
Mammoth
A Massively Multiplayer Game Research Framework

Jörg Kienzle, Clark Verbrugge, Bettina Kemme, Alexandre Denault, Michael Hawker
School of Computer Science, McGill University, Montreal, QC, Canada

{Joerg.Kienzle,Clark.Verbrugge,Bettina.Kemme}@mcgill.ca,
{Alexandre.Denault,Michael.Hawker}@mail.mcgill.ca

ABSTRACT
This paper presents Mammoth, a massively multiplayer game
research framework designed for experimentation in an aca-
demic setting. Mammoth provides a modular architecture
where different components, such as the network engine, the
replication engine, or interest management, can easily be re-
placed. Subgames allow a researcher to define different game
goals, for instance, in order to evaluate the effects of different
team-play tactics on the game performance. Mammoth also
offers a modular and flexible infrastructure for the definition
of non-player characters with behavior controlled by com-
plex artificial intelligence algorithms. This paper focuses
on the Mammoth architecture, demonstrating how good de-
sign practices can be used to create a modular framework
where researchers from different research domains can con-
duct their experiments. The effectiveness of the architecture
is demonstrated by several successful research projects ac-
complished using the Mammoth framework.

1. INTRODUCTION
In the last decade, the video game industry has shown un-

paralleled growth, both in revenue and in development com-
plexity. With the advent of the Internet, multiplayer and
massively multiplayer games have become more and more
popular. Compared to a traditional multiplayer game in
which usually up to 16 players play a relatively short-lived
game, massively multiplayer games (MMOGs) offer the pos-
sibility for thousands of players to play together in a per-
sistent world. MMOG implementations face huge scalability
problems since they have to handle a massive amount of con-
nected players, presenting them with a consistent view of the
world, and still providing good performance and hence, an
enjoying experience.

Many academic researchers in the fields of distributed sys-
tems, distributed simulations, databases, and fault tolerance
over the last 40 years have addressed scalability and consis-
tency issues in small and large-scale distributed systems.
However, serious research aiming specifically at the devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFDG 2009, April 26 – 30, 2009, Orlando, FL, USA.
Copyright 2009 ACM 978-1-60558-437-9 ...$5.00.

opment of (massively) multiplayer games has only recently
started. Whereas 100% data consistency and fault tolerance
is required in the database world and most other domains,
the situation is slightly different with computer games. The
most important element in computer games is that the game
experience is enjoyable, i.e. the game implementation has
enough performance to allow for a smooth game play, and
the game states perceived by the players are similar enough
to not give an unfair advantage to any of the players.

Producing experimental results for multiplayer and espe-
cially for massively multiplayer games can be a daunting
task. First, considerable infrastructure is needed to run ex-
periments. Not only does each player usually play on a dif-
ferent machine, most distributed game architectures require
machines with considerable processing power and high-end
network connections to act as game servers. Second, in order
to get realistic and statistically significant measurements, a
large number of human players have to actually play the
game for a long period of time. Finally, and most impor-
tantly, since the experiments are supposed to take place in
a computer game setting, considerable development effort
has to be spent in implementing an actual game. There are
many important aspects to consider while designing a com-
puter game, such as graphics, animation, sound, interactiv-
ity, realism, and storytelling. If any one element is neglected
too much, the game’s "fun" factor can be diminished.

To avoid this problem, some universities have formed in-
dustrial alliances with strategic partners, allowing them to
experiment with commercial game software. Although this
strategy can represent a great saving in development time
and effort, initial design decisions of the game and imple-
mentation remain in the hands of the commercial partners.
Also, it is not easy for the researchers to vary different pa-
rameters of the game, or even swap out entire engines, in
order to compare alternative solutions. Another option for
academics is to reuse a commercial game software which was
publicly released as a basis for experimentation. However,
most commercial game software released to the public is
poorly documented. It is coded for efficiency, not good de-
sign. As a result, the implementation of different concerns is
usually tightly tangled and hence hard to modify. Because
of this, many researchers decide to not run realistic experi-
ments, but instead simulate the aspects of MMOGs relevant
to their specific research. The hope is, of course, that good
algorithms and techniques validated using simulation also
perform well in a real computer game. However, this is not
necessarily true.

