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Introduction Preliminaries

Preliminaries: U(d)

I U(d) is the topologically compact and connected group of norm
preserving (unitary) operators on Cd .

I We can introduce the Haar measure and use it to integrate functions
f of U ∈ U(d) to find their averages:

〈f 〉 =

∫
U(d)

f (U) dU.

I For convenience we normalize integration by assuming that∫
U(d) dU = 1.

I The goal of unitary t-designs is to evaluate averages of polynomials
via a finite sum.
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Introduction Preliminaries

Preliminaries: Hom(r , s)

Definition

Hom(r , s) is the set of polynomials homogeneous of degree r in entries of
U ∈ U(d) and homogeneous of degree s in U∗.

Examples

U,V 7→ U∗V ∗UV ∈ Hom(2, 2)

U 7→ U∗V ∗UV ∈ Hom(1, 1)

U 7→ tr(U∗U)

d
∈ Hom(1, 1)

U,V 7→ tr(U∗V )U2 + VU∗VU ∈ Hom(3, 1)

U 7→ tr(U∗V )U2︸ ︷︷ ︸
Hom(2,1)

+VU∗VU︸ ︷︷ ︸
Hom(1,1)

/∈ Hom(2, 1)
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Introduction Functional definition

Functional definition of unitary t-designs

Definition

A function w : X → (0, 1] is a weight function on X if for all U ∈ X we have

w(U) > 0 and
∑

U∈X w(U) = 1

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is a unitary
t-design if ∑

U∈X

w(U)f (U) =

∫
U(d)

f (U) dU

for all f ∈ Hom(t, t).

Definition

A finite X ⊂ U(d) is an unweighted t-design if it is a unitary t-design with a

uniform weight function (i.e. w(U) = 1
|X | for all U ∈ X ).
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Introduction Functional definition

Functional definition is general enough

Proposition

Every t-design is a (t − 1)-design.

Proposition

For any f ∈ Hom(r , s) with r 6= s∫
U(d)

f (U) dU = 0

Lemma

For any f ∈ Hom(r , s), U ∈ U(d), and c ∈ C we have f (cU) = c r c̄s f (U)
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Introduction Functional definition

Strengths and shortcomings of the functional definition

Strengths:

I Average of any polynomial with degrees in U and U∗ less than t can
be evaluated one summand at a time.

I Multi-variable polynomials can be evaluated:∫
· · ·
∫

U(d)

f (U1, ...,Un)dU1...dUn

=
∑
U1∈X

...
∑
Un∈X

w(U1)...w(Un)f (U1, ...,Un).

Shortcomings:

I Not clear how to test if a given (X ,w) is a t-design.

I If (X ,w) is not a design, then how far away is it?
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Introduction Tensor product definition

Tensor product definition of unitary t-designs

Definition

A tuple (X,w) with finite X ⊂ U(d) and weight function w on X is a
unitary t-design if∑

U∈X
w(U)U⊗t ⊗ (U∗)⊗t =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU

I More tractable for checking if an arbitrary (X ,w) is a t-design.

I Literature has explicit formula for the RHS for many choices of d and
t [Col03, CS06].

I Still not metric.
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Introduction Metric definition

Metric definition of unitary t-designs

Definition

A weight function w is a proper weight function on X if for all other choices of
weight function w ′ on X , we have:∑

U,V∈X

w(U)w(V )|tr(U∗V )|2t ≤
∑

U,V∈X

w ′(U)w ′(V )|tr(U∗V )|2t .

The trace double sum is a function Σ defined for finite X ⊂ U(d) as:

Σ(X ) =
∑

U,V∈X

w(U)w(V )|tr(U∗V )|2t ,

Definition

A finite X ⊂ U(d) is a unitary t-design if

Σ(X ) = 〈|tr(U)|2t〉
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Introduction Metric definition

Strengths and shortcomings of the metric definition

Strengths:

I Σ(X ) > 〈|tr(U)|2t〉 if X is not a t-design. This gives us a useful
metric to say how far a set with proper weight function is from being
a design.

I 〈|tr(U)|2t〉 has a nice combinatorial interpertation: the number of
permutations of {1, ..., t} with no increasing subsequences of order
greater than d [DS94, Rai98].

I If d ≥ t then RHS is t!.

I One of the easiest way to test if X is a t-design

Shortcomings:

I Does not give any insight into what t-designs are useful for.
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Introduction Small designs

Characterization of minimal t-designs

Definition

A minimal (unweighted) t-design X is a t-design such that all Y ⊂ X are
not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight
function w.

I Useful tool for proving minimality.

I Sadly, minimal designs are not necessarily minimum.

I Currently working on finding correspondences between minimal and
minimum designs.
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Introduction Small designs

A lower bound on the size of t-designs

Proposition

If X ⊂ U(d) is a t-design then |X | ≥ d2t

〈|tr(U)|2t〉 .

I Best known bounds are by Roy and Scott [RS08]: |X | ≥
(d2+t−1

t

)
I Asymptotically, for large d and fixed t, both bounds are Θ(d2t)
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Using designs 1-design

1-design construction

I Let |e1〉...|ed〉 be an orthonormal basis of Cd that is mutually
unbiased with the standard basis.

I Define Ii =
√
ddiag(|ei 〉) for 1 ≤ i ≤ d .

I Consider the cyclic permutation group of order d , represented as
d-by-d matrices: C 1...Cd where Cd = C 0 = I .

I Define Cm
i = CmIi

For any tuple 1 ≤ i , j ,m, n ≤ d we have:

tr((Cm
i )∗Cn

j ) = tr(I ∗i C
d−m+nIj) =

{
d if i = j and m = n

0 otherwise
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Using designs Evaluating 〈[ · , V ]〉

Evaluating the average commutator over U(d)

Theorem

For any V ∈ U(d) and [U,V ] = U∗V ∗UV we have:

〈[ · ,V ]〉 =
tr(V ∗)

d
V

Artem Kaznatcheev (McGill University) Introduction to unitary t-designs January 7, 2010 12 / 15



Using designs Evaluating 〈[ · , V ]〉

Proof of EAC
Consider the diagonalization of V ∗, i.e. V ∗ = P∗DP, with
D = diag(λ1, ..., λd).

∫
U(d)

U∗V ∗UV dU =
[ ∫

U(d)
U∗V ∗U dU

]
V =

[ ∫
U(d)

U∗P∗DPU dU
]
V

But we know a symmetry that allows substituting PU → U without
changing the average.∫

U(d)
U∗P∗DPU dU =

∫
U(d)

U∗DU dU

I Let f (U) = U∗DU.

I Look at the elements of the design: f (Cm
i ) = I ∗i (Cm)∗DCmIi .

I (Cm)∗DCm = diag(λcm(1), ..., λcm(d))

Thus, 〈f 〉 = λ1+...+λd
d I
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Using designs t-designs are non-commuting

t-designs are non-commuting

Definition

X ⊂ U(d) is a non-commuting if there is some U,V ∈ X such that
[U,V ] 6= I .

Theorem

For all d ≥ 2 if X ⊂ U(d) is a t-design then X is non-commuting.

Supports our intuition that designs must be well ‘spread out’.
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Conclusion

Concluding remarks

I Introduced 3 definitions of unitary t-designs

I Classified minimal designs: a t-design is minimal if and only if it has a
unique proper weight function.

I Used an orthonormal basis of Cd×d as a 1-design.

I Evaluated the average commutator on U(d): 〈[ · ,V ]〉 = tr(V ∗)
d V

I Showed that t-designs are non-commuting

Thank you for listening!
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