Introduction to unitary *t*-designs

Artem Kaznatcheev

McGill University

March 25, 2010

Introduction to unitary *t*-designs

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

School of Computer Science

Outline

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

Preliminaries: U(d)

► U(d) is the topologically compact and connected group of norm preserving (unitary) operators on C^d.

Introduction to unitary t-designs

Preliminaries: U(d)

Gill University

- ► U(d) is the topologically compact and connected group of norm preserving (unitary) operators on C^d.
- We can introduce the Haar measure and use it to integrate functions f of U ∈ U(d) to find their averages:

$$\langle f \rangle = \int_{U(d)} f(U) \, dU.$$

For convenience we normalize integration by assuming that $\int_{U(d)} dU = 1$.

Introduction to unitary t-designs

chool of Computer Science

Preliminaries: U(d)

University

- ► U(d) is the topologically compact and connected group of norm preserving (unitary) operators on C^d.
- We can introduce the Haar measure and use it to integrate functions f of U ∈ U(d) to find their averages:

$$\langle f \rangle = \int_{U(d)} f(U) \, dU.$$

- ► For convenience we normalize integration by assuming that $\int_{U(d)} dU = 1.$
- The goal of unitary t-designs is to evaluate averages of polynomials via a finite sum.

Introduction to unitary t-designs

chool of Computer Science

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Introduction to unitary *t*-designs

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Examples

$$egin{array}{rcl} U,V&\mapsto&U^*V^*UV&\in {\it Hom}(2,2)\ U&\mapsto&U^*V^*UV&\in {\it Hom}(1,1) \end{array}$$

Introduction to unitary *t*-designs

School of Computer Science

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Examples

 $egin{array}{rcl} U,V&\mapsto&U^*V^*UV&\in {\it Hom}(2,2)\ U&\mapsto&U^*V^*UV&\in {\it Hom}(1,1)\ U&\mapsto&rac{tr(U^*U)}{d}&\in {\it Hom}(1,1) \end{array}$

Introduction to unitary *t*-designs

School of Computer Science

Gill University

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Examples

$U \mapsto U^* V^* U V \in Hom($	1, 1)
$U \mapsto \frac{tr(U^*U)}{d} \in Hom($	1,1)
$U, V \mapsto tr(U^*V)U^2 + VU^*VU \in Hom($	3,1)
$U \mapsto \underbrace{tr(U^*V)U^2}_{Hom(2,1)} + \underbrace{VU^*VU}_{Hom(1,1)} \notin Hom($	2,1)

Introduction to unitary t-designs

March 25, 2010 2 / 20

School of Computer Science

Functional definition of unitary *t*-designs

Definition

A function $w : X \to (0, 1]$ is a weight function on X if for all $U \in X$ we have w(U) > 0 and $\sum_{U \in X} w(U) = 1$

Functional definition of unitary t-designs

Definition

A function $w : X \to (0,1]$ is a weight function on X if for all $U \in X$ we have w(U) > 0 and $\sum_{U \in X} w(U) = 1$

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U \in X} w(U)f(U) = \int_{U(d)} f(U) \, dU$$

for all $f \in Hom(t, t)$.

Functional definition of unitary t-designs

Definition

A function $w : X \to (0, 1]$ is a weight function on X if for all $U \in X$ we have w(U) > 0 and $\sum_{U \in X} w(U) = 1$

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U \in X} w(U)f(U) = \int_{U(d)} f(U) \, dU$$

for all $f \in Hom(t, t)$.

Definition

A finite $X \subset U(d)$ is an unweighted *t*-design if it is a unitary *t*-design with a uniform weight function (i.e. $w(U) = \frac{1}{|X|}$ for all $U \in X$).

Functional definition is general enough

Proposition

Every t-design is a (t-1)-design.

Introduction to unitary *t*-designs

School of Computer Science

Functional definition is general enough

Proposition

Every t-design is a (t-1)-design.