Our solution to this problem is Mammoth [1], a massively

308

multiplayer game research framework designed for realistic
experimentation in the context of multiplayer and massively
multiplayer games. One of the key features of Mammoth is
that its architecture is composed of loosely coupled compo-
nents that can be individually replaced as necessary to suit
the needs of the researcher.

The remainder of the paper is structured as follows. Sec-
tion 2 presents related work in this area. Section 3 presents
the Mammoth architecture and the components it is com-
prised of. Section 4 gives an overview of the design and
programming techniques that have been used in the imple-
mentation of Mammoth. Section 5 points to research results
that have already been obtained using Mammoth and the
last section draws some conclusions.

2. RELATED WORK
Although not numerous, several frameworks for MMOG

development have been proposed in research contexts. Pri-
marily, these focus on demonstrating or evaluating a spe-
cific technique such as an optimized communication net-
work. DoIT, Lucid, and ATLAS, for instance, provide rel-
atively complete environments for game development based
on improved network models [14, 17, 16]. Such designs
typically aim at supplying a singular overall abstraction to
the game developer, such as a basic client/server architec-
ture design. A similar approach can be applied to many
game development paradigms: the RTF middleware game
framework emphasizes publish/subscribe for interest man-
agement, replication and migration systems [12], while Col-
yseus incorporates techniques that improve performance in
FPS games by using weak(er) game consistency models [4].
Complete game frameworks for examining Artificial Intelli-
gence in games have also been presented. Both Stratagus
and ORTS provide full game facilities that accommodate
various AI designs in a non-trivial game context [19, 6].
These approaches, however, are heavily focused on a specific
genre (real-time strategy), and the challenges of modelling
AI in that context. Other game aspects are not as easily
changeable for research in different domains.

To help with game research a basic modularity of compo-
nents is critical; the ease and flexibility with which various
aspects can be replaced, modified, and measured is essen-
tial for research investigations from different perspectives.
Fletcher et al., for example, describe plug-replaceable con-
currency and consistency control, showing a flexible means
to explore different game consistency models [10]. NGS al-
lows for prototyping a variety of region-based network archi-
tectures, including P2P and client/server designs [24]. These
approaches allow for rapid evaluation of different parame-
ters and designs applied to a subset of game components.
For consideration of other in-game aspects, such as realis-
tic player movement or the impact of object visibility, a full
game implementation is of course still necessary.

Of course for instruction purposes in game development
and software design, a number of game frameworks have
been proposed. SAGE, Gedi, and DXFramework, for in-
stance, all supply a basic C/C++ code-base for game devel-
opment, and have been used successfully for teaching game
design on the Windows platform [18, 7, 23]. Many pedagog-
ical uses of games are possible; Alice, developed at CMU,
acts as a gentle introduction to programming for younger
students by emphasizing a simple scripting interface with
good graphical feedback [8]. Our approach here is less aimed

at instruction and more at academic research, where multi-
ple, major design changes and associated evaluations must
be efficiently supported. In addition, it should be noted that
Mammoth is not a game development engine by itself, and
should not be compared to development tools such as Ogre
[2].

3. MAMMOTH
Mammoth is a massively multiplayer game research frame-

work. It was created as a collaborative project between
a group of McGill professors and students in early 2005,
and has evolved considerably during the last 3 years. Its
goal is to provide an implementation platform for academic
research related to multiplayer and massively multiplayer
games in the fields of distributed systems, fault tolerance,
databases, networking, concurrency. During the last 3 years,
several other side projects have started using Mammoth to
conduct experiments in the fields of artificial intelligence,
modeling and simulation, and content generation. It should
be noted that Mammoth features relatively primitive graph-
ics and is not an appropriate platform for graphics related
research.

