Introduction to unitary t-designs

Artem Kaznatcheev

McGill University

January 7, 2010

Introduction to unitary t-designs

Preliminaries: U(d)

► U(d) is the topologically compact and connected group of norm preserving (unitary) operators on C^d.

Introduction to unitary t-designs

School of Computer Science

Preliminaries: U(d)

Gill University

- ► U(d) is the topologically compact and connected group of norm preserving (unitary) operators on C^d.
- We can introduce the Haar measure and use it to integrate functions f of U ∈ U(d) to find their averages:

$$\langle f \rangle = \int_{U(d)} f(U) \, dU.$$

For convenience we normalize integration by assuming that $\int_{U(d)} dU = 1$.

Introduction to unitary t-designs

chool of Computer Science

Preliminaries: U(d)

University

- ► U(d) is the topologically compact and connected group of norm preserving (unitary) operators on C^d.
- We can introduce the Haar measure and use it to integrate functions f of U ∈ U(d) to find their averages:

$$\langle f \rangle = \int_{U(d)} f(U) \, dU.$$

- ► For convenience we normalize integration by assuming that $\int_{U(d)} dU = 1.$
- The goal of unitary t-designs is to evaluate averages of polynomials via a finite sum.

Introduction to unitary t-designs

chool of Computer Science

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Introduction to unitary t-designs

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Examples

$$egin{array}{rcl} U,V&\mapsto&U^*V^*UV&\in {\it Hom}(2,2)\ U&\mapsto&U^*V^*UV&\in {\it Hom}(1,1) \end{array}$$

Introduction to unitary t-designs

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Examples

 $egin{array}{rcl} U,V&\mapsto&U^*V^*UV&\in {\it Hom}(2,2)\ U&\mapsto&U^*V^*UV&\in {\it Hom}(1,1)\ U&\mapsto&rac{tr(U^*U)}{d}&\in {\it Hom}(1,1) \end{array}$

Introduction to unitary t-designs

School of Computer Science

Gill University

Definition

Hom(r, s) is the set of polynomials homogeneous of degree r in entries of $U \in U(d)$ and homogeneous of degree s in U^* .

Examples

U, V	\mapsto	U^*V^*UV	$\in \mathit{Hom}(2,2)$
U	\mapsto	U^*V^*UV	$\in \mathit{Hom}(1,1)$
U	\mapsto	$\frac{tr(U^*U)}{d}$	$\in \mathit{Hom}(1,1)$
U, V	\mapsto	$tr(U^*V)U^2 + VU^*VU$	$\in \mathit{Hom}(3,1)$
U	\mapsto	$\underbrace{tr(U^*V)U^2}_{} + \underbrace{VU^*VU}_{}$	\notin Hom(2,1)
		Hom(2,1) $Hom(1,1)$	

Introduction to unitary t-designs

January 7, 2010 2 / 15

School of Computer Science

Functional definition of unitary t-designs

Definition

A function $w : X \to (0, 1]$ is a weight function on X if for all $U \in X$ we have w(U) > 0 and $\sum_{U \in X} w(U) = 1$

Functional definition of unitary *t*-designs

Definition

A function $w : X \to (0, 1]$ is a weight function on X if for all $U \in X$ we have w(U) > 0 and $\sum_{U \in X} w(U) = 1$

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U \in X} w(U)f(U) = \int_{U(d)} f(U) \, dU$$

for all $f \in Hom(t, t)$.

Functional definition of unitary t-designs

Definition

A function $w : X \to (0, 1]$ is a weight function on X if for all $U \in X$ we have w(U) > 0 and $\sum_{U \in X} w(U) = 1$

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary t-design if

$$\sum_{U \in X} w(U)f(U) = \int_{U(d)} f(U) \, dU$$

for all $f \in Hom(t, t)$.

Definition

A finite $X \subset U(d)$ is an unweighted *t*-design if it is a unitary *t*-design with a uniform weight function (i.e. $w(U) = \frac{1}{|X|}$ for all $U \in X$).

Functional definition is general enough

Proposition

Every t-design is a (t-1)-design.

Introduction to unitary t-designs

Functional definition is general enough

Proposition

Every t-design is a (t-1)-design.

