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Abstract— Computing utilities based on virtual machines
(VMs) migrating among distributed computing resources are
becoming increasingly practical and emerging as a viable
infrastructure for outsourcing computer services. Here, we
present a large scale distributed computing architecture
named public public computing utility (PCU), where non-
dedicated public resources are augmented with privately
owned dedicated resources to obtain higher levels of quality
of service (QoS) for compute intensive applications. Virtual
machines are used to isolate foreign applications from the
host systems and to facilitate seamless migrations. We have
proposed several heuristics for scheduling VMs among the
resources in PCU. Extensive simulations we performed in-
dicate that the proposed heuristics are able to improve the
QoS delivered by the PCU by utilizing the public and private
resource combinations while reducing the VM migrations.
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I. INTRODUCTION

Constant improvements in computer communications
and microprocessor technologies are driving the devel-
opment of new classes of network computing systems.
One such system is thecomputing utility (CU) that
brings large number of resources and services together
in a virtual system to serve the clients. In this paper, we
are concerned about building CUs frompublic resources
(i.e., resources that wish to contribute their computing,
storage and network capacities without subjecting them-
selves to any contractual agreements) and we refer to
them aspublic computing utilities(PCU).

Several large-scale network computing systems in-
cluding peer-to-peer(P2P) file sharing systems such
as Gnutella and volunteer computing systems such as
SETI@home [1] have demonstrated the tremendous
potential of using public resources. One of the desirable
features of public resources is that they are virtually
inexhaustible. For example, using the P2P network large
numbers of resources can interconnect and form a pub-
lic resource pool from which subsets can be discovered
as required using DHT based discovery mechanisms [2].
Because the participation of resources is voluntary,
high degrees of variability can be expected in the
capacity. The mode of participation of the resources can
vary widely from full dedication, partial dedication, to
unknown dedication.

Unlike majority of the public resource based sys-
tem, the PCUs are expected to host business critical
applications withquality of service(QoS) requirements.

Clients are provided with service quality based on the
service level agreements(SLAs) signed with the PCU
provider. The scheduling algorithms are designed such
that highest level of conformance to the SLA is assured.
The proposed architecture uses fully dedicated private
resource pools to augment the capacities harnessed
from public resources in order to deliver higher QoS
guarantees to the applications.

We take a virtual machine based approach where
application processes are encapsulated in virtual ma-
chines. The use of virtual machine is advantageous
because they provide seamless mechanisms for job
migration and monitoring with low residual depen-
dencies.Virtual machines are becoming viable due to
the advancements made in virtual machine monitors
(VMMs) such as VMware [3] and Xen [4] for efficient
management of VMs through the network. Checkpoint-
ing and migration are viable options for several useful
applications. For stateless applications like web servers,
the checkpointing cost is very low. But for stateful
applications the cost of checkpointing depends on the
volume of the state information the application needs
to save for a restart. So our scheme will be suitable for
the stateless or low-stateful applications.

We organized the rest of the paper as follows. Sec-
tion II discusses some related literature on resource
management of computing utilities and the use of
virtual machines. Section III defines the system model
we used and states the underlying assumptions. In
Section IV, we present our proposed heuristics. In
Section V, we demonstrate a thorough analysis of the
heuristics using simulation results.

II. RELATED WORK

One major goal of theResource Management System
(RMS) of a PCU is to maintain QoS according to the
SLAs signed up with its clients. Architectures of SLA
compliant resource management for both centralized
and distributed pool of dedicated resources has been
studied in several research projects such as Oceano [5]
and Globus Grid [6]. However, study of scheduling
algorithms with detailed performance evaluations were
not carried in the above works. Performance evaluation
of scheduling heuristics for cluster based hosting centers
are found in [7][8] with different optimization goals in
different cases.



The Condor project [9] focuses on harvesting unused
resources from heterogeneous public machines, but their
resource management mainly emphasizes on discovery
and co-allocation of resources through matchmaking
and gangmatching. They do not support SLA driven
QoS aware resource management on the public resource
pool. Cluster Computing on the Fly(CCOF) [10] is a
new P2P system that utilizes idle cycles from public
domain resources to offer user QoS of different appli-
cations. But none of the above works have considered
the conglomeration of public and private resources to
enhance the QoS for applications.