3.1 The Mammoth Game
Like most multiplayer and massively multiplayer games,

in Mammoth players take control of a game character, also
called an avatar. A game session consists of moving around
in a virtual world and interacting with the environment by
executing actions. Basic building blocks of such actions are,
e.g., moving the avatar, picking up or dropping items, or
communicating with other players. Unlike other games,
there is a fixed number of avatars in the world of Mam-
moth who always exist, even when players are not playing
the game. A player logging into Mammoth takes control of
one of the avatars in the world during the gaming session.

Items are game objects that players can manipulate. Sim-
ilar to object-oriented programming, item types define the
classes of items which exist within the Mammoth world, to-
gether with their attributes and actions that can be applied
to them. Just as classes, item types can form hierarchies
if the item’s attributes and/or actions are related. When
creating a world map, items are created by instantiating the
corresponding item type and placing the instance on the
map at a chosen position.

Currently there are no goals to be achieved by players in
the Mammoth world. An avatar just has an inventory with
a maximum carrying capacity, items have a weight and a
value. We are planning to eventually evolve the Mammoth
world into a “Sims”-like environment, where players have
to perform certain basic actions, e.g. eating, to “survive”
in the game. Additionally, subgames can be used to add
purpose to the Mammoth world, as described in Section 3.2.
A screenshot of the 3D Mammoth client is shown in Fig. 1.

3.2 Subgames
Actions which players perform through their avatar in the

virtual world are usually motivated by the goals of the game.
In highly competitive games each player performs actions
strictly to his own advantage: all other players are consid-
ered enemies. Cooperative game play on the other hand
can be observed in games that allow (temporary) teams of
players to be created.

Since game goals considerably influence the interaction

309

Figure 1: The Mammoth 3D Client

patterns that can be observed between players and their
environment in multiplayer games, it is essential that the
Mammoth framework allows a researcher to define game
goals which motivate the players to behave in a way that
is relevant for the research at hand. In Mammoth, game
goals can be created by defining subgames.

A subgame is simply a game within a game1. A subgame
can alter the game rules of the game in which it takes place
in one of the following ways:

• Creation or deletion of new items
• Creation of new item types
• Changing the effects of existing actions
• Defining new actions
• Define a scoring system
• Define team rules

In order to allow players to play the game, a subgame defi-
nition also has to include instructions to customize the user
interface, for instance to trigger game-specific actions. For
more information on the subgame capabilities of Mammoth
and their implementation, the interested reader is referred
to [13].

The following paragraphs describe two examples of sub-
games implemented in Mammoth.

Find the Trophy. In Find the Trophy, a unique “trophy”
is placed somewhere in the game world, and it is up to the
players of the game to find the trophy. Whoever finds it
gets a point and becomes “it.” They then have a set amount
of time in which to hide the trophy again somewhere else
in the world. To prevent other players from following them
to see where the trophy is hidden, they have an increased
walking speed. Once the trophy is hidden again, the process
repeats, with other players seeking out the trophy etc... In
cases where the trophy is not found, whoever hid it gains
another point and the trophy is randomly moved to a new
location for everyone to find again.

In order to define the Find the Trophy subgame, a new
item type had to be defined for trophies, and a single in-
1Although theoretically hierarchies of games can be created,
most often a subgame is just a game that takes place in the
Mammoth world.

stance had to be placed in the world. The subgame also
had to redefine the pickup and drop actions in order to de-
tect when players find or hide the trophy, and increment the
speed property of the player carrying the trophy.

Orbius. In Orbius players are divided into at least two sep-
arate teams and assigned a team color. Their objective
would be to find five specifically sized orbs (ranging from
small to large) scattered across the world and return them to
an agreed upon container, which would become their “base”.
After assembling a complete “base" with five of their team-
colored orbs, a “golden" orb would appear somewhere in the
game world. Team members would then need to find that
golden orb and place it in an enemy base.

