
Type Hierarchy

Comp-303 : Programming Techniques

Lecture 9

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 1

Last lecture . . .

• Adequacy of collection types requires a way to iterate
efficiently and conveniently over its elements.

• Iterators provide a that solution.

• A generator object returns elements from the collection one at
a time, usually without requiring extra storage or requiring
access to all elements.

• Iterators support abstraction by hiding how elements are
produced: the generator has access to private variables of the
collection but shields the user from this knowledge

• Iterators assume that the collection remains unchanged while
iterating, except through the optional remove() operation

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 2

Announcements . . .

• Deliverables today.

– Req&Spec Document on my desk.

– Assignment 1 (paper copy) in the McConnell drop off box
(first floor)

– Assignment 1 (electronic copy) on Web CT

• Assignment 2 will be handed out in 7 days.

• You should start coding the project (2 months left).

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 3

February . . .

• Lecture 9: Type hierarchy

• Lecture 10: Polymorphic abstractions

• Lecture 11: Threading

• Lecture 12: Network, sockets and serialization

• Lecture 13: Testing, debugging and review

• Midterm 1

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 4

Type hierarchy

• A type family is defined by a type hierarchy.

• At the top of the hierarchy is a supertype that defines behavior
common to all family members.

• Other members are subtypes of this supertype.

• A hierarchy can have many levels.

• Type hierarchy can be used

– to define multiple implementations of a type that are more
efficient under particular circumstances.

DensePoly & SparsePoly implement Poly

– to extend the behavior of a simple type by providing extra
methods

BufferedReader extends Reader

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 5

Substitution principle

• A supertypes behavior must be supported by all subtypes.

• Therefore, in any situation in which a supertype can be used, it
can be substituted by a subtype.

• Java compiler enforces this by only allowing extensions to a
type (you can only redefine and add methods, not remove
them).

• The substitution principle provides abstraction by specification
for type hierarchies:

– Subtypes behave in accordance with the specification in
their supertype.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 6

Assignment

• If S is a subtype of T, S objects can be assigned to variables of
type T.
Poly p1 = new DensePoly(); // the zero Poly

Poly p2 = new SparsePoly(3,20); // the Poly 3x^20

• p1 has apparent type Poly

• However, p1, after assignment, has actual type DensePoly.

• The Java compiler checks types based on apparent type.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 7

Method Dispatch in function languages

• At compile time, the destination method is known.

• At compile time, a method call is translated into a
jump/branch command to a pre-calculated address.

• We can’t do that in Java.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 8

Dispatching

• The compiler cannot determine the actual type of p.
static Poly diff (Poly p) {

// differentiates p

Iterator g = p.terms();

...

}

• Therefore the compiler cannot know which method is executed
for p.terms()

(assuming DensePoly and SparsePoly have different
implementations for terms())

• The choice of method to call is determined at run time by
dispatching the call.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 9

Dispatching (cont.)

Dispatch
Vector

Instance
Variables

Object P: DensePoly

Dispatch
Vector

Instance
Variables

Object Q : SparsePoly

Dispatch
Vector
DensePoly

Dispatch
Vector
SparsePoly

DP.degree SP.degree

DP.coef SP.coef

Poly.add

DP.terms SP.terms

• Dispatching maps an method call to the actual type’s
implementation for that call.

• Each object has a reference to a dispatch vector which stores
the implementation for each method.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 10

Method Dispatch in Java

1. Extract the method name and signature from the method call.

2. Search the dispatch vector of the stack object to find our target
memory address.

3. Use the method signature to remove arguments from the stack
and transfer them to the method’s local variables.

4. Transfer control to target memory address.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 11

Method declarations

• Methods can be declared final

– A final method cannot be re-defined (overridden) by a
subtype.

– This guaranties that the behavior of the method is frozen.

• Methods can be declared abstract

– An abstract method must be overridden by a subtype,
otherwise the subtype is also an abstract class.

– Abstract methods are declared but not implemented.

– This guaranties that subtypes define their own
implementation.

• Methods and instance variables can be declared protected

– A protected method is invisible to users (private), but
visible to subtypes (public) and classes in the same package.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 12

When to use protected

• Protected methods & instance variables expose the
implementation of a supertype to its subtypes.

– A subtype can break the implementation of a supertype.

– The supertype can not be re-implemented without affecting
the subtype.

– Protected should only be used when a subtype needs to
access parts of its supertype for efficiency reasons.