Proposition

```
For any f \in Hom(r, s) with r \neq s
```

 $\int_{U(d)} f(U) \, dU = 0$

Lemma

For any $f \in \text{Hom}(r, s)$, $U \in U(d)$, and $c \in \mathbb{C}$ we have $f(cU) = c^r \bar{c}^s f(U)$

Artem Kaznatcheev (McGill University)

Introduction to unitary t-designs

School of Computer Science

Strengths and shortcomings of the functional definition

Strengths:

- ► Average of any polynomial with degrees in U and U* less than t can be evaluated one summand at a time.
- Multi-variable polynomials can be evaluated:

$$\int \cdots \int f(U_1, ..., U_n) dU_1 ... dU_n$$
$$= \sum_{U_1 \in X} ... \sum_{U_n \in X} w(U_1) ... w(U_n) f(U_1, ..., U_n).$$

Artem Kaznatcheev (McGill University)

Introduction to unitary t-designs

School of Computer Science

Strengths and shortcomings of the functional definition

Strengths:

- ► Average of any polynomial with degrees in U and U* less than t can be evaluated one summand at a time.
- Multi-variable polynomials can be evaluated:

$$\int \cdots \int f(U_1, ..., U_n) dU_1 ... dU_n$$
$$= \sum_{U_1 \in X} ... \sum_{U_n \in X} w(U_1) ... w(U_n) f(U_1, ..., U_n).$$

Shortcomings:

- Not clear how to test if a given (X, w) is a *t*-design.
- If (X, w) is not a design, then how far away is it?

em Kaznatcheev (McGill University)

Introduction to unitary t-designs

chool of Computer Science January 7, 2010 5 / 15

Tensor product definition of unitary t-designs

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U\in X} w(U) U^{\otimes t} \otimes (U^*)^{\otimes t} = \int_{U(d)} U^{\otimes t} \otimes (U^*)^{\otimes t} dU$$

Introduction to unitary t-designs

School of Computer Science

Tensor product definition of unitary t-designs

Definition

A tuple (X,w) with finite $X \subset U(d)$ and weight function w on X is a unitary *t*-design if

$$\sum_{U\in X} w(U) U^{\otimes t} \otimes (U^*)^{\otimes t} = \int_{U(d)} U^{\otimes t} \otimes (U^*)^{\otimes t} dU$$

- ▶ More tractable for checking if an arbitrary (*X*, *w*) is a *t*-design.
- Literature has explicit formula for the RHS for many choices of d and t [Col03, CS06].
- Still not metric.

University

Introduction to unitary t-designs

chool of Computer Science January 7, 2010 6 / 15

Metric definition of unitary *t*-designs

Definition

A weight function w is a proper weight function on X if for all other choices of weight function w' on X, we have:

$$\sum_{U,V\in X} w(U)w(V)|tr(U^*V)|^{2t} \leq \sum_{U,V\in X} w'(U)w'(V)|tr(U^*V)|^{2t}.$$

The trace double sum is a function Σ defined for finite $X \subset U(d)$ as:

$$\Sigma(X) = \sum_{U,V \in X} w(U)w(V)|tr(U^*V)|^{2t},$$

Definition

A finite $X \subset U(d)$ is a unitary *t*-design if

$$\Sigma(X) = \langle |tr(U)|^{2t} \rangle$$

Artem Kaznatcheev (McGill University)

Strengths:

► Σ(X) > ⟨|tr(U)|^{2t}⟩ if X is not a t-design. This gives us a useful metric to say how far a set with proper weight function is from being a design.

Introduction to unitary t-designs

School of Computer Science

Strengths:

- ► Σ(X) > ⟨|tr(U)|^{2t}⟩ if X is not a t-design. This gives us a useful metric to say how far a set with proper weight function is from being a design.
- ► <|tr(U)|^{2t}> has a nice combinatorial interpertation: the number of permutations of {1,..., t} with no increasing subsequences of order greater than d [DS94, Rai98].
- If $d \ge t$ then RHS is t!.

Artem Kaznatcheev (McGill University)

Introduction to unitary t-designs

School of Computer Science

Strengths:

- $\Sigma(X) > \langle |tr(U)|^{2t} \rangle$ if X is not a t-design. This gives us a useful metric to say how far a set with proper weight function is from being a design.
- $(|tr(U)|^{2t})$ has a nice combinatorial interpertation: the number of permutations of $\{1, ..., t\}$ with no increasing subsequences of order greater than d [DS94, Rai98].
- If d > t then RHS is t!.

University

One of the easiest way to test if X is a t-design

chool of Computer Science January 7, 2010 8 / 15

Strengths:

- ► Σ(X) > ⟨|tr(U)|^{2t}⟩ if X is not a t-design. This gives us a useful metric to say how far a set with proper weight function is from being a design.
- ► <|tr(U)|^{2t}> has a nice combinatorial interpertation: the number of permutations of {1, ..., t} with no increasing subsequences of order greater than d [DS94, Rai98].
- If $d \ge t$ then RHS is t!.
- One of the easiest way to test if X is a *t*-design

Shortcomings:

► Does not give any insight into what *t*-designs are useful for.

Introduction to unitary t-designs

January 7, 2010 8 / 15

chool of Computer Science

Characterization of minimal *t*-designs

Definition

A minimal (unweighted) *t*-design X is a *t*-design such that all $Y \subset X$ are not (unweighted) t-designs.