An experiment with over 30 human players revealed that
Orbius players engage in interesting team behavior. Some of
the team members spread out to find the orbs, while others
would stay close to the chosen container to protect the base.
Orbius introduces a new tickle action that allows a player to
force another player to drop an item he is carrying. There-
fore, players would also often be chasing after other players.
Besides adding the tickle action, the Orbius subgame also
had to redefine pickup and drop, define the orb item types,
and instantiate and distribute many orbs of different colors
and weights throughout the game world. In addition, Or-
bius modified the maximum carrying capacity of the players
in order to force them to carry large orbs one at a time.

3.3 Distributed Game Architecture
In multiplayer and massively multiplayer games, in order

to provide a shared sense of space among players, each player
must maintain a copy of the (relevant) game state on his
computer. When one player performs an action that affects
the world, the game state of all other players affected by
that action must be updated.

Different strategies for the distribution of the game state
can have a profound impact on the scalability, consistency
and performance of the game. Since Mammoth is specifically
designed for experimentation with different distribution ap-
proaches, Mammoth defines an intuitive object-based inter-
face between the game layer and the framework components
that handle distribution.

310

Node 3

Node 1 Node 2

Node 5Node 4

Node 3

Node 1 Node 2

Node 5Node 4

= master object

= duplica

Client-Server Architecture Peer-To-Peer Architecture

Figure 2: Creating Different Network Topologies by Migrating Master Objects

In our approach, game objects are mapped to duplicated
objects, which encapsulate the state of the game objects that
has to be distributed to players. Every node that needs ac-
cess to the game state encapsulated by a duplicated object
creates a new local instance of the object, a duplica. When-
ever the game executes a read operation on a game object,
the state of the local duplica is read. Modifying operations,
however, cannot be executed locally for consistency reasons.
If local execution was allowed, it would be possible for con-
current modifications to take place, which could result in
serious inconsistencies visible to the players.

Consistency in our design is guaranteed by designating
one of the copies of the duplicated objects as being the du-
plication master. Modifying operations are always executed
sequentially on the node that holds the duplication master.
After the operation has finished executing, update messages
are broadcast to all duplicas.

The remote execution of modifying operations is com-
pletely transparent to the game layer. The game simply
invokes the operation on the game object: our duplicated
objects redirect the call to the duplication master node, if
necessary. This transparency is not only convenient for the
programmer. It also makes it easy to migrate the duplication
master from one node to another node for load balancing or
fault tolerance reasons.

By assigning the duplication master objects to nodes, dif-
ferent network topologies can be built. The left hand side
of Fig. 2 illustrates that, for instance, a typical client-server
architecture can be built by assigning all master objects to a
single machine. At the other extreme, a peer-to-peer topol-
ogy, shown on the right hand side of Fig. 2, can be created
by uniformly distributing master objects over all machines.
The left hand side and the right hand side actually show
an identical game state distribution, but the network con-
nections used to send state updates are different. Of course,
any other intermediate network topology, for instance server
clusters, can be built by migrating master objects from one
node to the other, or even load-balancing dynamic topolo-
gies that evolve according to the current game situation us-
ing run-time master object migration.

3.4 Mammoth Framework Components
In order to allow researchers to easily conduct experi-

ments, the Mammoth framework has been designed as a
collection of collaborating components that each provide a
distinct set of services. The components interact with each
other through two types of well-defined interfaces, engines

and managers. The general architecture is depicted in Fig. 3.
At the highest level, the Mammoth architecture follows

the Model-View-Controller paradigm. The main compo-
nents in the model are the WorldEngine, the Subgames-
Manager, the PhysicsEngine and the PathFindingManager.
The main components in the view are the PersistenceMan-
ager, the WebMonitor & Logging component, the XMLTools
and various Mammoth clients, which also act as controllers.
Currently Mammoth has a 3D client, a 2D client, a wireless
client (which remotely connects to a PDA), and a NPC client
(which is a client without graphical user interface that runs
AI algorithms for controlling the movements of a player).
The Model is connected to the Views and Controllers though
the ReplicationEngine, which implements the run-time sup-
port for duplicated objects. It contains the InterestManager
and interfaces with the NetworkEngine for low-level com-
munication.