Previous work that addresses the resource manage-
ment problem on a similar settings can be found in [11],
where the authors proposed scheduling heuristics for
such settings and compared their performance with
other classical scheduling algorithms. The major differ-
ence between [11] and this work is that the scheduler
in [11] remains totally oblivious of the global system
state, in order to keep the network overhead minimal.
However, due to this oblivious nature of the system,
there was a significant loss of the work done on public
resources. It is important to investigate how the system
state information can be gather with low overhead
and how much benefit can be achived from better-
informed decisions of the scheduler. The main goal of
this paper is to trade-off the overheads and benefit and
engineer the scheduling policies and system parameters
for optimal performance.

Our proposed system uses virtual machines to en-
capsulate jobs to facilitate checkpointing and migration
between different hosts. One big concern about using
VMs in PCU is the cost of migrating VMs across
different hosts. Nevertheless, there are several benefits
of using this approach instead of migrating individual
processes. Although process migration is much faster,
several problems cripples its practicality. Residual de-
pendency [12] (files and states that migrated processes
leave behind on the previous hosts) and infrastruc-
ture compatibility [13] (e.g., missing libraries) are two
notable problems. Several researches have focused on
reducing the application down-time during a live migra-
tion [4] of virtual machines. Recently, heavily loaded
web severs and game severs running on Xen has been
live migrated with down time in the order of100ms
only.

III. M ODEL AND ASSUMPTIONS

In our model, the PCU consists of a virtually infinite
pool of non-dedicated public resources that are con-
nected in a P2P overlay network and can be discovered
based on resource attributes. At different locations
within the larger overlay network, service providers
maintain finite sized pools of dedicated resources that
can be used by the PCU. Whena PCU client submits
a job to the RMS, it defines resource requirement for
the job per unit time. If the RMS agrees to provide the
requirements encoded in an SLA, it launches the job

encapsulated in a VM on an appropriate resource. De-
pending on the delivered capacity and SLA-compliance
monitored by the virtual machine the RMS migrates
the VM onto a new and more suitable resource, if
necessary. To reduce the scheduling overhead, the RMS
scheduler executes the scheduling rules at the end of
each scheduling epoch of lengthδ. For the remainder of
this paper, we consider the case where only one VM is
allocated per job. However, for fault-tolerance purposes,
a job can be duplicated and different instances of a job
can execute on different VMs. In order to reduce the
complexity of the RMS, we make several assumptions
on the components of the PCU, which are explained in
the rest of this section.

A. Resources

The private resources are assumed to be finite and
homogeneous. That is the private resource pool hasn

resources with each having a steady processing capacity
Pr in terms of MIPS (million instructions per second).
The number of public resources is very large relative to
n(infinite for this paper). However, each public resource
is vulnerable and has a much higher probability of
defaulting with regard to the task assigned to it. Their
processing throughput is also variable betweenPbmin

to Pbmax
, wherePbmin

≤ Pbmax
≤ Pr

Because the public resources are inherently unre-
liable, the VMs that run on them checkpoint their
execution state at the end of every epoch. In the simplest
case, these checkpoints are stored in a remote location
such that it could be retrieved if the VM fails at a future
epoch and a new replica could be started. However,
this approach can lead to performance bottlenecks and
single points of failures. A distributed approach would
be to store the checkpoints on a P2P storage system
such as OceanStore [14].The detailed mechanisms for
checkpointing, migrating, and restarting VMs is out of
the scope of this paper and is a topic of future research.

B. Job and SLA

During submission, a jobj requests through the SLA
a resource shareBj per unit time, where we assume
Bj ≤ P . This assumption is reasonable, because if the
client has a large application, it should be divided into
several small independent subtasks. Then each subtask
could be submitted separately and run on different
resources in parallel. Other SLA parameters are the
service ratioρ and the monitoring time windowT .
The QoS that the SLA intends to guarantee is the min-
imum workload completed or the minimum resource
capacity delivered over the whole monitoring window.
The provider is compliant with the SLA if it can
deliver total workloadVj ≥ ρBjT , over the whole
window, otherwise it is penalized. Also, the SLA defines
the number of time windowst, for which it needs
the resource share. The total workload of the job is
thereforetBjT .



C. Dissatisfaction metric
Because private resources are scarce, we need some

priority scheme to rank the jobs competing for them. We
define a metric calledunsatisfactory cost(UC), which
measures the degree of dissatisfaction of the job due to
SLA incompliance. Higher value of UC prioritizes the
jobs to get private resources.

