
Routing Regardless of Network Stability

Bundit Laekhanukit1, Adrian Vetta1, and Gordon Wilfong2

1 McGill University
2 Bell Laboratories

Abstract. How effective are interdomain routing protocols, such as the
Border Gateway Protocol, at routing packets? Theoretical analyses have
attempted to answer this question by ignoring the packets and instead
focusing upon protocol stability. To study stability, it suffices to model
only the control plane (which determines the routing graph) – an ap-
proach taken in the Stable Paths Problem. To analyse packet routing, it
requires modelling the interactions between the control plane and the
forwarding plane (which determines when packets are forwarded), and
our first contribution is to introduce such a model. We then examine
the effectiveness of packet routing in this model for the broad class next-
hop preferences with filtering. Here each node v has a filtering list D(v)
consisting of nodes it does not want its packets to route through. Ac-
ceptable paths (those that avoid nodes in the filtering list) are ranked
according to the next-hop, that is, the neighbour of v that the path be-
gins with. On the negative side, we present a strong inapproximability
result. For filtering lists of cardinality at most one, given a network in
which an equilibrium is guaranteed to exist, it is NP-hard to approximate
the maximum number of packets that can be routed to within a factor of
O(n1−ε), for any constant ε > 0. On the positive side, we give algorithms
to show that in two fundamental cases every packet will eventually route
with probability one. The first case is when each node’s filtering list con-
tains only itself, that is, D(v) = {v}. Moreover, with positive probability
every packet will be routed before the control plane reaches an equilib-
rium. The second case is when all the filtering lists are empty, that is,
D(v) = ∅. Thus, with probability one packets will route even when the
nodes don’t care if their packets cycle! Furthermore, with probability
one every packet will route even when the control plane has no equilib-
rium at all. To our knowledge, these are the first results to guarantee the
possibility that all packets get routed without stability. These positive
results are tight – for the general case of filtering lists of cardinality one,
it is not possible to ensure that every packet will eventually route.

1 Introduction

In the Stable Paths Problem (SPP) [1], we are given a directed graph G = (V,A)
and a sink (or destination) node r. Furthermore, each node v has a ranked list
of some of its paths to r and the lowest ranked entry in the list is the “empty

path”3. This preference list is called v’s list of acceptable paths. A set of paths,
one path P(v) from each node v’s list of acceptable paths, is termed stable if
(i) they are consistent: if u ∈ P(v), then P(u) must be the subpath of P(v)
beginning at u, and (ii) they form an equilibrium: for each node v, P(v) is the
path ranked highest by v of the form vP (w) where w is a neighbour of v. The
stable paths problem asks whether a stable set of paths exists in the network.
The SPP has risen to prominence as it is viewed as a static description of the
problem that the Border Gateway Protocol (BGP) is trying dynamically to solve.
BGP can be thought of as trying to find a set of stable routes to r so that routers
can use these routes to send packets to r.

Due to the importance of BGP, both practical and theoretical aspects of
the SPP have been studied in great depth. To avoid overloading the reader with
practical technicalities and for reasons of space, we defer discussions on a sample
of this vast literature and on the technical aspects of BGP to the full paper. Two
observations concerning the SPP, though, are pertinent here and motivate our
work:
(1) Even if a stable solution exists, the routing tree induced by a consistent
set of paths might not be spanning. Hence, a stable solution may not actually
correspond to a functioning network – there may be isolated nodes that cannot
route packets to the sink! Disconnectivities arise because nodes may prefer the
empty-path to any of the paths proffered by its neighbours; for example, a node
might not trust certain nodes to handle its packets securely or in a timely fashion,
so it may reject routes traversing such unreliable domains. This problem of non-
spanning routing trees has quite recently been studied in the context of a version
of BGP called iBGP [4]. In Section 3, we show that non-connectivity is a very
serious problem (at least, from the theoretical side) by presenting an O(n1−ε)
hardness result for the combinatorial problem of finding a maximum cardinality
stable subtree.
(2) The SPP says nothing about the dynamic behaviour of BGP. Stable routings
are significant for many practical reasons (e.g., network operators want to know
the routes their packets are taking), but while BGP is operating at the control
plane level, packets are being sent at the forwarding plane level without waiting
for stability (if, indeed, stability is ever achieved). Thus, it is important to study
network performance in the dynamic case. For example, what happens to the
packets whilst a network is unstable? This is the main focus of our paper: to
investigate packet routing under network dynamics.

