
Basic C Syntax

Comp-206 : Introduction to Software Systems
Lecture 10

Alexandre Denault
Computer Science
McGill University

Fall 2006

Next Week

■ I'm away for the week.
 I'll still check my mails though.

■ No class Tuesday, since it counts as a Monday.
■ Thursday class will be give by Jun, one of the T.A

Quiz
■ In addition to a process id, what is allocated to a process

when it is created?
■ What makes a good password?
■ What are the three file permission levels?
■ Give two commands that allows you to scroll, page-by-

page, through the content of a file.
■ What command can be used to see the list of currently

running processes?
■ What is the different between a command-line text editor

and GUI text editor?
■ What positional variable contains the number of

arguments on the command line?
■ Give a test command that will determine if "test.sh" is

executable.
■ Name two differences between Java and C.

Structure of a C program

■ A C program has the following components (usually
found in this order) :
 Preprocessor Commands
 Type Definitions
 Function Prototypes
 Variables
 Functions

■ Every C program must have a main function.

Compile Time vs Run Time

This is when the compiler is
working on your program.

■ The compiler knows the
name and type of every
variable.

■ Errors are explained, and
usually a suggestion
about which line has an
error is given.

This is when your
application is running.

■ The operating system has
no idea what your
variable are, or what type
they have.

■ The operating system has
no idea what lines of
codes are, or what errors
can occur.

Importance of clean coding

■ When programming in C, a clean coding style is
mandatory.

■ Compile time errors are cryptic at best. Don't expect too
much help from the compiler.

■ Runtime errors are worst. Since a compiled executable
has very little debugging information, the errors are even
more cryptic.
 Core Dump
 Segmentation Fault

Variable Declaration

■ Variables are usually declared at the top of files and
functions.

#include <stdio.h>

int myglobalinteger;

int main() {

int mylocalinteger;

// do something
}

Assigning a value

■ Just like Java, you can assign a value to a variable using
the equal sign.

■ In C, you can chain assignments.
■ Unlike Java, variable are NOT defaulted to 0;

int main() {

int a,b,c,d;

a = 10;
b = c = 5;
printf(“a:%d, b:%d, c:%d, d:%d”, a, b, c, d);

}

typedef

■ The typedef command allows for the creation of custom
types.

■ This will become useful latter in the course.

typedef scalefactor int;

int main() {

scalefactor a;

a = 10;
printf(“The scale factor is:%d”, a);

}

Constants

■ In C, a variable can be declared as constant.
■ The value of a constant is initialized when the variable is

declared. That value cannot be changed.
■ An optimizing compiler can use the constant declaration

to simplify and optimize the code.

int const a = 1;
const int a = 2;

Arithmetic Operations

■ C provides the basic arithmetic operations : + - * /
■ For efficiency purposes, it also provides an increment

and decrement operator : ++ and --
■ The modulus (%) operator is also provided.
■ Note that / operation for float and integer is very

different. Unless both operands are float, the division will
be integer based.

float a, b;
a = 3.0 / 2; // a = 1.0
b = 3.0 / 2.0; // b = 1.5

Comparison Operators

■ C provides the following comparison operators:
 == : equality
 != : not equal
 < : smaller than
 > : greater than
 <= : smaller or equal than
 >= : greater or equal than

■ Please note that testing for equality is done using the ==
operator, which is not the same as =

if (a == 1) { // Good test
if (a = 1) { // Assigns the value of 1 to a

 // and will always test as true

Logical Operators

■ C provides the following logical operator:
 && : AND
 || : OR
 ! : NOT

■ These can be used with the comparison operators:

if ((a == 5) || (a == 6)) // a = 5 or 6
if ((a == 3) && (b == 4)) // a = 3 and b = 4
if (!(a == 5)) // a is not 5
if (a != 5) // a is not 5

If statement

■ If statements in C are identical to if statements in Java.

if (expression) {
statement;

} else if (expression) {
statement;

} else {
statement;

}

■ If you omit the bracket, then you are limited to one
statement in your if block.

■ Given the complexity of C debugging, ALWAYS put your
brackets.

? operator

■ The ? operator is a designed to replace small if
statements. Its syntax is as follows:
 (expression) ? (statement if true) : (statement if false)

■ The following example calculates the absolute value of
an integer.

int a, aabs;

a = some random int value;
aabs = (a > 0) ? a : -a;

Switch statement

■ A switch statement allows testing of a variable under
multiple condition:

switch(variable) {
 case constant1:
 statements;
 break;
 case constant2:
 case constant3:
 statements;
 break;
 default:
 statements;
}

Break keyword

■ Note that the break keyword is necessary. Otherwise,
the evaluation will fall through the next block.

switch(variable) {
 case constant1:
 statements;
 case constant2:
 case constant3:
 statements;
 break;
 default:
 statements;
}

For loop

■ The for loop in C is identical to its Java counterpart.

for (expression1; expression2; expression3) {
statements;

}

■ It's components are as follows:
 Expression 1 is used for setting the initial value of the loop.
 Expression 2 is the condition that is tested at each iteration. If

the expression is evaluated as false, the loop terminates.
 Expression 3 is executed as every iteration. It is usually used

to increment a counter.