Characterization of minimal *t*-designs

Definition

A minimal (unweighted) t-design X is a t-design such that all $Y \subset X$ are not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight function w.

Characterization of minimal *t*-designs

Definition

A minimal (unweighted) t-design X is a t-design such that all $Y \subset X$ are not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight function w.

Useful tool for proving minimality.

Characterization of minimal *t*-designs

Definition

A minimal (unweighted) t-design X is a t-design such that all $Y \subset X$ are not (unweighted) t-designs.

Theorem

A t-design X is minimal if and only if it has a unique proper weight function w.

- Useful tool for proving minimality.
- Sadly, minimal designs are not necessarily minimum.
- Currently working on finding correspondences between minimal and minimum designs.

University

chool of Computer Science

A lower bound on the size of *t*-designs

Proposition

If $X \subset U(d)$ is a t-design then $|X| \geq \frac{d^{2t}}{\langle |tr(U)|^{2t} \rangle}$.

Introduction to unitary t-designs

School of Computer Science

A lower bound on the size of *t*-designs

Proposition

If $X \subset U(d)$ is a t-design then $|X| \geq \frac{d^{2t}}{\langle |tr(U)|^{2t} \rangle}$.

- ▶ Best known bounds are by Roy and Scott [RS08]: $|X| \ge \binom{d^2+t-1}{t}$
- Asymptotically, for large d and fixed t, both bounds are $\Theta(d^{2t})$

Introduction to unitary t-designs

School of Computer Science

1-design construction

- Let |e₁⟩...|e_d⟩ be an orthonormal basis of C^d that is mutually unbiased with the standard basis.
- Define $I_i = \sqrt{d} \operatorname{diag}(|e_i\rangle)$ for $1 \le i \le d$.

Introduction to unitary t-designs

1-design construction

- Let |e₁⟩...|e_d⟩ be an orthonormal basis of C^d that is mutually unbiased with the standard basis.
- Define $I_i = \sqrt{d} \operatorname{diag}(|e_i\rangle)$ for $1 \le i \le d$.
- ► Consider the cyclic permutation group of order *d*, represented as *d*-by-*d* matrices: C¹...C^d where C^d = C⁰ = I.
- Define $C_i^m = C^m I_i$

Introduction to unitary t-designs

chool of Computer Science

1-design construction

- Let |e₁⟩...|e_d⟩ be an orthonormal basis of C^d that is mutually unbiased with the standard basis.
- Define $I_i = \sqrt{d} \operatorname{diag}(|e_i\rangle)$ for $1 \le i \le d$.
- ► Consider the cyclic permutation group of order *d*, represented as *d*-by-*d* matrices: C¹...C^d where C^d = C⁰ = I.
- Define $C_i^m = C^m I_i$

For any tuple $1 \leq i, j, m, n \leq d$ we have:

$$tr((C_i^m)^*C_j^n) = tr(I_i^*C^{d-m+n}I_j) = \begin{cases} d & \text{if } i = j \text{ and } m = n \\ 0 & \text{otherwise} \end{cases}$$

Artem Kaznatcheev (McGill University

Introduction to unitary t-designs

chool of Computer Science

Evaluating $\langle [\cdot , V] \rangle$

Evaluating the average commutator over U(d)

Theorem

For any $V \in U(d)$ and $[U, V] = U^*V^*UV$ we have:

$$\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d}V$$

Artem Kaznatcheev (McGill University)

Introduction to unitary t-designs

School of Computer Science

Evaluating $\langle [\cdot , V] \rangle$

Proof of EAC

Consider the diagonalization of V^* , i.e. $V^* = P^*DP$, with $D = \text{diag}(\lambda_1, ..., \lambda_d)$.

$$\int_{U(d)} U^* V^* U V \ dU = \left[\int_{U(d)} U^* V^* U \ dU \right] V = \left[\int_{U(d)} U^* P^* D P U \ dU \right] V$$

Evaluating ([· , V])

Proof of EAC

Consider the diagonalization of V^* , i.e. $V^* = P^*DP$, with $D = \text{diag}(\lambda_1, ..., \lambda_d)$.

$$\int_{U(d)} U^* V^* U V \ dU = \left[\int_{U(d)} U^* V^* U \ dU \right] V = \left[\int_{U(d)} U^* P^* D P U \ dU \right] V$$

But we know a symmetry that allows substituting $PU \rightarrow U$ without changing the average.

$$\int_{U(d)} U^* P^* DPU \ dU = \int_{U(d)} U^* DU \ dU$$

• Let $f(U) = U^*DU$.