Towards this goal, we define a distributed protocol, inspired by BGP, that
stops making changes to the routing graph (i.e., becomes stable) if it achieves a
stable solution to the underlying instance of SPP. The current routing graph itself
is determined by the control plane but the movement of packets is determined
by the forwarding plane. Thus, our distributed protocol provides a framework
under which the control and forwarding planes interact; essentially, this primarily

3 Clearly, the empty path is not a real path to the sink; we call it a path for clarity of
exposition.

2

means that we need to understand the relative speeds at which links change and
packets move.

Given this model we analyse the resulting trajectory of packets. In a stable
solution, a node in the stable tree containing the sink would have its packets
route whereas an isolated node would not. For unstable networks, or for stable
networks that have not converged, things are much more complicated. Here the
routes selected by nodes are changing over time and, as we shall see, this may
cause the packets to cycle. If packets can cycle, then keeping track of them
is highly non-trivial. Our main results, however, are that for two fundamental
classes of preference functions (i.e., two ways of defining acceptable paths and
their rankings) all packets will route with probability one in our model. That is,
there is an execution of the our distributed protocol such that every packet in
the network will reach the destination (albeit, possibly, slowly) even in instances
where the network has no stable solution. (Note that we are ignoring the fact
that in BGP packets typically have a time-to-live attribute meaning that after
traversing a fixed number of nodes the packet will be dropped.) Furthermore,
when the network does have a stable solution, we are able to guarantee packet
routing even before the time when the network converges.

These positive results on the routing rate are to our knowledge, the first
results to guarantee the possibility of packet routing without stability. The re-
sults are also tight in the sense that, for any more expressive class of preference
function, our hardness results show that guaranteeing that all packet eventually
route is not possible – thus, packets must be lost.

2 The Model and Results

We represent a network by a directed graph G = (V,A) on n nodes. The des-
tination node in the network is denoted by a distinguished node r called a sink
node. We assume that, for every node v ∈ V , there is a directed path in G from
v to the sink r, and the sink r has no outgoing arc. At any point in time t,
each node v chooses at most one of its out-neighbours w as its chosen next-hop;
thus, v selects one arc (v, w) or selects none. These arcs form a routing graph
R t, each component of which is a 1-arborescence, an in-arborescence4 T plus
possibly one arc (v, w) emanating from the root v of T , i.e, T and T ∪ {(v, w)}
are both 1-arborescences. (If the root of a component does select a neighbour,
then that component contains a unique cycle.) When the context is clear, for
clarity of exposition, we abuse the term tree to mean a 1-arborescence, and we
use the term forest to mean a set of trees. A component (tree) in a routing graph
is called a sink-component if it has the sink r as a root; other components are
called non-sink components.

Each node selects its outgoing arc according to its preference list of acceptable
paths. We examine the case where these lists can be generated using two of the
most common preference criteria in practice: next-hop preferences and filtering.

4 An in-arborescence is a graph T such that the underlying undirected graph is a tree
and every node has a unique path to a root node.

3

For next-hop preferences, each node v ∈ V has a ranking on its out-neighbours,
nodes w such that (v, w) ∈ A. We say that w is the k-th choice of v if w is an
out-neighbour of v with the k-th rank. For k = 1, 2, . . . , n, we define a set of
arcs Ak to be such that (v, w) ∈ Ak if w is the k-th choice of v, i.e., Ak is the
set of the k-th choice arcs. Thus, A1, A2, . . . , An partition a set of arcs A, i.e.,
A = A1 ∪ A2 ∪ . . . An. We call the entire graph G = (V,A) an all-choice graph.
A filtering list, D(v), is a set of nodes that v never wants its packets to route
through. We allow nodes to use filters and otherwise rank routes via next-hop
preferences, namely next-hop preferences with filtering.