While loop

■ The while loop is very similar to a for loop.
while (expression) {

statements;
}

■ The statements in the loop will be executed until the
expression is evaluated as false (as equal to zero) .

■ This makes the following while loop legal:
int i = 10;
while (i--) {

statements;
}

Every for loop is a while loop

■ The following for loop ...

for (expression1; expression2; expression3) {
statements;

}

■ ... could be transformed as the following while loop.

expression1;
while (expression2) {

statements;
expression3;

}

Every while loop is a for loop

■ The following for loop ...

while (expression) {
statements;

}

■ ... could be transformed as the following while loop.

for (;expression;) {
statements;

}

Break and Continue keywords

■ The control flow of a loop can be altered using the break
or continue keyword.
 continue will skip to the end of the current iteration to the next

iteration.
 break will exit the loop (just as it exits a switch statement).

■ For example, the following loop will print out the modulus
of 3 smaller than 10.

i = 0;
while(1==1) {
 if ((i%3)!=0) continue;

if ((i >= 10)==0) break;
printf(“%d\n”, i);

}

Arrays

■ In C, arrays are blocks of memory.
■ They can be single or multi dimensional.
■ Arrays will get much more powerful when we start

working with pointers.
■ Declaring an array is pretty simple:

int listofint[50];
■ Using an array is also straight forward

listofint[0] = 10;
■ C does NOT do bounding checks, so be careful.
■ Also not that the content of the array is initialized with

whatever is lying around in memory.

Array of Characters

■ In C, strings are null terminated arrays of characters.
■ However, C has no built-in facilities to deal with strings.
■ The following assignment would be illegal;

char[50] myString;
myString = “Hello World!”;

■ C has special functions to deal with Strings. We will take
a look at them in a latter lecture.

H e l l o W o r l d ! \0
72 101 108 108 111 32 87 111 114 108 100 33 0 33 66

Functions

■ As previously mentioned, functions in C are similar to
their Java counterpart.

■ The following example function adds two integers
together:

int add (int a, int b) {
return a + b;

}

■ Each function name must be unique. C does not support
function overloading.

Function Prototyping

■ C uses a single pass compiler. This means that when
compiling, each file is only read once.

■ When checking the code for correctness, the compiler
goes from top-to-bottom.

■ If a function uses a function that was defined after it, the
compiler will report an error.

■ Function prototyping allows us to declare a future
function, without having to give the code for it.

■ It is considered good practice to declare all your
functions (except for main) at the top of your file (or the
header if you are using one).

Incorrect code

main() {
a();
b();

}

void a() {
//do something

}

void b() {
//do something

}

Better code

void a() {
//do something

}

void b() {
//do something

}

main() {
a();
b();

}

Even better code

void a();
void b();

main() {
a();
b();

}

void a() {
//do something

}

void b() {
//do something

}

Function prototype

Popular Function

■ printf is the default command to print out data to the
command line (STDOUT).

■ It is a very popular command, since it exists in many
programming language, including Java.

■ It is, in many ways, similar to System.out.print.
■ However, since C does not use type information at

runtime, it is a little trickier to use.

printf

■ printf takes a variable number of arguments, the first
being a format string.

■ The format string contains the string to output with
variable tags.
 For example : printf(“The temperature is %d. \n”, temperature);
 Variable tags are denoted by a percent sign % and a code.
 In this case, %d is use to indicate an integer.
 The second argument will replace the first tag.
 If a second tag was used, it would be replaced by the third

argument.
 The string is terminated by \n. This is a newline character.

Printf Conversion

■ %d or %i : signed integer
■ %x : unsigned hexadecimal integer
■ %u : unsigned decimal integer
■ %c : unsigned char
■ %s : char* (string)
■ %f : float or double of the form [-]mmm.ddd
■ %m.df : float or double of the form [-]mmm.ddd where m

and d specifies the maximum number of digits.
■ %E : double of the form [-]m.dddExx

getchar

■ The simplest input function is getchar.
int getchar(void)

■ It retrieves one character from STDIN.
■ You can combine redirection and getchar to create a

simple program that reads from a file.
readingapp <text.txt

■ The output equivalent function is putchar.
int putchar(int)

■ It displays one character to STDOUT
■ Again, you can combine redirection and putchar to

create a simple program that writes a file.
writingapp >output.txt

