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Introduction Preliminaries

Preliminaries: U(d)

I U(d) is the topologically compact and connected group of norm
preserving (unitary) operators on Cd .

I We can introduce the Haar measure and use it to integrate functions
f of U ∈ U(d) to find their averages:

〈f 〉 =

∫
U(d)

f (U) dU.

I For convenience we normalize integration by assuming that∫
U(d) dU = 1.

I The goal of unitary t-designs is to evaluate averages of polynomials
via a finite sum.
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Introduction Preliminaries

Preliminaries: Hom(r , s)

Definition

Hom(r , s) is the set of polynomials homogeneous of degree r in entries of
U ∈ U(d) and homogeneous of degree s in U∗.

Examples

U,V 7→ U∗V ∗UV ∈ Hom(2, 2)

U 7→ U∗V ∗UV ∈ Hom(1, 1)

U 7→ tr(U∗U)

d
∈ Hom(1, 1)

U,V 7→ tr(U∗V )U2 + VU∗VU ∈ Hom(3, 1)

U 7→ tr(U∗V )U2︸ ︷︷ ︸
Hom(2,1)

+ VU∗VU︸ ︷︷ ︸
Hom(1,1)

/∈ Hom(2, 1)
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Introduction Functional definition

Functional definition of unitary t-designs

Definition

A function w : X → (0, 1] is a weight function on X if for all U ∈ X we have

w(U) > 0 and
∑

U∈X w(U) = 1

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is a unitary
t-design if ∑

U∈X

w(U)f (U) =

∫
U(d)

f (U) dU

for all f ∈ Hom(t, t).

Definition

A finite X ⊂ U(d) is an unweighted t-design if it is a unitary t-design with a

uniform weight function (i.e. w(U) = 1
|X | for all U ∈ X ).
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Introduction Functional definition

Functional definition is general enough

Proposition

Every t-design is a (t − 1)-design.

Proposition

For any f ∈ Hom(r , s) with r 6= s∫
U(d)

f (U) dU = 0

Lemma

For any f ∈ Hom(r , s), U ∈ U(d), and c ∈ C we have f (cU) = c r c̄s f (U)
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Introduction Functional definition

Strengths and shortcomings of the functional definition

Strengths:

I Average of any polynomial with degrees in U and U∗ less than t can
be evaluated one summand at a time.

I Multi-variable polynomials can be evaluated:∫
· · ·
∫

U(d)

f (U1, ...,Un)dU1...dUn

=
∑
U1∈X

...
∑
Un∈X

w(U1)...w(Un)f (U1, ...,Un).

Shortcomings:

I Not clear how to test if a given (X ,w) is a t-design.

I If (X ,w) is not a design, then how far away is it?
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Introduction Tensor product definition

Tensor product definition of unitary t-designs

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is a
unitary t-design if∑

U∈X
w(U)U⊗t ⊗ (U∗)⊗t =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU

I More tractable for checking if an arbitrary (X ,w) is a t-design.

I Literature has explicit formula for the RHS for many choices of d and
t [Col03, CS06].

I Still not metric.
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Introduction Approximate designs

ε-approximate unitary t-designs

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is an
ε-approximate unitary t-design if

‖
∑
U∈X

w(U)U⊗t ⊗ (U∗)⊗t −
∫
U(d)

U⊗t ⊗ (U∗)⊗tdU‖ < ε

I A glaring omission is a specification of which norm to use in the
definition.

I There are many choices of operator norms, important ones in QIT are
Schatten norms. In particular the trace, Frobenius, and spectral
norms.

I By modifying the definition slightly, we can also study super-operator
norms. In particular, the diamond norm (most useful from a
cryptographic and experimental point of view).
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Trace double sum inequality

The trace double sum inequality

Theorem

A tuple (X ,w) is an ε-approximate unitary t-design (with respect to the
Frobenius norm) if and only if∑

U,V∈X
w(U)w(V )|tr(U∗V )|2t −

∫
U(d)
|tr(U)|2t dU ≤ ε2

I Proved earlier in the non-approximate case by Scott [Sco08].

I The integral is the number of permutations of {1, ..., t} with no
increasing subsequences of order greater than d [DS94, Rai98]. We
will call this number σ.

I If d ≥ t then σ is t!.

I Limitation: no one really cares about the Frobenius norm. - -
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Trace double sum inequality

Metric definition of unitary t-designs

Definition

A weight function w is an optimal weight function on X if for all other choices of
weight function w ′ on X , we have:∑

U,V∈X

w(U)w(V )|tr(U∗V )|2t ≤
∑

U,V∈X

w ′(U)w ′(V )|tr(U∗V )|2t .

The trace double sum is a function Σ defined for finite X ⊂ U(d) as:

Σ(X ) =
∑

U,V∈X

w(U)w(V )|tr(U∗V )|2t ,

Definition

A finite X ⊂ U(d) is a unitary t-design if

Σ(X ) = 〈|tr(U)|2t〉
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Symmetries and minimal designs Symmetries

Four symmetries of t-designs

Proposition

If X = {U1, ...,Un} is a t-design then Y = {e iφ1U1, ..., e
iφnUn} is also a

t-design for all φ1, ..., φn ∈ [0, 2π].

Proposition

If X is a t-design then X ∗ = {U∗ : U ∈ X} is also a t-design.

Proposition

If X ⊂ U(d) is a t-design then ∀M ∈ U(d), MX = {MU : U ∈ X} and
XM = {UM : U ∈ X} are also a t-design.
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Symmetries and minimal designs Minimal designs

Minimal designs

Lemma

If X ,Y are two t-designs then so is X ∪ Y .

