
Quality of Design

Comp-304 : Quality of Design
Lecture 16

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007

But first, Traffic Light

■ A traffic light has a green, a yellow and a red light.
 Lights can be on and off

■ The traffic light has a normal mode of operation.
 At first, the green light it on.
 After 0.5 sec, the green light turns off and the yellow light turns on
 After 0.2 sec, the yellow light turns off and the red light turns on
 After 0.7 sec, the red light turns off and the green light turns on

■ A police offer can switch the traffic light into and out of
emergency mode.
 In emergency mode, the yellow light blinks every 0.5 seconds.
 When exiting emergency mode, the light goes back to it's normal operation.

■ The traffic light can be turned off and turn on again.
 When turned back on, the traffic light resumes the previous mode of

operation.

Traffic Light

Quality of Design

■ What is a good object-oriented design?
■ How do I determine if design X is good?
■ Are there characteristics?
■ Are there metrics?

Analysis of Design

■ Domains
 Domains of classes
 Reusability & Sophistication

■ Encumbrance
 What is it? and example
 It's use, Law of Demeter

■ Class cohesion
 Mixed – instance/domain/role

Classes in an HR System

■ Employee
■ Date / Time
■ Salary
■ Performance Review
■ Job Position
■ Job Offer
■ Recruit
■ Currency
■ Bonus
■ Location/Office

Classes in an Inventory System

■ Equipment
■ Bar code
■ Loan History
■ Date/Time
■ Employee
■ Location/Office
■ Repair Order
■ Repair History
■ Purchase Order
■ Currency

Classes in an Accounting System

■ Client
■ Account
■ Invoice
■ Date / Time
■ Currency
■ Employee
■ Bar code
■ Delivery
■ Pickup

Similarities

HR

■ Employee
■ Date / Time
■ Salary
■ Performance

Review
■ Job Position
■ Recruit
■ Currency
■ Location/Office

Accounting

■ Client
■ Account
■ Invoice
■ Date / Time
■ Currency
■ Employee
■ Bar code
■ Delivery
■ Pickup

Inventory

■ Equipment
■ Bar code
■ Loan History
■ Date/Time
■ Employee
■ Location/Office
■ Repair Order
■ Purchase Order
■ Currency

Domains of Classes

■ Application Domain
 classes valuable for one application

Edit Salary, New Loan History, Delete Purchase Order
■ Business Domain

 classes valuable for an industry
Employee, Location

■ Architecture Domain
 classes valuable for an implementation architecture

Currency
■ Foundation Domain

 classes valuable for all businesses and architectures
Date / Time

More Examples

■ Application Domain
 Event recognizer class

■ Business Domain
 Role class, relationship class

■ Architecture Domain
 Human interface class

■ Foundation Domain
 Fundamental class, structural class

Reusability & Sophistication

Application
domain

Business
domain

Architecture
domain

Foundation
domain

LOW
REUSE

MEDIUM
REUSE

HIGH
REUSE

HIGH
SOPHISTICATION

LOW
SOPHISTICATION

Encumbrance

■ Quantitative measure of how far a class is from the
foundation domain (i.e. it's sophistication)

■ Encumbrance : If we take a class c1 and measure the
number of classes c1 depends on and measure the
number of classes that those classes depend on and so
on...

■ This may be very large, so we talk about direct and
indirect class reference sets

Direct and Indirect

■ Direct class reference set refers to the set of classes that
a given class c1 directly refers to (via inheritance,
association, ...), call these c2, c3, c4, ...

■ Indirect class reference set of c1 is the union of its direct
class reference set (c2, c3, c4, ...) and the indirect class
reference sets of c2, c3, c4, ...

■ This leads to direct and indirect encumbrance, which is
just the size of the respective class reference set

Recursive

■ This is a recursive definition...so when does it stop?
■ We say that the direct class reference set of classes of

the foundation domain is the empty set.

Simple Example

