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Consider a non-constant total function f : {0, 1} → {0, 1}. Let b be the
output that corresponds to the part of the function that is harder to certify. In
other words, we will call the bigger certificate C(f) = Cb(f) = u and the smaller
Cb̄(f) = v. Thus, we have that u ≥ v ≥ 1 (the last inequality follows from the
fact that f is non-constant). Now consider an input x such that f(x) = b and
C(f) = Cx(f) and let S be a minimal certificate of size |S| = u. Define Sx as
the set of all strings x′ such that x′ and x agree on all bits in S. More formally:

Sx = {x′ | ∀i ∈ S x′i = xi} (1)

Since S is a certificate, we know that f(Sx) = b, where we overloaded
notation in the obvious way to serve as shorthand for ∀x′ ∈ Sx f(x′) = b.
Further, since f is total, we know that |Sx| = 2n−u.

Let x(i) be x with the i-th bit flipped. Consider an arbitrary i ∈ S. If for all
x′ ∈ Sx(i) we have f(x) = b then i is non-necessary for S to be a certificate, and
we can remove it, contradicting the fact that we picked a minimal certificate.
Thus:

∀i ∈ S, ∃y ∈ Sx(i) s.t. f(y) = b̄. (2)

Let Yi = Sx(i) ∩ f−1(b̄), we just showed that for every i ∈ S, this set is
non-empty.

Over all the y ∈ Yi consider the one with the smallest minimal certificate.
In other words, for every Yi pick a y such that for all y′ ∈ Yi Cy(f) ≤ Cy′ . From
the definition of certificate complexity, we thus know that Cy(f) ≤ Cb̄(f) = v.
Let Sy be a minimal certificate for y.

Imagine that S∩Sy = ∅ then there exists a z ∈ Sx∪Sy
y . However, such a z is

paradoxical since it is b-certified by S and b̄-certified by Sy. Thus, |S ∩Sy| ≥ 1,
in fact, they must overlap on a bit on which x and y differ. In other words, we
must have i ∈ Sy.

Now, consider the set (S ∪ Sy)y. We will show that this is a subset of Yi.
Since any y′ ∈ (S ∪ Sy)y agrees with y on Sy, we have a b̄-certificate for y′. In
other words, f((S ∪ Sy)y) = b̄. Further, since ∀j ∈ S yj = x(i)j , we have that
(S∪Sy)y) ⊆ Sx(i). Putting the two together, we prove the claim (S∪Sy)y ⊆ Yi.
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Now we can do a simple calculation to lower bound the size of Yi:

|Yi| ≥ |(S ∪ Sy)y| = 2n−|S∪Sy| ≥ 2n−u

2v−1
(3)

Further, notice that for each y ∈ Yi there exists an x′ ∈ Sx such that
y = x′(i) (i.e. they differ only on the i-th bit). Consider a bipartite graph with
the left partition being Sx and the right partition being the union of the Yi.
Add an edge between x′′ ∈ Sx and y′′ ∈

∑
i∈S Yi if x′′ and y′′ differ by one

bit. We already observed that for each y′′ there is an edge to Sx, thus the total
number of edges to Sx is greater than:

Cb(f)2n−Cb(f)−Cb̄(f)+1 (4)

From this, we can conclude that the average degree of a vertex is greater

than 2Cb(f)

2C
b̄
(f) .

In particular there is some vertex x∗ such that the size of its neighbourhood

(which is equal to its degree) |N(x∗)| ≥ 2Cb(f)

2C
b̄
(f) . Further for each y′′ ∈ N(x∗)

we have f(x∗) 6= f(y′′) and each y′′ differs from x∗ by exactly one bit. In other

words, we have shown that the sensitivity s(f) ≥ sx∗(f) ≥ 2Cb(f)

2Cb̄(f) . Consider

the other bits of the certificate for x∗ not all of them are used as flips to make
some y′′ ∈ N(x∗). Some subset of these unused bits (plus potentially some bits
outside S, but we haven’t used any of those yet) must form another sensitivity
block. Thus, we have:

bs(f) ≥ 2Cb(f)

2Cb̄(f)
+ 1 (5)

Using either Ambainis’ method or the polynomial method, it is not hard to
show that Q2(f) = Ω(

√
bs(f)), thus:

Q2(f) = Ω(

√
Cb(f)

2Cb̄(f)
) (6)

For constant Cb̄ it gives us what we desire: D(f) = O(Q2(f)) for total
functions f with one of its certificates of constant size.
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