The services offered by the individual components are
briefly explained below.

Engines. Engines are core components that can be com-
pletely replaced to experiment with alternative implemen-
tations. A classic example of this would be the multiple
network engines available in Mammoth. The engines can
be interchanged transparently, as long as they provide the
required features determined by their interface.

• World Engine: The World Engine stores all the com-
ponents contained in the game world and provides an
easy interface to retrieve these components. At first
glance, the World Engine doesn’t seem like a compo-
nent that needs to be replaceable, since it basically is
just a big data structure storing game objects. How-
ever, careful profiling has revealed that a rather large
percentage of CPU time (more than 20%) is spent in
the World Engine searching for various game objects.
Thus, optimizing the different data structures used to
store the game components in the World Engine is
an interesting research problem. Our first implemen-
tation of the World Engine used one large hashtable
to store all the different game components. The cur-
rent implementation has demonstrated an important
increase in efficiency by storing the different game ob-
jects in smaller separate hashtables.

• Graphics Engine: The graphics engine must be ca-
pable of displaying the world to the player, and allow
the player to visualize his inventory and trigger actions
such as moving, manipulating objects or chatting to

311

Replication

Engine

Model

Physics Engine
Pathfinding

Manager
Collision

Bucket

World Engine

Partitioning

Strategy

Item

Hierarchy

Subgame Manager
Network

Engine

View

Interest

Manager

Replication

Strategy

Persistence

Manager

Web Monitor

& Logging

XML

Tools

Controller

Wireless

Client

NPC

Client

Graphical Client

Voice Control

Manager

Visibility

Manager

Figure 3: Components of the Mammoth Framework

other players. Over the last years, different graphical
Mammoth engines have been implemented. The first
graphics engine was implemented on top of Jogl [22],
Java’s interface to OpenGL. Our latest graphics engine
is based on JMonkey [20], a high performance Open
Source Java-based 3D graphics library. The window-
ing system used to display the player’s inventory and
action buttons is a Swing-like library running on top
of OpenGL called Feng GUI [21].

• Physics Engine: The physics engine implements in-
teractions between game objects that are based on the
laws of physics. Currently, our physics engine is very
simple. It only implements basic collision detection.
However, we are planning to implement a physics en-
gine for Mammoth that calculates object dynamics,
i.e., assigns a mass to every object and calculates up-
dates for the position of all objects based on their cur-
rent momentum and external forces that might be ap-
plied to them.

• Replication Engine: The replication engine is the
primary component responsible for distributing the state
of the world across multiple clients, i.e. creating mas-
ter duplication objects, assigning them to nodes, and
distributing the duplicas. The replication engine uses
the Interest Manager (see description below) to de-
termine to which node duplicas have to be sent to.
Finally, the replication engine allows a game designer
to define duplication spaces [3]. Duplication spaces are
dimensions in which objects can discover other objects,
and be discovered by other objects. For instance, 3D
Geometry is an example of a duplication space com-
monly used in MMOGs. An object that occupies phys-
ical space in the virtual world is a publisher in the 3D
Geometry duplication space, an object that can see
objects by observing the virtual world is a subscriber
in the 3D Geometry duplication space. Objects can
simultaneously be publishers and subscribers not only
in one, but also in multiple duplication spaces. For ex-
ample, an avatar carrying a radio would be a publisher
and subscriber in the 3D Geometry duplication space,
and a subscriber in the Radio Frequency space.

Currently, the Mammoth framework has two inter-
changeable replication engines, a networked version
and a local version. The local version is used to run
unit tests, while the networked version is used to run
a standard multiplayer game.