– By default, a subtype should access its supertype only
through the public interface.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 13

Specification of IntSet

public class IntSet {

// OVERVIEW: IntSets are mutable, unbounded sets of integers

// A typical IntSet is {x1,...,xn}

// constructors

public IntSet ()

// EFFECTS: Initializes this to be empty

// methods

public void insert (int x)

// MODIFIES: this

// EFFECTS: Adds x to the elements of this,

// i.e. this_post = this + {x}

public void remove (int x)

// MODIFIES: this

// EFFECTS: Removes x from this, i.e. this_post = this - {x}

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 14

Specification of IntSet (cont.)

// observers

public boolean isIn (int x)

// EFFECTS: if x is in this returns true else returns false

public int size ()

// EFFECTS: Returns the cardinality of this

public int choose () throws EmptyException

// EFFECTS: if this is empty, throws EmptyException else

// returns an arbitrary element of this

public void Iterator elements ()

// EFFECTS: Returns a generator that produces all elements of this

// (as Integers), each exactly once, in arbitrary order

// REQUIRES: this not to be modified while the generator is in use

public boolean subset (IntSet s)

// EFFECTS: Returns true is this is a subset of s else returns false

public String toString ()

}

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 15

Partial Implementation of IntSet

private Vector els; // the elements

public boolean subset (IntSet s) {

// EFFECTS: Returns true is this is a subset of s else returns false

if (s == null) return false;

for (int i = 0; i < els.size (); i++)

if (!s.isIn(((Integer) els.get (i)). intValue ()))

return false;

return true;

}

• If Vector els was declared protected, we could retrieve integer
directly.

• We would not need to call isIn multiple times.

• Unfortunately, subset would only function with IntSet’s that
uses Vector els.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 16

Subset/Superset Game

I will give you two sets of number. You have to tell me if set B is a
subset of set A.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 17

First try

Set A: 4, 19, 10, 500, 38, 32, 203, 401, 134, 3, 54, 27, 76, 348, 122,
453, 88, 95, 499, 176, 365, 9, 473, 112, 62, 201, 465, 333, 67, 262

Set B: 465, 401, 348, 88, 122, 95, 176, 262, 10, 134, 27, 9, 67

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 18

Second try

Set A: 1, 3, 4, 9, 10, 19, 26, 32, 38, 53, 62, 67, 76, 88, 99, 112, 142,
154, 186, 201, 213, 262, 333, 358, 365, 401, 453, 455, 476, 499, 500

Set B: 9, 10, 67, 99, 201, 333, 365, 401, 453, 477, 499, 500

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 19

SortedIntSet

• Suppose we define a type SortedIntSet, which is like an IntSet
but gives access to its elements in sorted order by generator
returned by terms().

• The method subset() could have a more efficient
implementation, since we can assume elements are stored in
sorted order.

We overload subset:
public boolean subset (IntSet s) // inherited

public boolean subset (SortedIntSet s) // overloaded

// same specification but more efficient:

// go through elements of this and s

// from small to large

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 20

Implementing SortedIntSet

• To implement SortedIntSet we could use a sorted list. This
could make SortedIntSet much more efficient.

• If SortedIntSet is a subclass of IntSet, every SortedIntSet
object will have all instance variables declared for IntSet.

• However, we do not need a Vector els variable in our
SortedIntSet.

• This means we might need to rethink the structure of our
classes.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 21

Abstract IntSet

IntSet

SortedIntSet UnsortedIntSet

• IntSet is now an abstract class.

• Methods common to all IntSets are store in IntSet.

• Implementation details specific to particular type of IntSet are
store in the subtypes.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 22

Abstract IntSet (cont.)

public abstract class IntSet {

protected int sz; // the size

public IntSet () { sz = 0; }

public abstract void insert (int x);

public abstract void remove (int x);

public abstract Iterator elements ();

public boolean isIn (int x) {

Iterator g = elements ();

Integer z = new Integer (x);

while (g.hasNext ())

if (g.next (). equals (z)) return true;

return false;

}

public int size () { return sz; }

}

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 23

Abstract IntSet (cont.)

• Instance variable sz is provided to enable all subclasses to
implement size () efficiently.

• The variable sz is declared protected so subclasses can access
(read/write) it.

• The methods insert(), remove() and elements() are abstract.

• The methods isIn(), subset() and toString() are implemented
using abstract methods.

– These methods are called template since they implement
behavior in an abstract class using calls to abstract
methods.

• The object IntSet() can not be called by user since this is an
abstract class (no instances).