Say,Vjn is the accumulated amount of resource-share
the job j has received in the current SLA window till
the end ofnth epoch in the window. Ifvjn is the amount
of resource-time the job received in thenth epoch,Vjn

is defined by –
Vj0 = 0

Vjn = Vj(n−1) + vjn

WhenK replicas of the job is running onK public
resources asynchronously, one of them has the maxi-
mum progress andVjn is computed as the resource-time
given to this replica. Ifm of theK replicas fail during
the nth epoch,m new replicas are started at the end
of this epoch from the checkpoint with progressVjn. If
vjnk is the amount of resource-time thekth replica of
the job j received in thenth epoch, thenVjn is given
by –

Vj0 = 0

Vjn = Vj(n−1) + max
k

{vjnk}

The unsatisfactory factorljn for job j at the end of
nth epoch in current SLA window is defined as –

ljn =

{

(1 −
Vjn

nBj
) if Vjn ≤ nBj

0 if Vjn > nBj

(CUCj) of job j is then derived as –

CUCj = (a
ljn

i − 1)

Here ai ∈ (1, 2] is a real number assigned to the
job according to thestatic priority that is determined
by the subscription level of the client. Apparently for
this range ofaj , always CUCj ∈ [0, 1]. The higher
the value ofai, the more theCUC is sensitive to SLA
deviation.

For each job, there is a parameter recording its
previous service status, calledHistoric Unsatisfactory
Cost(HUCj), which is updated at the end of every
SLA window according to the compliance during that
window.

HUCj =

{

max (HUCj − 1, 0) if CU compliant
HUCj + 1 if CU incompliant

Next, we define a parameterTotal Unsatisfactory
Cost(TUCj) which is used by job to compete resources:
TUCj = CUCj + HUCj .

IV. RESOURCEPROVISIONING HEURISTICS

As mentioned earlier, resource provisioning refers to
the task of assigning resources to jobs. In this section,
we are proposing three heuristics for resource provi-
sioning. These heuristics consider the private resources
as the most important commodity and try to share

them as much as possible among the jobs. The basis
of all the three heuristic is to re-allocate the private
resources to the jobs based on their progress at the end
of each epoch. This overall scheme is illustrated in the
Algorithm 1

Algorithm 1 Skeleton Scheduler
IDs of all the currently running jobs are stored in the
Round Robin queue
for every epochdo

insert the ID of all the newly arrived jobs into RR
queue as long as length(RR queue)≤ Threshold;
Discard rest of the new jobs
ScheduleJobsInQueue(scheme)
run scheduled jobs in appropriate resource for one
epoch (δ);
for every job that finished executiondo

remove the job’s ID from RR queue;
end for
updateCUC, HUC andTUC for all jobs in the
RR queue;

end for

In the simplest case ofRound Robinscheduling, all
the jobs retain equal priority and they time-share the
private resources. That would be inefficient because
jobs mapped on the public resources will have different
progress levels. Therefore, an obvious improvement is
to share the private resources among those jobs that are
least satisfied. This approach is namedRanked Round
Robin, because the jobs are ranked based on the dis-
satisfaction metric discussed in Section III-C. Because
duplication or redundancy has proved to be a good way
to combating the unreliability of the public resources,
we can use this technique to improve the resource
availability in the basic provisioning techniques. Hence,
in the third approach, namely,Ranked Round Robin
with duplication, each job is replicated byk different
instances on different resources, when it is assigned
a public resource. The algorithms for three different
approaches are schematically shown in Algorithm 2.

The number of replica’s is, maintained to bek in
every epoch by re-launching a new replica for every
failed replica. An estimate ofk can be found from
reliability theory [15]. If the failure process is Poisson,
mean contiguous available time of a resource is1

λ
and

mean recovery time is1
µ

, then the minimum number of
replicas(k) required to keep at least1 replica alive all
the time can be derived as,

k =
log(1 − α)

log(λ) − log(λ + µ)

where,α is the desired level of confidence. For example,
if we want, with 95% probability, that1 resource be
available all the time, and we have MTTF1

λ
= 5

minutes and recovery time1
µ

= 2 minutes, thenk turns
out to be2.39.