• Network Engine: The network engine component
provides basic communication means to the framework.
In order to support the communication needs of du-
plicated objects, the network engine provides direct
asynchronous messaging, direct synchronous messag-
ing (in the form of remote method calls), and pub-
lish / subscribe-based broadcast capabilities. Currently,
the Mammoth framework includes three interchange-
able network engines: Stern (communication is routed
through a central hub), Toile (fully connected net-
work), and Postina (a self-organizing peer-to-peer net-
work engine using tree-based broadcast). In addition,
a Fake network engine is provided, which uses shared
memory and emulated serialization to route messages
across components. Fake is mainly used when execut-
ing unit tests on components that depend on a network
engine.

Managers. Managers are components designed to manage
multiple implementations of a given algorithm or strategy.
As opposed to engines, which allow a single implementation
of a particular component, managers allow multiple imple-
mentations of a given functionality to be registered with the
system. A classic example of this would be the PathFind-
ing manager, which provides several different path finding
algorithms. Different algorithms can then be assigned to dif-
ferent players, allowing for experimentation in a live setting.

• Pathfinding Manager: The Pathfinding Manager is
responsible for managing the different registered path
finding algorithms. It also acts as a central hub for re-
ceiving pathfinding requests, allocating the necessary
resources (such as threads from the thread pool in case
the pathfinding algorithm is run in the background)
and dispatching them to the proper algorithm.

• NPC Manager: The NPC Manager is the central
administration unit for the behavioral AI components

312

in Mammoth. Once an AI component is registered
with this manager, an AI controller can be spawned
and assigned to a player. This AI component can then
control the actions of that player. The manager can
also be used to monitor the behavior of a player, which
is particularly useful for AI algorithms that learn by
observing human-controlled movement.

• Persistence Manager: The Persistence Manager ad-
ministers the different strategies used by Mammoth to
save the state of the game to stable storage. Both
push (automated recording of events) and pull (ex-
plicit retrieving of the state of game objects) strategies
are supported. In addition, the Persistence Manager
provides the necessary Data Access Objects (DAO) re-
quired to access stable storage, which is most often a
relational database. Given that the persistence strat-
egy implementations are kept separately from the DAOs,
it is trivial to experiment with different strategy / stor-
age medium combinations.

• Interest Manager: The object replication scheme
used by the replication engine uses an elaborate pub-
lish/subscribe system to propagate state updates through-
out the system. The interest manager is responsible for
matching publisher duplicated objects to subscriber
duplicated objects. This can be done using different
criteria, for instance, based on distance, on zones, on
visibility, on reachability, etc. We currently provide 9
different interest management strategies.

• Subgame Manager: The Subgame Manager is a
component designed to coordinate the loading, joining,
leaving, starting, and intra-coordination of subgame
entities. Every machine in the Mammoth network has
it’s own Subgame Manager, which loads the same set
of subgames to be available to players. Once loaded,
player requests to join subgames are routed to the Sub-
game Manager, which either connects the player to an
existing game in progress, or creates a new subgame
instance for the player, if needed.

3.5 Logging and Monitoring Capabilities
Given that Mammoth is a research framework that is in-

tended for experimentation, extensive work has been done
in developing tools to monitor and record the state of the
game world while a game is executing. Basic logging facil-
ities are provided by Log4j, a popular logging package for
Java. However, Mammoth offers some more elaborate log-
ging and monitoring features as explained below:

• Logging Player Movement: One of the key feature
of using Mammoth for experimentation is the ability to
record the activities of players. Given the high amount
of movement actions a player can generate, a special
custom movement logging solution was implemented
that uses a combination of rotating memory buffers to
cache writes. That way, writing to disk is done in a
controlled fashion. The movement logging component
also includes tools to replay previously recorded move-
ments of players using a special client designed for that
purpose.