I Designs can be arbitrarily large

I We are interested in smaller designs

Definition

A minimal (unweighted) t-design X is a t-design such that all Y ⊂ X are
not (unweighted) t-designs.
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Symmetries and minimal designs Minimal designs

Characterization of minimal t-designs

Theorem

A t-design X is minimal if and only if it has a unique optimal weight
function w.

I Useful tool for proving minimality.

I Sadly, minimal designs are not necessarily minimum.

I Still working on finding correspondences between minimal and
minimum designs.
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1-designs Pairwise traceless sets

Orthonormal bases for Cd×d

Goal: find an orthonormal basis |E1〉, ..., |Ed2〉 of Cd×d such that each
Ei ∈ U(d)

Definition

X ⊂ U(d) is pairwise traceless if for every U,V ∈ X with U 6= V we have
tr(U∗V ) = 0.
A pairwise traceless X ⊂ U(d) is maximum pairwise traceless if |X | = d2.

Orthonormal bases of unitaries for Cd×d are maximum pairwise traceless
sets.

Proposition

For any X ⊂ U(d), X is maximum pairwise traceless if and only if X is a
minimum unweighted 1-design.
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1-designs Maximum pairwise traceless sets

Very brief introduction to MUBs

Definition

Two orthonormal bases {|ei 〉 : 1 ≤ i ≤ d} and {|e ′i 〉 : 1 ≤ i ≤ d} of Cd

are mutually unbiased if |〈ei |e ′j〉|2 = 1
d for all 1 ≤ i , j ≤ d .

I Open question: determine the maximum number M(d) of pairwise
mutually unbiased bases for Cd .

I If we write the prime decomposition of d = pn1
1 ...p

nk
k such that

pni
i ≤ p

ni+1

i+1 then pn1
1 ≤M(d) ≤ d + 1.

Important features for us:
I M(d) ≥ 2 for d ≥ 1.
I Without loss of generality, can assume one of the bases to be the

standard basis.

Example{(1
0

)
,

(
0
1

)}
,
{ 1√

2

(
1
1

)
,

1√
2

(
1
−1

)}
,
{ 1√

2

(
1

+i

)
,

1√
2

(
1
−i

)}
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1 ≤M(d) ≤ d + 1.

Important features for us:
I M(d) ≥ 2 for d ≥ 1.
I Without loss of generality, can assume one of the bases to be the

standard basis.

Example{(1
0

)
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0
1
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{ 1√
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1
1
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1
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1-designs Maximum pairwise traceless sets

Maximum pairwise traceless set construction

I Let |e1〉...|ed〉 be an orthonormal basis of Cd that is mutually
unbiased with the standard basis.

I Define Ii =
√

ddiag(|ei 〉) for 1 ≤ i ≤ d .

I Consider the cyclic permutation group of order d , represented as
d-by-d matrices: C 1...Cd where Cd = C 0 = I .

I Define Cm
i = CmIi

For any tuple 1 ≤ i , j ,m, n ≤ d we have:

tr((Cm
i )∗Cn

j ) = tr(I ∗i Cd−m+nIj) =

{
d if i = j and m = n

0 otherwise
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Structure of designs Non-commuting

The center of t-designs is trivial

Lemma

For any V ∈ U(d) and [U,V ] = U∗V ∗UV we have:

〈[ · ,V ]〉 =
tr(V ∗)

d
V

Proposition

If X ⊂ U(d) is a minimal t-design then there is at most one element that
commutes with all elements of X . In other words, Z (X ) is trivial.
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Structure of designs Miscellaneous structure

Some other structural observations

Proposition

Every t-design of dimension d spans Cd×d .

A group t-design is a unitary t-design that also happens to have group
structure. Group designs were defined by Gross, Audenaert, and
Eisert [GAE07], and all known constructions are via group designs.

Proposition

Every unitary irreducible representation of a finite group is a group
1-design and vice versa.
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Structure of designs Lower bounds

A simple lower bound on the size of t-designs

Proposition

If X ⊂ U(d) is a t-design then |X | ≥ d2t

σ .

I Best known bounds are by Roy and Scott [RS08]: |X | ≥
(d2+t−1

t

)
I Asymptotically, for large d and fixed t, both bounds are Θ(d2t)

I By taking note of some structural observations, we can do a little
better:

Proposition

If X ⊂ U(d) is a t-design then |X | ≥ d2t

σ + 1
2d t ( σ

2d2t )2(t−1).
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Structure of designs Lower bounds

Conjecture

Conjecture

If X is a unitary t-design with t ≥ 2, then for any W ∈ X there exists
some Y ⊂ X − {W } such that Y is a t − 1-design.

If true, this conjecture can significantly improve our lower bounds:

Theorem

If (X ⊂ U(d),w) is a unitary t-design and the conjecture is true, then:

|X | ≥ d2t

σt
(1 + 2

σt
d2t

σ
t

t−1

t−1)
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Conclusion

Concluding remarks

I Introduces 3 definitions of unitary t-designs and one for approximate ones.

I Showed the trace double sum inequality: Σ(X )− 〈|tr(U)|2t〉 < ε2 with
equality if and if X is a ε approximate t-design with respect to the Frobenius
norm.

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

I Discussed symmetries of designs: phase, X ∗, MX , and XM.

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Mentioned some useful observations about the structure of designs

I Derived lower bounds on the size of t-designs: X ≥ d2t

σ .

Thank you for listening!
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