To be able to apply these preferences, each node v ∈ V is also associated
with a path P(v), called v’s routing path. The routing path P(v) may not be
the same as an actual v, r-path in the routing graph. A routing path P(v) (resp.,
a node v) is consistent if P(v) is a v, r-path in the routing graph; otherwise, we
say that P(v) (resp., v) is inconsistent. A node v is clear if the routing path
P(v) 6= ∅, i.e., v has a path to the sink; otherwise, v is opaque. (The node v will
never keep a path that is not a v, r-path.) We say that a node w is valid for v or
is a valid choice for v if w is clear and P(w) contains no nodes in the filtering list
D(w). If w is a valid choice for v, and v prefers w to all other valid choices, then
we say that w is the best valid choice of v. A basic step in the dynamic behaviour
of BGP is that, at any time t, some subset Vt of nodes is activated meaning that
every node v ∈ Vt chooses the most highest ranked acceptable path P(v) that
is consistent with one of its neighbours’ chosen paths at time t− 1. The routing
graph R t consists of the first arc in each routing path at time t.

Protocol variations result from such things as restricting Vt so that |Vt| = 1,
specifying the relative rates that nodes are chosen to be activated and allowing
other computations to occur between these basic steps. In our protocol, we as-
sume that activation orderings are fair in that each node activates exactly once
in each time period – a round – the actual ordering however may differ in each
round. While our protocol is not intended to model exactly the behaviour of
BGP, we tried to let BGP inspires our choices and captures the essential coordi-
nation problem that makes successful dynamic routing hard. Again, a detailed
discussion on these issues an on the importance of a fairness-type criteria is
deferred to the full paper.

Procedure 1 Activate(v)

Input: A node v ∈ V − {r}.
1: if v has a valid choice then
2: Choose a best valid choice w of v.
3: Change the outgoing arc of v to (v, w).
4: Update P(v) := vP(w) (the concatenation of v and P(w)).
5: else
6: Update P(v) := ∅.
7: end if

4

Procedure 2 Protocol(G,r,R 0)

Input: A network G = (V,A), a sink node r and a routing graph R 0

1: Initially, every node generates a packet.
2: for round t = 1 to . . . do
3: Generate a permutation πt of nodes in V − {r} using an external algorithm A.
4: Control Plane: Apply Activate(v) to activate each node in the order in πt.

This forms a routing graph R t.
5: Forwarding Plane: Ask every node to forward packets it has, and wait until

every packet is moved by at most n hops (forwarded n times) or gets to the sink.
6: Route-Verification: Every node learns which paths it has in the routing graph,

i.e., update P(v) := v, r-path in R t.
7: end for

This entire mechanism can thus be described using two algorithms as follows.
Once activated, a node v updates its routing path P(v) using the algorithm in
Procedure 1. The generic protocol is described in Procedure 2. This requires an
external algorithm A which acts as a scheduler that generates a permutation – an
order in which nodes will be activated in each round. We will assume that these
permutations are independent and randomly generated. Our subsequent routing
guarantees will be derived by showing the existence of specific permutations that
ensure all packets route. These permutations are different in each of our models,
which differ only in filtering lists. We remark that our model is incorporated
with a route-verification step, but this is not a feature of BGP (again, see the
full version for a discussion).

With the model defined, we examine the efficiency of packet routing for the
three cases of next-hop preferences with filtering:

• General Filtering. The general case where the filtering list D(v) of any
node v can be an arbitrary subset of nodes.

• Not me! The subcase where the filtering list of node v consists only of itself,
D(v) = {v}. Thus, a node does not want a path through itself, but otherwise
has no nodes it wishes to avoid.