Proposition

```
For any f \in Hom(r, s) with r \neq s
```

 $\int_{U(d)} f(U) \, dU = 0$

Lemma

For any $f \in \text{Hom}(r, s)$, $U \in U(d)$, and $c \in \mathbb{C}$ we have $f(cU) = c^r \bar{c}^s f(U)$

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Strengths and shortcomings of the functional definition

Strengths:

- ► Average of any polynomial with degrees in U and U* less than t can be evaluated one summand at a time.
- Multi-variable polynomials can be evaluated:

$$\int \cdots \int f(U_1, ..., U_n) dU_1 ... dU_n$$
$$= \sum_{U_1 \in X} ... \sum_{U_n \in X} w(U_1) ... w(U_n) f(U_1, ..., U_n).$$

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Strengths and shortcomings of the functional definition

Strengths:

- ► Average of any polynomial with degrees in U and U* less than t can be evaluated one summand at a time.
- Multi-variable polynomials can be evaluated:

$$\int \cdots \int f(U_1, ..., U_n) dU_1 ... dU_n$$
$$= \sum_{U_1 \in X} ... \sum_{U_n \in X} w(U_1) ... w(U_n) f(U_1, ..., U_n).$$

Shortcomings:

- Not clear how to test if a given (X, w) is a *t*-design.
- If (X, w) is not a design, then how far away is it?

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Tensor product definition of unitary *t*-designs

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U\in X} w(U)U^{\otimes t} \otimes (U^*)^{\otimes t} = \int_{U(d)} U^{\otimes t} \otimes (U^*)^{\otimes t} dU$$

Artem Kaznarcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Tensor product definition of unitary t-designs

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U\in X} w(U) U^{\otimes t} \otimes (U^*)^{\otimes t} = \int_{U(d)} U^{\otimes t} \otimes (U^*)^{\otimes t} dU$$

- More tractable for checking if an arbitrary (X, w) is a *t*-design.
- Literature has explicit formula for the RHS for many choices of d and t [Col03, CS06].
- Still not metric.

University

Introduction to unitary *t*-designs

chool of Computer Science March 25, 2010 6 / 20

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is an ϵ -approximate unitary *t*-design if

$$\|\sum_{U\in X}w(U)U^{\otimes t}\otimes (U^*)^{\otimes t}-\int_{U(d)}U^{\otimes t}\otimes (U^*)^{\otimes t}dU\|<\epsilon$$

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is an ϵ -approximate unitary t-design if

$$\|\sum_{U\in X}w(U)U^{\otimes t}\otimes (U^*)^{\otimes t}-\int_{U(d)}U^{\otimes t}\otimes (U^*)^{\otimes t}dU\|<\epsilon$$

 A glaring omission is a specification of which norm to use in the definition.

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is an ϵ -approximate unitary t-design if

$$\|\sum_{U\in X}w(U)U^{\otimes t}\otimes (U^*)^{\otimes t}-\int_{U(d)}U^{\otimes t}\otimes (U^*)^{\otimes t}dU\|<\epsilon$$

- A glaring omission is a specification of which norm to use in the definition.
- There are many choices of operator norms, important ones in QIT are Schatten norms. In particular the trace, Frobenius, and spectral norms.

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is an ϵ -approximate unitary t-design if

$$\|\sum_{U\in X}w(U)U^{\otimes t}\otimes (U^*)^{\otimes t}-\int_{U(d)}U^{\otimes t}\otimes (U^*)^{\otimes t}dU\|<\epsilon$$

- A glaring omission is a specification of which norm to use in the definition.
- There are many choices of operator norms, important ones in QIT are Schatten norms. In particular the trace, Frobenius, and spectral norms.
- By modifying the definition slightly, we can also study super-operator norms. In particular, the diamond norm (most useful from a cryptographic and experimental point of view).

Outline

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

The trace double sum inequality

Theorem

A tuple (X, w) is an ϵ -approximate unitary t-design (with respect to the Frobenius norm) if and only if

$$\sum_{U,V\in X} w(U)w(V)|tr(U^*V)|^{2t} - \int_{U(d)} |tr(U)|^{2t} \ dU \leq \epsilon^2$$

▶ Proved earlier in the non-approximate case by Scott [Sco08].

The trace double sum inequality

Theorem

A tuple (X, w) is an ϵ -approximate unitary t-design (with respect to the Frobenius norm) if and only if

$$\sum_{U,V\in X} w(U)w(V)|tr(U^*V)|^{2t} - \int_{U(d)} |tr(U)|^{2t} \ dU \leq \epsilon^2$$

- Proved earlier in the non-approximate case by Scott [Sco08].
- The integral is the number of permutations of {1, ..., t} with no increasing subsequences of order greater than d [DS94, Rai98]. We will call this number σ.
- If $d \ge t$ then σ is t!.