Algorithm 2 ScheduleJobsInQueue(scheme)
if scheme= Round Robin then

move the IDs forp jobs running on the private
resource to end of RR queue;
assign private resource to the jobs of firstp IDs in
RR queue;
assign public resource to rest of the jobs in RR
queue;

else if scheme= Ranked Round Robin then
sort all the job IDs by the job’s TUC in RR queue;
assign private resource to the jobs for firstp IDs
in RR queue;
assign public resource to the jobs for rest of the
IDs in RR queue;

else if scheme= Ranked Round Robin + k dupli-
cation then

sort all the job IDs by the job’s TUC in RR queue;
assign private resource to the jobs for firstp IDs
in RR queue;
for all the jobs for rest of the IDs in RR queue
launch k replicas of each of them onk public
resources;

end if

V. PERFORMANCEANALYSIS

In this section, we evaluate the performance of our
proposed heuristics through simulation studies. We de-
veloped a simulation model using C++ based on the
PCU architecture described earlier in Section III. We
studied the system for a wide range of parameter values
and then chose the values for realistic performance
gain. The basic model parameters are described below
in Section V-A. We tried to measure the performance
according to several performance criteria, mainly on the
two different axes - the QoS achieved from using the
heuristics and the overheads while delivering the QoS.
The results are analyzed in Section V-B.

A. Simulation Model
The PCU consists of a homogeneous pool of ded-

icated or private resources that do not have any per-
formance deviation or failure. We used a pool of
100 dedicated resources all having the same capacity.
We compared our heuristics with the benchmark sys-
tem having100 private resources only and running a
M/M/m/m queuing discipline. The public resources in
PCU are gathered on ad-hoc basis from a wide area
network like Internet. Although the number of public
resource is virtually unlimited, to put a practical limit
on this availability, we set a threshold in the RMS for
maximum number of concurrent jobs, which is typically
10 times the number of private resources. The public
resources show wide variation in their performance and
also they may fail any time. In our experiments the
failure hazard rate (instantaneous probability of failure)
was0.3 times in each10 second epochs.

Jobs arrive in the system in a Poisson process. Each
job has a random workload that takes100 epochs

on average if run on a dedicated machine. Each job
specify their resource bandwidth requirement (in terms
of resource-seconds) in the SLA. We assumed that this
bandwidth never exceeds the capacity of the private
resources. When a job needs a public resource, we
assume that it is always possible find a public resource
that matches a job’s bandwidth requirement, because
public resources are in plenty. However the performance
actually delivered by public resources always vary from
their nominal bandwidth capacity (with a Normal dis-
tribution around the nominal value in our experiments).

The epochδ and the SLA monitoring windowT were
chosen to be10 and 100 seconds, respectively. The
service ratioρ was assumed to be0.8. According to the
algorithms, the jobs (wrapped in VMs) need to migrate
from one machine to the other and the cost of migration
was chosen to be1 second of downtime compared to
60-300 ms for Xen [4]. For stateful applications, it is not
possible to overlap the migration with the job execution,
so, we assume that for the whole migration time the job
execution was down.

Although we did not explicitly model the network
topology of the resources for simulation, the number of
migrations, the down time of job execution due them
and their effect on total job execution time is measured.
These statistics well reflect the communication over-
head on the PCU due to checkpointing and migration.
As for the public rsources, we assume that gathering
them from Internet does not incur any financial cost for
the PCU.

B. Results
Hypothetically, if we have unlimited supply of public

resources, the throughput of the system keeps increas-
ing almost linearly with the given workload without
any limit. But in practice the supply will be limited,
therefore we choose some threshold on the number
of concurrent jobs running in the system. The result
is depicted in Figure 1. For the same threshold, the
ranked versions of the algorithm shows much higher
maximum throughput than the pure round robin. We
also observe that the throughput of PCU is much higher
than a baseline system of100 private mahcines only.
This justifies the use of public resources in addition
to the expensive dedicated private machines. However,
PCU throughput is is much less than a system having
all 500 dedicated resources. This lack in performance is
due to the variability and failure of the public resources.
Because private resources are much more expensive
than public resources, our proposed system with a
combination of both will be preferable.