• Anything Goes! The case where every filtering list is empty, D(v) = ∅. Thus
a node does not even mind if its packets cycle back through it!

We partition our analyses based upon the types of filtering lists. Our first
result is a strong hardness result presented in Section 3. Not only can it be hard
to determine if every packet can be routed but the maximum number of packets
that can be routed cannot be approximated well even if the network can reach
equilibrium. Specifically,

Theorem 1. For filtering lists of cardinality at most one, it is NP-hard to ap-
proximate the maximum stable subtree to within a factor of O(n1−ε), for any
constant ε > 0.

Corollary 1. For filtering lists of cardinality at most one, given a network in
which an equilibrium is guaranteed to exist, it is NP-hard to approximate the

5

maximum number of packets that can be routed to within a factor of O(n1−ε),
for any constant ε > 0.

However, for its natural subcase where the filtering list of a node consists
only of itself (that is, a node doesn’t want to route via a cycle!), we obtain a
positive result in Section 5.

Theorem 2. If the filtering list of a node consists only of itself, then an equi-
librium can be obtained in n rounds. However, every packet will be routed in n

3
rounds, that is, before stability is obtained!

Interestingly, we can route every packet in the case D(v) = ∅ for all v ∈ V ;
see Section 4. Thus, even if nodes don’t care whether their packets cycle, the
packets still get through!

Theorem 3. If the filtering list is empty then every packet can be routed in 4
rounds, even when the network has no equilibrium.

Theorems 2 and 3 are the first theoretical results showing that packet routing can
be done in the absence of stability. For example, every packet will be routed even
in the presence of dispute wheels. Indeed, packets will be routed even if some
nodes never actually have paths to the sink. Note that when we say that every
packet will route with probability one we mean that, assuming permutations are
drawn at random, we will eventually get a fair activation sequence that routes
every packet. It is a nice open problem to obtain high probability guarantees for
fast packet routing under such an assumption.

3 General Filtering.

Here we consider hardness results for packet routing with general filtering lists.
As discussed, traditionally the theory community has focused upon the stability
of R – the routing graph is stable if every node is selecting their best valid
neighbour (and is consistent). For example, there are numerous intractability
results regarding whether a network has an equilibrium. However, that the rout-
ing graph may be stable even if it is not spanning! There may be singleton nodes
that prefer to stay disconnected rather than take any of the offered routes. Thus,
regardless of issues such as existence and convergence, an equilibrium may not
even route the packets. This can be particularly problematic when the nodes
use filters. Consider our problem of maximising the number of nodes that can
route packets successfully. We show that this cannot be approximated to within
a factor of n1−ε, for any ε > 0 unless P = NP. The proof is based solely upon a
control plane hardness result: it is NP-hard to approximate the maximum-size
stable tree to within a factor of n1−ε. Thus, even if equilibria exist, it is hard
to determine if there is one in which the sink-component (the component of R
containing the sink) is large.

Formally, in the maximum-size stable tree problem, we are given a directed
graph G = (V,E) and a sink node r; each node v ∈ V has a ranking of its

6

neighbours and has a filtering list D(v). Given a tree (arborescence) T ⊆ G, we
say that a node u is valid for a node v if (u, v) ∈ E and a v, r-path in T does
not contain any node of D(v). We say that T is stable if, for every arc (u, v) of
T , v is valid for u, and u prefers v to any of its neighbours in G that are valid
for u (w.r.t. T). Our goal is to find the stable tree (sink-component) with the
maximum number of nodes. We will show that even when |D(v)| = 1 for all
nodes v ∈ V , the maximum-size stable tree problem cannot be approximated to
within a factor of n1−ε, for any constant ε > 0, unless P = NP.