The trace double sum inequality

Theorem

A tuple (X, w) is an ϵ -approximate unitary t-design (with respect to the Frobenius norm) if and only if

$$\sum_{U,V\in X} w(U)w(V)|tr(U^*V)|^{2t} - \int_{U(d)} |tr(U)|^{2t} \ dU \leq \epsilon^2$$

- ▶ Proved earlier in the non-approximate case by Scott [Sco08].
- The integral is the number of permutations of {1,..., t} with no increasing subsequences of order greater than d [DS94, Rai98]. We will call this number σ.
- If $d \ge t$ then σ is t!.
- ▶ Limitation: no one really cares about the Frobenius norm. -_-

Metric definition of unitary *t*-designs

Definition

A weight function w is an optimal weight function on X if for all other choices of weight function w' on X, we have:

$$\sum_{U,V\in X} w(U)w(V)|tr(U^*V)|^{2t} \leq \sum_{U,V\in X} w'(U)w'(V)|tr(U^*V)|^{2t}.$$

The trace double sum is a function Σ defined for finite $X \subset U(d)$ as:

$$\Sigma(X) = \sum_{U,V \in X} w(U)w(V)|tr(U^*V)|^{2t},$$

Definition

A finite $X \subset U(d)$ is a unitary *t*-design if

$$\Sigma(X) = \langle |tr(U)|^{2t} \rangle$$

Artem Kaznatcheev (McGill University)

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

Symmetries

Four symmetries of *t*-designs

Proposition

If $X = \{U_1, ..., U_n\}$ is a t-design then $Y = \{e^{i\phi_1}U_1, ..., e^{i\phi_n}U_n\}$ is also a t-design for all $\phi_1, ..., \phi_n \in [0, 2\pi]$.

Symmetries

Four symmetries of *t*-designs

Proposition

If $X = \{U_1, ..., U_n\}$ is a t-design then $Y = \{e^{i\phi_1}U_1, ..., e^{i\phi_n}U_n\}$ is also a t-design for all $\phi_1, \ldots, \phi_n \in [0, 2\pi]$.

Proposition

If X is a t-design then $X^* = \{U^* : U \in X\}$ is also a t-design.

Symmetries

Four symmetries of *t*-designs

Proposition

If $X = \{U_1, ..., U_n\}$ is a t-design then $Y = \{e^{i\phi_1}U_1, ..., e^{i\phi_n}U_n\}$ is also a t-design for all $\phi_1, \ldots, \phi_n \in [0, 2\pi]$.

Proposition

If X is a t-design then
$$X^* = \{U^* : U \in X\}$$
 is also a t-design.

Proposition

If $X \subset U(d)$ is a t-design then $\forall M \in U(d), MX = \{MU : U \in X\}$ and $XM = \{UM : U \in X\}$ are also a t-design.

Gill University

School of Computer Science

Minimal designs

Lemma

If X, Y are two t-designs then so is $X \cup Y$.

Designs can be arbitrarily large

Introduction to unitary *t*-designs

Minimal designs

Lemma

If X, Y are two t-designs then so is $X \cup Y$.

- Designs can be arbitrarily large
- We are interested in smaller designs

Definition

A minimal (unweighted) *t*-design X is a *t*-design such that all $Y \subset X$ are not (unweighted) *t*-designs.

Artem Kaznarcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Characterization of minimal *t*-designs

Theorem

A t-design X is minimal if and only if it has a unique optimal weight function w.

Introduction to unitary *t*-designs

School of Computer Science

Characterization of minimal *t*-designs

Theorem

A t-design X is minimal if and only if it has a unique optimal weight function w.

Useful tool for proving minimality.

Introduction to unitary *t*-designs

Characterization of minimal *t*-designs

Theorem

A t-design X is minimal if and only if it has a unique optimal weight function w.

- Useful tool for proving minimality.
- Sadly, minimal designs are not necessarily minimum.
- Still working on finding correspondences between minimal and minimum designs.

Introduction to unitary *t*-designs

Outline

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

School of Computer Science

Orthonormal bases for $\mathbb{C}^{d \times d}$

Goal: find an orthonormal basis $|E_1\rangle,...,|E_{d^2}\rangle$ of $\mathbb{C}^{d\times d}$ such that each $E_i\in U(d)$

Introduction to unitary *t*-designs

Orthonormal bases for $\mathbb{C}^{d \times d}$

Goal: find an orthonormal basis $|E_1\rangle,...,|E_{d^2}\rangle$ of $\mathbb{C}^{d\times d}$ such that each $E_i\in U(d)$

Definition

 $X \subset U(d)$ is pairwise traceless if for every $U, V \in X$ with $U \neq V$ we have $tr(U^*V) = 0$. A pairwise traceless $X \subset U(d)$ is maximum pairwise traceless if $|X| = d^2$.