• However, subclasses can call the constructor using the super()
keyword.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 24

Interfaces

• An abstract class defines a type and provides a partial
implementation such as instance variables and template
methods.

• An interface defines only a type. In other words, it is
composed of public nonstatic abstract methods.

• We can use interfaces with the keyword implements in the
header of the class.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 25

Iterator interface

public interface Iterator {

public boolean hasNext ();

// EFFECTS: Returns true if there are no more

// elements to yield else returns false

public Object next () throws NoSuchElementException;

// MODIFIES: this

// EFFECTS: If there are more results to yield, returns

// the next result and modifies the state of this to

// to record the yield.

// Otherwise, throws NoSuchElementException

}

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 26

Multiple Interfaces

• Interfaces are used when all methods are abstract.

• Interfaces can be used when a type has multiple supertypes.

• For example, an object can implement an iterator and a
cloneable interface.

• You can mix both inheritance and interfaces.

• For example, an object can implement a cloneable interface and
extend IntSet.

• You can only extend one class, but implement multiple
interfaces.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 27

Multiple Implementations

• Type hierarchy can be used to provide multiple
implementations of a type.

• Subclasses only override methods defined in the (abstract)
superclass.

• They do not add public methods (private helper methods are
allowed).

• Constructors must be defined and could be overloaded with
extra parameters.

• User code is defined only in terms of the supertype, except
when creating objects.

– The user is unaware whether a Poly is a DensePoly or a
SparsePoly

• The actual type can change behind the users back.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 28

Meaning of subtypes

• The substitution principle requires that the subtype
specification supports reasoning based on the supertype spec.
Three properties must hold:

– Signature rule: the subtype must have all methods of the
supertype, and the signatures of subtype methods must be
compatible with the signatures of supertype methods.

– Methods rule: calls of subtype methods must behave like
calls to corresponding supertype methods.

– Properties rule: the subtype must preserve all properties
that can be proven about supertype objects.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 29

Signature rule

• The signature rule is checked by the Java compiler:

– The subtype must have all supertype methods with
identical signatures.

– However, a subtype method can have fewer exceptions.

• Code written in terms of supertype can handle exceptions
listed in supertype methods but will work in a type-correct
manner if those exceptions are not thrown.

• Java’s compatibility is stricter than necessary.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 30

Methods rule

• Behavior can not be checked by the compiler. The programmer
must guarantee that subtype methods behave like supertype
methods.

– With any IntSet object, the method insert(x) should add a
number to the set.

• In all our examples, subtype methods behave like supertype
methods, except for the elements() method of SortedIntSet.

– The method elements() is underdetermined in our
supertype. Requiring elements() to return a generator that
gives elements in sorted order narrows the specification but
is still correct.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 31

Allowable changes in specs

• A subtype method can have weaker preconditions and stronger
postconditions.

– Precondition rule: the set of possible input for the subtype
if bigger or equal than the set of possible input for the
supertype

– Postcondition rule: the set of possible output for the
subtype if smaller or equal than the set of possible output
for the supertype

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 32

Allowable changes in specs (cont.)

• Weakening precondition allows subtype to require less from its
caller than the supertype.

– It allows code written in terms of supertype to execute
correctly.

• Strengthening postcondition allows subtype to restrict the
result more than supertype

– It allows code written in terms of the supertype to execute
correctly, since postcondition of supertype follows from
postcondition of the subtype.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 33

The properties rule

• Properties defined for supertype must hold for subtype.

• The invariant properties always hold: if supertype is
immutable, subtype must be immutable.

• Some related objects cannot be subtyped because of their
properties.

– For example, a SimpleSet is a IntSet which can only grow.

– IntSet cannot be a subtype of SimpleSet since it has a
remove() method and can therefore shrink.

– SimpleSet cannot be a subtype of IntSet since the remove()
method can only be inherited or overridden with
preservation of the methods rule.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 34

Summary

Type hierarchies improve the structure of programs.

• By grouping types into a family, the programmer makes clear
that there is a relationship between them. This makes code
easier to understand than when all types are defined in a flat
structure.

• Hierarchy allows definition of abstractions that work for an
entire family. This allows user code that works for all
Windows, for example , regardless of the specific type of
Window that is passed as argument.

• Hierarchy provides extensibility. New types can be defined and
will be handled correctly by user code that was written even
before the new types were invented.

February 16, 2004 Lecture 9 – Comp 303 : Programming Techniques Page 35