The proof is based on the hardness of 3SAT [2]: given a CNF-formula on
N variables and M clauses, it is NP-hard to determine whether there is an
assignment satisfying all the clauses. Take an instance of 3SAT with N variables,
x1, x2, . . . , xN and M clauses C1, C2, . . . , CM . We now create a network G =
(V,A) using the following gadgets:

– Var-Gadget: For each variable xi, we have a gadget H(xi) with four nodes
ai, u

T
i , u

F
i , bi. The nodes uTi and uFi have first-choice arcs (uTi , ai), (uFi , ai)

and second-choice arcs (uTi , bi), (uFi , bi). The node ai has two arcs (ai, u
T
i)

and (ai, u
F
i); the ranking of these arcs can be arbitrary. Each node in this

gadget has itself in the filtering list, i.e., D(v) = {v} for all nodes v in H(xi).
– Clause-Gadget: For each clause Cj with three variables xi(1), xi(2), xi(3),

we have a gadgetQ(Cj). The gadgetQ(Cj) has four nodes sj , q1,j , q2,j , q3,j , tj .
The nodes q1,j , q2,j , q3,j have first-choice arcs (q1,j , tj), (q2,j , tj), (q3,j , tj).
The node sj has three arcs (sj , q1,j), (sj , q2,j), (sj , q3,j); the ranking of these
arcs can be arbitrary, so we may assume that (sj , qz,j) is a zth-choice arc.
Define the filtering list of sj and tj as D(sj) = {sj} and D(tj) = {d0}.
(The node d0 will be defined later.) For z = 1, 2, 3, let uTi(z) be a node in a

Var-Gadget H(xi(z)); the node qz,j has a filtering list D(qz,j) = {uTi(z)}, if

assigning xi(z) = True satisfies the clause Cj ; otherwise, D(qz,j) = {uFi(z)}.

To build G, we first add a sink node r and a dummy sink d0; we connect d0
to r by a first-choice arc (d0, r). We arrange Var-Gadgets and Clause-Gadgets in
any order. Then we add a first-choice arc from the node a1 of the first Var-Gadget
H(x1) to the sink r. For i = 2, 3, . . . , N , we add a first-choice arc (bi, ai−1) joining
gadgets H(xi−1) and H(xi). We join the last Var-Gadget H(xN) and the first
Clause-Gadget Q(C1) by a first-choice arc (t1, aN). For j = 2, 3, . . . ,M , we add
a first-choice arc (tj , sj−1) joining gadgets Q(Cj−1) and Q(Cj). This forms a
line of gadgets. Then, for each node qz,j of each Clause-Gadget Q(Cj), we add
a second-choice arc (qz,j , d0) joining qz,j to the dummy sink d0. Finally, we add
L padding nodes d1, d2, . . . , dL and join each node di, for i = 1, 2, . . . , L, to the
last Clause-Gadget Q(cM) by a first-choice arc (di, sM); the filtering list of each
node di is D(di) = {d0}, for all i = 0, 1, . . . , L. The parameter L can be any
positive integer depending on a given parameter. Observe that the number of
nodes in the graph G is 4N + 5M + L+ 2, and |D(v)| = 1 for all nodes v of G.
The reduction is illustrated in Figure 3(a).

The correctness of the reduction is proven in the next theorem. The proof is
provided in the full version.

7

Q(C
j
)

s
i

d
0

r

u
i
T

u
i
Fa

i
b

i

q
1, j

t
i

q
2, j

q
3, j

H(x
i
)d

1
,d
2
,...,d

L

w

x

u

r

v

y

1 1

1

1
1

22

(a) (b)

Fig. 1. (a) The reduction from 3SAT. (b) A network with no stable solution.

Theorem 4. For any constant ε > 0, given an instance of the maximum-size
stable tree problems with a directed graph G on n nodes and filtering lists of
cardinality |D(v)| = 1 for all nodes v, it is NP-hard to distinguish between the
following two cases of the maximum-size stable tree problem.

• Yes-Instance: The graph G has a stable tree spanning all the nodes.

• No-Instance: The graph G has no stable tree spanning nε nodes. ut

From the perspective of the nodes, it is NP-hard to determine whether adding
an extra node to its filtering list can lead to solutions where none of its packets
ever route. In other words, it cannot avoid using intermediate node it dislikes!