Orthonormal bases of unitaries for $\mathbb{C}^{d \times d}$ are maximum pairwise traceless sets.

Introduction to unitary *t*-designs

Orthonormal bases for $\mathbb{C}^{d \times d}$

Goal: find an orthonormal basis $|E_1\rangle,...,|E_{d^2}\rangle$ of $\mathbb{C}^{d\times d}$ such that each $E_i\in U(d)$

Definition

 $X \subset U(d)$ is pairwise traceless if for every $U, V \in X$ with $U \neq V$ we have $tr(U^*V) = 0$. A pairwise traceless $X \subset U(d)$ is maximum pairwise traceless if $|X| = d^2$.

Orthonormal bases of unitaries for $\mathbb{C}^{d \times d}$ are maximum pairwise traceless sets.

Proposition

For any $X \subset U(d)$, X is maximum pairwise traceless if and only if X is a minimum unweighted 1-design.

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Definition

Two orthonormal bases $\{|e_i\rangle : 1 \le i \le d\}$ and $\{|e'_i\rangle : 1 \le i \le d\}$ of \mathbb{C}^d are mutually unbiased if $|\langle e_i | e'_j \rangle|^2 = \frac{1}{d}$ for all $1 \le i, j \le d$.

Definition

Two orthonormal bases $\{|e_i\rangle : 1 \le i \le d\}$ and $\{|e'_i\rangle : 1 \le i \le d\}$ of \mathbb{C}^d are mutually unbiased if $|\langle e_i|e'_j\rangle|^2 = \frac{1}{d}$ for all $1 \le i, j \le d$.

► Open question: determine the maximum number M(d) of pairwise mutually unbiased bases for C^d.

Definition

Two orthonormal bases $\{|e_i\rangle : 1 \le i \le d\}$ and $\{|e'_i\rangle : 1 \le i \le d\}$ of \mathbb{C}^d are mutually unbiased if $|\langle e_i|e'_j\rangle|^2 = \frac{1}{d}$ for all $1 \le i, j \le d$.

- ► Open question: determine the maximum number M(d) of pairwise mutually unbiased bases for C^d.
- If we write the prime decomposition of $d = p_1^{n_1} \dots p_k^{n_k}$ such that $p_i^{n_i} \leq p_{i+1}^{n_{i+1}}$ then $p_1^{n_1} \leq \mathfrak{M}(d) \leq d+1$.

Definition

Two orthonormal bases $\{|e_i\rangle : 1 \le i \le d\}$ and $\{|e'_i\rangle : 1 \le i \le d\}$ of \mathbb{C}^d are mutually unbiased if $|\langle e_i|e'_j\rangle|^2 = \frac{1}{d}$ for all $1 \le i, j \le d$.

- ► Open question: determine the maximum number M(d) of pairwise mutually unbiased bases for C^d.
- If we write the prime decomposition of $d = p_1^{n_1} \dots p_k^{n_k}$ such that $p_i^{n_i} \leq p_{i+1}^{n_{i+1}}$ then $p_1^{n_1} \leq \mathfrak{M}(d) \leq d+1$.

Important features for us:

- $\mathfrak{M}(d) \geq 2$ for $d \geq 1$.
- Without loss of generality, can assume one of the bases to be the standard basis.

Example

$$\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}, \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}, \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\+i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \right\}$$

Artem Kaznatcheev (McGill University

Introduction to unitary t-designs

Maximum pairwise traceless set construction

- Let $|e_1\rangle ... |e_d\rangle$ be an orthonormal basis of \mathbb{C}^d that is mutually unbiased with the standard basis.
- Define $I_i = \sqrt{d} \operatorname{diag}(|e_i\rangle)$ for $1 \le i \le d$.

Introduction to unitary *t*-designs

School of Computer Science

Maximum pairwise traceless set construction

- Let |e₁⟩...|e_d⟩ be an orthonormal basis of C^d that is mutually unbiased with the standard basis.
- Define $I_i = \sqrt{d} \operatorname{diag}(|e_i\rangle)$ for $1 \le i \le d$.
- ► Consider the cyclic permutation group of order *d*, represented as *d*-by-*d* matrices: C¹...C^d where C^d = C⁰ = I.
- Define $C_i^m = C^m I_i$

Introduction to unitary *t*-designs

School of Computer Science

Maximum pairwise traceless set construction

- Let |e₁⟩...|e_d⟩ be an orthonormal basis of C^d that is mutually unbiased with the standard basis.
- Define $I_i = \sqrt{d} \operatorname{diag}(|e_i\rangle)$ for $1 \le i \le d$.
- ► Consider the cyclic permutation group of order *d*, represented as *d*-by-*d* matrices: C¹...C^d where C^d = C⁰ = I.