Evaluating ([· , V])

Proof of EAC

Consider the diagonalization of V^* , i.e. $V^* = P^*DP$, with $D = \text{diag}(\lambda_1, ..., \lambda_d)$.

$$\int_{U(d)} U^* V^* U V \ dU = \left[\int_{U(d)} U^* V^* U \ dU \right] V = \left[\int_{U(d)} U^* P^* D P U \ dU \right] V$$

But we know a symmetry that allows substituting $PU \rightarrow U$ without changing the average.

$$\int_{U(d)} U^* P^* DPU \ dU = \int_{U(d)} U^* DU \ dU$$

• Let $f(U) = U^*DU$.

• Look at the elements of the design: $f(C_i^m) = I_i^*(C^m)^* DC^m I_i$.

Evaluating ([· , V])

Proof of EAC

Consider the diagonalization of V^* , i.e. $V^* = P^*DP$, with $D = \text{diag}(\lambda_1, ..., \lambda_d)$.

$$\int_{U(d)} U^* V^* U V \ dU = \left[\int_{U(d)} U^* V^* U \ dU \right] V = \left[\int_{U(d)} U^* P^* D P U \ dU \right] V$$

But we know a symmetry that allows substituting $PU \rightarrow U$ without changing the average.

$$\int_{U(d)} U^* P^* DPU \ dU = \int_{U(d)} U^* DU \ dU$$

• Let $f(U) = U^*DU$.

• Look at the elements of the design: $f(C_i^m) = I_i^*(C^m)^* DC^m I_i$.

$$\blacktriangleright (C^m)^* DC^m = \operatorname{diag}(\lambda_{c^m(1)}, ..., \lambda_{c^m(d)})$$

Evaluating $\langle [\cdot , V] \rangle$

Proof of EAC

Consider the diagonalization of V^* , i.e. $V^* = P^*DP$, with $D = \text{diag}(\lambda_1, ..., \lambda_d)$.

$$\int_{U(d)} U^* V^* U V \ dU = \left[\int_{U(d)} U^* V^* U \ dU \right] V = \left[\int_{U(d)} U^* P^* D P U \ dU \right] V$$

But we know a symmetry that allows substituting $PU \rightarrow U$ without changing the average.

$$\int_{U(d)} U^* P^* DPU \ dU = \int_{U(d)} U^* DU \ dU$$

• Let $f(U) = U^* DU$.

• Look at the elements of the design: $f(C_i^m) = I_i^*(C^m)^*DC^mI_i$.

•
$$(C^m)^*DC^m = \operatorname{diag}(\lambda_{c^m(1)}, ..., \lambda_{c^m(d)})$$

Thus, $\langle f \rangle = rac{\lambda_1 + ... + \lambda_d}{d} I$ Artem Kaznatcheev (McGill University)

t-designs are non-commuting

Definition

 $X \subset U(d)$ is a *non-commuting* if there is some $U, V \in X$ such that $[U, V] \neq I$.

Theorem

For all $d \ge 2$ if $X \subset U(d)$ is a t-design then X is non-commuting.

Supports our intuition that designs must be well 'spread out'.

Introduction to unitary t-designs

Introduced 3 definitions of unitary t-designs

Introduction to unitary t-designs

School of Computer Science

- Introduced 3 definitions of unitary t-designs
- Classified minimal designs: a *t*-design is minimal if and only if it has a unique proper weight function.

Introduction to unitary t-designs

School of Computer Science

- Introduced 3 definitions of unitary t-designs
- Classified minimal designs: a *t*-design is minimal if and only if it has a unique proper weight function.
- Used an orthonormal basis of $\mathbb{C}^{d \times d}$ as a 1-design.
- Evaluated the average commutator on U(d): $\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d}V$
- Showed that t-designs are non-commuting

Artem Kaznatcheev (McGill University)

Introduction to unitary t-designs

School of Computer Science

- Introduced 3 definitions of unitary t-designs
- Classified minimal designs: a *t*-design is minimal if and only if it has a unique proper weight function.
- Used an orthonormal basis of $\mathbb{C}^{d \times d}$ as a 1-design.
- Evaluated the average commutator on U(d): $\langle [\cdot, V] \rangle = \frac{tr(V^*)}{d}V$
- Showed that t-designs are non-commuting

Thank you for listening!

References I

B. Collins.

Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. *International Mathematics Research Notices*, pages 953–982, 2003.

B. Collins and P. Śniady.

Integration with respect to the haar measure on unitary, orthogonal and symplectic group.

Communications in Mathematical Physics, 264:773–795, 2006.

- P. Diaconis and M. Shahshahani.
 On the eigenvalues of random matrices.
 Journal of Applied Probability, 31A:49–62, 1994.
- E. M. Rains.

Increasing subsequences and the classical groups.

Electronic Journal of Combinatorics, 5:Research Paper 12, 9 pp., 1998.

References II

A. Roy and A. J. Scott. Unitary designs and codes. 2008.

Artem Kaznatcheev (McGill University)