4 Filtering: Anything-Goes!

Here we consider the case where every node has an empty filtering list. This case
is conceptually simple but still contains many technical difficulties involved in
tracking packets when nodes become mistaken in their connectivity assessments.
In this case, networks with no stable solutions can exist (for example, see Fig-
ure 3(b)), and there can be fair activation sequences under which a node will
never be in the sink-component. We show, however, that even in such circum-
stances, every packet still reaches the sink, and this is the case for all networks.
Specifically, we present a fair activation sequence of four rounds that routes every
packet, even when there is no equilibrium.

When filtering lists are empty, a node v only needs to known whether its
neighbour u has a path to the sink since v does not have any node it dislikes.
Thus, we can view each node as having two states: clear or opaque. A node is
clear if it is in the routing-tree (the nomenclature derives from the fact that a
packet at such a node will then reach the sink – that is, “clear”); otherwise, a
node is opaque. Of course, as nodes update their chosen next-hop over time, they
may be mistaken in their beliefs (inconsistent) as the routing graph changes. In
other words, some clear nodes may not have “real” paths to the sink. After the
learning step at the end of the round, these clear-opaque states are correct again.

8

Our algorithm and analysis are based on properties of the network formed
by the first-choice arcs, called the first class network. We say that an arc (u, v)
of G is a first-choice arc if v is the most preferred neighbour of u. We denote the
first class network by F = (V,A1), where A1 are the first-choice arcs. As in a
routing graph R , every node in F has one outgoing arc. Thus, every component
of F is a 1-arborescences, a tree-like structure with either a cycle or a single
node as a root. We denote the components of F by F0, F1, . . . , F`, where F0 is
the component containing the sink r. Observe that, when activated, every node
in F0 will always choose its neighbour in F0. So, we may assume wlog that F0

is a singleton. Each Fj has a unique cycle Cj , called a first class cycle (We may
assume the directed cycle in F0 is a self-loop at the sink r.) The routing graph
at the beginning of Round t is denoted by R t. We denote by K t and Ot the sets
of clear and the set of opaque nodes at the start of Round t. Now, we will show
that there is an activation sequence which routes every packet in four rounds.

The proof has two parts: a coordination phase and a routing phase. In the
first phase, we give a coordination algorithm that generates a permutation that
gives a red-blue colouring of the nodes with the following three properties: (i) For
each Fj , every node in Fj has the same colour, i.e., the colouring is coordinated.
(ii) If the first class cycle Cj of Fj contains a clear node then all nodes in Fj
must be coloured blue. (iii) Subject to the first two properties the number of
nodes coloured red is maximised. The usefulness of this colouring mechanism
lies in the fact that the corresponding permutation is a fair activation sequence
that will force the red nodes to lie in the sink-component and the blue nodes in
non-sink-components. Moreover, bizarrely, running this coordination algorithm
four times in a row ensures that every packet routes! So in the second phase, we
run the coordination algorithm three more times.

Procedure 3 Coordinate(K t)

Input: A set of clear nodes K t.
Output: A partition (R,B) of V .
1: Let B0 :=

⋃
i:V (Cj)∩K t 6=∅ V (Fi) be a set of nodes containing in an F -component

whose first class cycle Ci has a clear node.
2: Initialise q := 0.
3: repeat
4: Update q := q + 1.
5: Initialise Bq := Bq−1, Rq := {r} and U := V − (Rq ∪Bq).
6: while ∃ a node v ∈ U that prefers a node in Rq to nodes in Bq ∪ (U ∩Kt) do
7: Move v from U to Rq.
8: end while
9: while ∃ a node v ∈ U that prefers a node in Bq to nodes in Rq ∪ (U ∩Kt) do

10: Move v from U to Bq.
11: end while
12: Move U ∩ K t from U to Bq.
13: until Bq = Bq−1.
14: return (Rq, Bq).