With the proposed ranked round robin algorithms the
system tries to improve QoS of resource allocation by
minimizing the violation of SLA specified bandwidth
needs for the jobs. Still due to the variability of pub-
lic resources, some violation of SLA is unavoidable,
especially at high loads. If the system earns revenue
in proportion with the amount of work it delivers, it
should be penalized in proportion with the deviation
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from SLA. Figure 2 shows the penalty incurred due
to SLA violation for each unit of computational work
done by PCU. Here also, the penalties are much less in
the ranked version of the algorithm. This is because the
ranked algorithm always prioritize the starving jobs for
running on the private machines. Replication also serves
for reducing the penalty because of two reasons - on
one hand replication increases reliability and reduces
the amount of failure; on the other hand we always
take the maximally progressed replica for computing
the SLA deviation.

In all the three algorithms, the VMs holding the
jobs need to migrate between different machines. In the
pure round robin, migration rate is high because it re-
allocates the private resources to a different subset of
jobs every epoch, in purely a round robin manner. In
the ranked version, a job may be evicted from private
resource only if another job with higher dissatisfaction
is running on a public resource. Figure 4 shows the av-
erage number of preemptive migrations between private
and public resource pools. In case of pure round robin,
there is a sharp rise in the number of migration, when
the number of jobs in the system is exactly twice the
number of dedicated resources. In this case each job
needs to migrate every epoch. The VMs also need to
migrate if a public resource fails. The rate of migration
of this type is obviously higher when replication is used
(Figure 5). One interesting side effect of migration is
that at each migration a new resource is contracted.
Normally public resources may show some aging effect
in their behavior from the time they are allocated.
Frequent migration would refresh this aging process
and hence increase the performance. Detail study of

this refreshing effect is, however, out of the scope of
this paper.

Due to migrations and also due to capacity-variation
and failure of public resources, the jobs total run-time
gets elongated with respect to the ideal case where
each job alone is allocated a dedicated resource to
execute until completino. Figure 3 shows this elongation
effect for the 3 algorithms. Here also, the elongation
is minimum for the duplicated ranked version of the
algorithm. The elongation can be a factor of 2 in the
worst case of very high loads.

From the above comparisons, it is apparent that the
ranked round robin algorithm with duplication is the
best choice among the 3 versions of the algorithms in
all respects. Also, the gain in throughput justifies the
use of additional public resources as long as they are
inexpensive.

The performance of the algorithms also depends
on different other environment parameters like number
of dedicated machines, the failure characteristics of
the public machines, the cost of migration etc. The
following part of the section discusses the effect of
these parameters on the duplicated-ranked round robin
algorithm.

Figure 6 shows the effect of the number of private
resources on elongation factor. Obviously for the same
load, increasing the number of private resources reduces
both SLA violation and elongation. In the best case
when we have enough private resource to hold all the
jobs, no penalty and elongation is incurred.

The behavior of the public resources, especially their
failure rate affects the QoS factors (Figure 7). It shows
that elongation increases super-linearly with the error
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rate of the public resources.
In our third version of the algorithm, we used replica-

tion for improving reliability of public resources. The
replication of course multiplies the number of public
resource requirements linearly. In Figure 8 we tried to
compare the QoS achievements for increasing number
of replications. The results show that the improvement
in QoS is sub-linear with increasing number of replicas.
So, for an appropriate cost of replication there will be
an optimal number of replicas. Also, we have stated
from reliability analysis in Section IV that a replication
factor of 2 is adequate to have desired reliability from
public resources.

VI. CONCLUSION

In this paper, we proposed an architecture for PCUs
that augments finite number of private resources to
public resources to improve the SLA compliance levels.
Our architecture uses VMs to implement “time-sharing”
over the resources. The objective of the time-sharing is
to mask the unreliability of public resources by using
them for fixed durations and saving the job progresses
periodically to facilitate restarts. The simulation re-
sults presented here show that time multiplexing the
resources can result in significant improvements for
system throughputs and job QoS such as elongation and
drop rates. Further, the number of job migrations can
be reduced by incorporating “conditional” migrations
that only move jobs that are highly likely to cause SLA
violations.

Although the proposed architecture is practical given
the recent advancements in VMs, the issues related
to checkpointing and migration overhead should be
investigated further to improve deployment. Devising
an efficient scheme for checkpointing and migration,
whether distributed, peer-based or centralized, is crucial
to reduce this overhead. An overall cost-benefit analysis
of the messaging and financial overhead of using public
resources will shed some more lights on establishing a
complete PCU system.
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