• Define
$$C_i^m = C^m I_i$$

For any tuple $1 \le i, j, m, n \le d$ we have:

$$tr((C_i^m)^*C_j^n) = tr(I_i^*C^{d-m+n}I_j) = egin{cases} d & ext{if } i=j ext{ and } m=n \ 0 & ext{otherwise} \end{cases}$$

Artem Kaznatcheev (McGill Universit

Introduction to unitary *t*-designs

School of Computer Science

Outline

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

The center of *t*-designs is trivial

Lemma

For any $V \in U(d)$ and $[U, V] = U^*V^*UV$ we have:

$$\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d}V$$

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

Non-commuting

The center of *t*-designs is trivial

Lemma

For any $V \in U(d)$ and $[U, V] = U^*V^*UV$ we have:

$$\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d}V$$

Proposition

If $X \subset U(d)$ is a minimal t-design then there is at most one element that commutes with all elements of X. In other words, Z(X) is trivial.

Gill University

School of Computer Science

Some other structural observations

Proposition

Every t-design of dimension d spans $C^{d \times d}$.

Introduction to unitary *t*-designs

Some other structural observations

Proposition

Every t-design of dimension d spans $C^{d \times d}$.

A group *t*-design is a unitary *t*-design that also happens to have group structure. Group designs were defined by Gross, Audenaert, and Eisert [GAE07], and all known constructions are via group designs.

Introduction to unitary *t*-designs

Some other structural observations

Proposition

Every t-design of dimension d spans $C^{d \times d}$.

A group *t*-design is a unitary *t*-design that also happens to have group structure. Group designs were defined by Gross, Audenaert, and Eisert [GAE07], and all known constructions are via group designs.

Proposition

Every unitary irreducible representation of a finite group is a group 1-design and vice versa.

Introduction to unitary *t*-designs

A simple lower bound on the size of *t*-designs

Proposition

If $X \subset U(d)$ is a t-design then $|X| \geq \frac{d^{2t}}{\sigma}$.

Introduction to unitary *t*-designs

School of Computer Science

A simple lower bound on the size of *t*-designs

Proposition

If $X \subset U(d)$ is a t-design then $|X| \geq \frac{d^{2t}}{\sigma}$.

- ▶ Best known bounds are by Roy and Scott [RS08]: $|X| \ge {d^2+t-1 \choose t}$
- Asymptotically, for large d and fixed t, both bounds are $\Theta(d^{2t})$

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science

A simple lower bound on the size of *t*-designs

Proposition

If $X \subset U(d)$ is a t-design then $|X| \geq \frac{d^{2t}}{\sigma}$.

- ▶ Best known bounds are by Roy and Scott [RS08]: $|X| \ge {d^2+t-1 \choose t}$
- Asymptotically, for large d and fixed t, both bounds are $\Theta(d^{2t})$
- By taking note of some structural observations, we can do a little better:

Proposition

If
$$X \subset U(d)$$
 is a t-design then $|X| \geq rac{d^{2t}}{\sigma} + rac{1}{2d^t} (rac{\sigma}{2d^{2t}})^{2(t-1)}.$

Introduction to unitary *t*-designs

School of Computer Science

Conjecture

Conjecture

If X is a unitary t-design with $t \ge 2$, then for any $W \in X$ there exists some $Y \subset X - \{W\}$ such that Y is a t - 1-design.

Introduction to unitary *t*-designs

School of Computer Science

Conjecture

Conjecture

If X is a unitary t-design with $t \ge 2$, then for any $W \in X$ there exists some $Y \subset X - \{W\}$ such that Y is a t - 1-design.

If true, this conjecture can significantly improve our lower bounds:

Theorem

If $(X \subset U(d), w)$ is a unitary t-design and the conjecture is true, then:

$$|X| \geq \frac{d^{2t}}{\sigma_t} (1 + 2\frac{\sigma_t}{d^{2t}} \sigma_{t-1}^{\frac{t}{t-1}})$$

Artem Kaznatcheev (McGill University

Introduction to unitary *t*-designs

School of Computer Science

Outline

Introduction

Trace double sum inequality

Symmetries and minimal designs

1-designs

Structure of designs

Conclusion

Introduction to unitary *t*-designs

School of Computer Science

Concluding remarks

- ▶ Introduces 3 definitions of unitary *t*-designs and one for approximate ones.
- Showed the trace double sum inequality: Σ(X) − ⟨|tr(U)|^{2t}⟩ < ε² with equality if and if X is a ε approximate t-design with respect to the Frobenius norm.