9

4.1 Coordination Phase.

The algorithm Coordinate(K t) in Procedure 3 constructs a red-blue colour-
ing of the nodes, i.e. the final partition (R,B) of V . At the termination of
Coordinate(K t), by the construction, any node v ∈ R prefers some node in R
to any node w ∈ B, and any node v ∈ B prefers some node in B to any node
w ∈ R.

Given a partition (R,B), we generate an activation sequence as follows. First,
we greedily activate nodes in R−{r} whenever their most-preferred clear neigh-
bours are in R. (We activate nodes of R in the same order as we constructed
R.) This forms a sink-component on R. Next, we activate nodes in B. We start
by activating nodes in B0 =

⋃
i:Ci∩Ki 6=∅ V (Fi) – the components of F whose

first class cycles contain at least one clear node. For each Fi with V (Fi) ⊆ B0,
take a clear node v ∈ Ci ∩ K t. Then activate the nodes of Fi (except v) in
an increasing order of distance from v in Fi, and after that we activate v. This
forms a non-sink-component Fi in the routing graph as every node can choose its
first-choice. Finally, we activate nodes in B −B0 whenever their most-preferred
clear neighbours are in B (we use the same order as in the construction of B).
This creates non-sink-components on B and implies the next lemma.

Lemma 1. Let πt be an activation sequence generated from (R,B) as above. At
the end of the round, the following hold:

• The sink-component includes R and excludes B.

• Coordination: For each Fi, either all the nodes of Fi are in the sink-
component or none of them are.

• Let B0 =
⋃
i:V (Ci)∩K t 6=∅ V (Fi), and suppose K t = B0. If a packet travels for

n hops but does not reach the sink, then it must be at a node in K t.

Proof. The first statement follows from the construction. For the second state-
ment, it suffices to show that, for each Fi, either V (Fi) ⊆ R or V (Fi) ⊆ B.
Suppose not. Then there is a V (Fi) crossing R or B. But, then some node in R
(respectively, B) would have a first-choice in B (respectively, R), and this is not
possible by the construction of (R,B).

For the third statement, note that a packet that travels for n hops but does
not reach the sink must be stuck in some cycle. Consider the construction of
(R,B). Since K t = B0, we only add node to B whenever it prefers some node in
B to any node in R. Because U ∩K t = ∅, nodes in B−B0 cannot create a cycle
on their own. Thus, the packet is stuck in a cycle that contains a clear node; the
only such cycles are the first class cycles of B0 since K t = B0. ut

The following lemma follows by the construction of a partition (R,B).

Lemma 2. Let (R′, B′) be any partition generated from Coordinate(.), and let
(R,B) be a partition obtained by Coordinate(K t), where K t ⊆ B′. Then R′ ⊆ R.

Proof. Consider a partition (Rq, Bq) constructed during a call to Coordinate(K t).
Observe that B0 ⊆ B′ because B0 =

⋃
i:V (Cj)∩K t 6=∅ V (Fi) and Lemma 1 implies

10

that each F1 is contained entirely in R′ or B′. By the construction of (R′, B′),
since B0 ⊆ B′, every node of R′ must have been added to R1, i.e., R′ ⊆ R1.
Inductively, if R′ ⊆ Rq for some q ≥ 1, then Bq ⊆ B′ and thus R′ ⊆ Rq+1 by
the same argument. ut

4.2 Routing Phase: A Complete Routing in Four Rounds.

Running the coordination algorithm four times ensures every packet will have
been in the sink-component at least once, and thus, every packet routes.

Theorem 5. In four rounds every packet routes.

Proof. The first round t = 1 is simply the coordination phase. We will use
subscripts on R and B (e.g., Rt and Bt) to denote the final colourings output
in each round and not the intermediate sets Rq/Bq used in Coordinate(.). Now,
consider a packet generated by any node of V . First, we run Coordinate(K 1)
and obtain a partition (R1, B1). By Lemma 1, if the packet is in R1, then it
is routed successfully, and we are done. Hence, we may assume that the packet
does not reach the sink and the packet is in B1. Note that, now, each Fi is either
contained in R1 or B1 by Lemma 1.

