooted subset k-connectivity problem

As we showed in the previous section, an approximation algorithm for the rooted subset k-connectivity
problem implies an approximation algorithm for the subset k-connectivity problem. Hence, it is
more likely that the rooted problem is easier than the subset problem. Here we show a solid evi-
dence of this statement; that is, we will give an approximation preserving reduction from the rooted
subset k-connectivity problem to the subset k-connectivity problem.

The key idea of the reduction is that a solution Ĝ to the rooted subset k-connectivity problem is
indeed almost subset k-connected. In particular, if the root vertex r is not allowed to be removed,
then there is no set of vertices of size less than k that can separate a pair of terminals. So, we
want to prevent the root vertex r from being in a separator. To do this, we replace r by a clique
Kd of size at least k + 1. Thus, removing any set of less than k vertices cannot remove all vertices
corresponding to r.

Now, we shall realize the above idea. First, take any instance Πroot of the rooted subset k-
connectivity problem consisting of a graph G = (V,E), a set of terminals T ⊆ V and a root
vertex r ∈ V − T . Let d be the degree of r in G. Clearly, if the instance Πroot is feasible, then
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d ≥ k. We construct an instance Πsubset of the subset k-connectivity problem consisting of a graph
G′ = (V ′, E′) and a set of terminals T ′ as follows. Let {v1, v2, . . . , vd} be a set of neighbors of
r in G. We remove from G the vertex r and replace it with a clique Kd+1 on a set of vertices
{r′, v′1, v′2, . . . , v′d}. All edges of Kd+1 have zero costs. The vertex r′ corresponds to the root vertex
r of G, and each vertex v′i corresponds to each neighbor vi of r in G. Then we connect Kd+1 to G
by adding to G′ an edge (v′i, vi) for each edge (r, vi) in G and setting the cost of (v′i, vi) to be the
same as the cost of (r, vi). Thus, each edge (v′i, vi) in G′ corresponds to an edge (r, vi) in G. The
set of terminals of this new instance is T ′ = T ∪ {r′}, and the connectivity requirements is k, the
same for both instances. This completes the construction.

In sum, we have

G′ = G− {r}+Kd+1 + {(v′1, v1), (v′2, v2), . . . , (v′d, vd)}
T ′ = T ∪ {r′}
r′ ↔ r

(v′i, vi)↔ (r, vi) for all i = 1, 2, . . . , d

Completeness: First, we show that any feasible solution H of Πroot maps to a feasible solution
H ′ of Πsubset with the same cost. The mapping is as follows. Given a graph H, we construct a
solution H ′ to Πsubset by taking all edges of Kd+1 and all edges of G′ corresponding to edges of H.
Clearly, the cost of H ′ and H are the same. It remains to show that T ′ is k-connected in H ′.

The connectivity between the vertex r′ and each terminal t ∈ T is clearly satisfied. This is
because any collection of openly disjoint r, t-paths in H maps to a collection of openly disjoint
r′, t-paths in H ′. In particular, any path P = (r, vi, . . . , t) in H maps to a path P ′ = (r, v′i, vi, . . . , t)
in H ′, and it is easy to see that the mapping preserves vertex-disjointness. By the same argument,
we can deduce that every vertex v′j ∈ Kd+1 is k-connected to t in H ′. This is because the path P
also maps to a path P ′′ = (v′j , v

′
i, vi, . . . , t) or P ′′ = (v′j , vj , . . . , t) in H ′.

Now, consider the connectivity between a pair of vertices t, t′ ∈ T . Assume a contradiction that
t and t′ are not k-connected. Then there is a subset of vertices X of G′ with |X| ≤ k− 1 such that
t and t′ are not connected in H ′−X. Since |X| ≤ k− 1 ≤ d, there is a vertex s in Kd+1−X. (The
vertex s is either the vertex r′ or some vertex vi in Kd+1.) As we have shown, s is k-connected to
t and t′ in H ′. Thus, by Menger’s theorem, H ′ − X contains both an s, t-path and an s, t′-path.
So, t and t′ are connected in H ′−X, a contradiction. Therefore, T ′ is k-connected in H ′, implying
that H ′ is feasible to the subset k-connectivity problem.

Soundness: Now, we show the converse; that is, any feasible solution H ′ of Πsubset maps to a
feasible solution H of Πroot with the same cost. This direction is easy. We construct H ′ by taking
all edges of H ′ that correspond to edges of G. Clearly, the cost of H and H ′ are the same. By
feasibility, H ′ has, for each terminal t ∈ T , a collection of k openly disjoint r′, t-paths, namely
P ′1, P

′
2, . . . , P

′
k, and each path P ′j is of the form P ′j = (r′, v′i, vi, . . . , t). The path P ′j maps to a path

Pj = (r, vi, . . . , t) in H. So, we have a collection of paths P1, P2, . . . , Pk in H that are openly
disjoint. Therefore, H is feasible to the rooted subset k-connectivity problem, finishing the proof.
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5 Conclusions and Discussions

We studied the structure of the subset k-connectivity problem and used this knowledge to design
an approximation algorithm for the subset k-connectivity problem. When the number of terminals
is moderately large, at least 2k, our algorithm gives a very good approximation guarantee of
O(k log2 k). When the number of terminals is tiny, at most

√
k, then the trivial algorithm also

gives a very good approximation guarantee of O(k). However, when the number of terminals is
between

√
k and 2k, the approximation guarantee can be as large as Θ(k2). Interestingly, as we

have shown, it does seem that the hardest instances of the subset k-connectivity problem are when
the number of terminals is close to k.
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