School of Computer Science

Concluding remarks

- ▶ Introduces 3 definitions of unitary *t*-designs and one for approximate ones.
- Showed the trace double sum inequality: Σ(X) − ⟨|tr(U)|^{2t}⟩ < ε² with equality if and if X is a ε approximate t-design with respect to the Frobenius norm.
- Used an orthonormal basis of $\mathbb{C}^{d \times d}$ as a 1-design.
- Evaluated the average commutator on U(d): $\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d} V$
- Showed that t-designs are non-commuting

Artem Kaznatcheev (McGill University)

Introduction to unitary *t*-designs

School of Computer Science March 25, 2010 <u>20 / 20</u>

Concluding remarks

- ▶ Introduces 3 definitions of unitary *t*-designs and one for approximate ones.
- Showed the trace double sum inequality: Σ(X) − ⟨|tr(U)|^{2t}⟩ < ε² with equality if and if X is a ε approximate t-design with respect to the Frobenius norm.
- ▶ Used an orthonormal basis of C^{d×d} as a 1-design.
- Evaluated the average commutator on U(d): $\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d} V$
- Showed that t-designs are non-commuting
- ▶ Discussed symmetries of designs: phase, X*, MX, and XM.
- Classified minimal designs: a *t*-design is minimal if and only if it has a unique proper weight function.

chool of Computer Science March 25, 2010 20 / 20

Concluding remarks

- ▶ Introduces 3 definitions of unitary *t*-designs and one for approximate ones.
- Showed the trace double sum inequality: Σ(X) − ⟨|tr(U)|^{2t}⟩ < ε² with equality if and if X is a ε approximate t-design with respect to the Frobenius norm.
- Used an orthonormal basis of $\mathbb{C}^{d \times d}$ as a 1-design.
- Evaluated the average commutator on U(d): $\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d} V$
- Showed that t-designs are non-commuting

University

- ▶ Discussed symmetries of designs: phase, X*, MX, and XM.
- Classified minimal designs: a *t*-design is minimal if and only if it has a unique proper weight function.
- Mentioned some useful observations about the structure of designs
- Derived lower bounds on the size of *t*-designs: $X \ge \frac{d^{2t}}{\sigma}$.

ntroduction to unitary t-designs

School of Computer Science

Concluding remarks

- Introduces 3 definitions of unitary t-designs and one for approximate ones.
- Showed the trace double sum inequality: Σ(X) − ⟨|tr(U)|^{2t}⟩ < ε² with equality if and if X is a ε approximate t-design with respect to the Frobenius norm.
- Used an orthonormal basis of $\mathbb{C}^{d \times d}$ as a 1-design.
- Evaluated the average commutator on U(d): $\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d} V$
- Showed that t-designs are non-commuting
- ▶ Discussed symmetries of designs: phase, X*, MX, and XM.
- Classified minimal designs: a t-design is minimal if and only if it has a unique proper weight function.
- Mentioned some useful observations about the structure of designs
- Derived lower bounds on the size of *t*-designs: $X \ge \frac{d^{2t}}{\sigma}$.

Thank you for listening!

University

Introduction to unitary t-designs

School of Computer Science

References I

B. Collins.

Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. *International Mathematics Research Notices*, pages 953–982, 2003.

B. Collins and P. Śniady.

Integration with respect to the haar measure on unitary, orthogonal and symplectic group.

Communications in Mathematical Physics, 264:773–795, 2006.

- P. Diaconis and M. Shahshahani.
 On the eigenvalues of random matrices.
 Journal of Applied Probability, 31A:49–62, 1994.
- D. Gross, K. Audenaert, and J. Eisert. Evenly distributed unitaries: on the structure of unitary designs. *Journal of Mathematical Physics*, 48, 2007.

References II

E. M. Rains.

Increasing subsequences and the classical groups. *Electronic Journal of Combinatorics*, 5:Research Paper 12, 9 pp., 1998.

- A. Roy and A. J. Scott. Unitary designs and codes. 2008.
- **Α**.

A. J. Scott.

Optimizing quantum process tomography with unitary 2-designs. Journal of Physics A: Mathematical and Theoretical, 41:055308 (26 pp.), 2008.