We now run Coordinate(K 2) and obtain a partition (R2, B2). By Lemma 1,
K 2 = R1. So, if the packet does not reach the sink, it must be in B2. Since no F -
component crosses R1, we have R1 = K 2 =

⋃
i:V (Ci)∩K 2 6=∅ V (Fi). So, R1 ⊆ B2

(since K 2 ⊆ B2) and R2 ⊆ B1, and Lemma 1 implies that the packet is in R1.
Third, we run Coordinate(K 3) and obtain a partition (R3, B3). Applying

the same argument as before, we have that the packet is in R2 (or it is routed),
R2 ⊆ B3 and R3 ⊆ B2. Now, we run Coordinate(K 4) and obtain a partition
(R4, B4). Since R3 = K 4 ⊆ B2, Lemma 2 implies that R2 ⊆ R4. Thus, the
packet is routed successfully since R4 is contained in the sink-component. ut

5 Filtering: Not-Me!

In practice, it is important to try to prevent cycles forming in the routing graph
of a network. To achieve this, loop-detection is implemented in the BGP-4 proto-
col [3]. The “Not-Me” filtering encodes loop-detection as in the BGP-4 protocol
simply by having a filtering list D(v) = {v}, for every node v. In contrast to
Theorem 4, which says that it is NP-hard to determine whether we can route
every packet, here we show that every packet will route. Moreover, we exhibit a
constructive way to obtain a stable spanning tree via fair activation sequences.
Interestingly, all of the packets will have routed before stability is obtained. In
particular, we give an algorithm that constructs an activation sequence such that
every packet routes successfully in 1

3n rounds, and the network itself becomes
stable in n rounds. This is the most complex result in the paper; just the al-
gorithm itself is long. So here we give a very high level overview and defer the
algorithm and its proof of performance to the full paper.

11

When filtering lists are non-empty, a complication arises since even if w is
the most preferred choice of v and w has non-empty routing path, v still may
not be able to choose w. This makes the routing graph hard to manipulate. The
key idea is to manipulate the routing graph a little-by-little in each round. To
do this, we find a spanning tree with a strong stability property – a spanning
tree S has the strong stability property on O if, for every node v ∈ O, the most
preferred choice of v is its parent w, even if it may choose any node except those
that are descendants and in O. Thus, if we activate nodes of S in increasing
order of distance from the sink r, then every node v ∈ O will always choose w.

It is easy to find a stable spanning tree, a tree where no node wants to change
its choice, and given a stable spanning tree S, it is easy to force opaque nodes in
Ot to make the same choices as in S. But, this only applies to the set of opaque
nodes, so it may not hold in the later rounds. The strong stability property allows
us to make a stronger manipulation. Intuitively, the strong stability property says
that once we force every node v ∈ O to make the same choice as in S, we can
maintain these choices in all the later rounds. Moreover, in each round, if we
cannot route all the packets, then we can make the strong stability property
span three additional nodes; if so, the property spans one more node. Thus, in
1
3n rounds, every packet will route, but we need n rounds to obtain stability.

Theorem 6. There is an activation sequence that routes every packet in bn/3c
rounds and gives a stable spanning tree in n rounds.

Acknowledgements We thank Michael Schapira and Sharon Goldberg for
interesting discussions on this topic.

References

1. Timothy Griffin, F. Bruce Shepherd, and Gordon T. Wilfong. The stable paths
problem and interdomain routing. IEEE/ACM Trans. Netw., 10(2):232–243, 2002.

2. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

3. John W. Stewart, III. BGP4: Inter-Domain Routing in the Internet. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

4. Stefano Vissicchio, Luca Cittadini, Laurent Vanbever, and Olivier Bonaventure.
ibgp deceptions: More sessions, fewer routes. In INFOCOM, 2012.

12