• Web Monitor: Debugging a distributed application
is a tricky task, given that the game state is distributed
over several machines. However, this task is greatly
simplified if a developer can easily inspect the state
of a client without altering its execution, as debuggers

will often do. In the Mammoth framework, all partic-
ipants (both servers and clients) are equipped with an
embedded webserver. By instructing a standard web
browser to connect to this webserver, developers can
display the properties of objects found in the replica-
tion and world engine at run-time without altering,
disrupting, or pausing gameplay.

4. MAMMOTH IMPLEMENTATION
The implementation of Mammoth is done almost exclu-

sively using the Java programming language. This was a
practical decision. Many researchers at the School of Com-
puter Science of McGill University use Java for their exper-
iments, and many tools have been developed for research
and performance analysis in Java. Furthermore, the cross-
platform nature of Java facilitates access to Mammoth for
the students, and makes maintenance easier. We are of
course aware that an industrial implementation of our frame-
work using a non-interpreted language such as C++ would
provide even better performance. However, our experiments
are still valid, since they provide insight into the complexity
of our algorithms and techniques as the number of players,
game objects and nodes increases. We are currently work-
ing with Quazal, an industrial partner, to integrate the best
ideas into their commercial product Net-Z.

In order to achieve flexibility and extensibility, many ad-
vanced programming techniques have been used in the devel-
opment of Mammoth. Given the modularity requirements,
many of the design patterns proposed in [11] are put to good
use. This section outlines the importance of interfaces and
listeners in the design of this modular architecture, and also
describes how XML is used to successfully deal with chang-
ing data structures.
4.1 Interfaces

One of the key elements in the Mammoth architecture
is the flexibility with which engines can be replaced, and
new algorithms registered with the managers. In order to
make this possible, engines and manager strategies define
their own interfaces. All interaction between components in
Mammoth is done by calling interfaces, i.e. at the abstract
level: no concrete implementation is ever directly referred to.
This is very similar to the bridge design pattern [11], where
abstractions are decoupled from their implementations. As a
result, the implementation of a component can be changed
without the need to modify any of the depending compo-
nents. However, the definition of the abstraction is fixed:
changes in the interfaces themselves are more complex and
would require significant changes, and should therefore be
avoided. Fortunately, after 3 years of development, the in-
terfaces of the major components are fairly stable.

Object factories, and their respective configuration files,
are used to control the instantiation of the different imple-
mentations. A researcher can simply specify the component
to be used in the Mammoth configuration file before start-
ing the game. The factories read the researcher’s choice from
the configuration file and instantiate the appropriate engine
or instruct the managers to use a specific strategy. In this
manner, the researchers do not need not worry about the
initialization details of a component. Some factories even
use the Java reflection API to automatically recognize new
available implementations of components. This allows the
addition of new implementations without the need to modify
existing factories.

313

4.2 Listeners
Modularity and separation of concerns is essential when

developing a complex research framework. Strong depen-
dencies between components greatly reduce the flexibility
and maintainability of the source code. As a result, team
development is complicated, since changes required to im-
plement a specific feature within one module can have a
major impact on other parts of the framework.

Within Mammoth, for example, the persistence engine re-
quires knowledge on how and when a world object is modi-
fied. The world engine could directly inform the persistence
manager about the state update, but that would create a
dependency. Changing the implementation of the persis-
tence strategy might then again require the modification of
the world object. Such modifications could be risky, since
the world engine is a central component of the Mammoth
framework.

The Mammoth framework addresses this problem through
the extensive use of listeners. As described by the observer
design pattern [11], core objects containing the game state
are considered subjects. Components requiring information
about a subject can register themselves as observers with
the subject by implementing the appropriate listener inter-
face. Whenever the state of a subject changes, all registered
observers are notified of the change.

The most notable example of the use of listeners within
Mammoth is the graphical game client, which is designed
as a view object registered with every world object. How-
ever, listeners are also used in various other components,
such as the network engine, the replication engine and the
authentication engine for various purposes. For instance,
the NPC manager, which requires information about player
logins and logoffs, registers itself as a listener to the authen-
tication engine and the network engine.

4.3 XML
One of the biggest challenges when working on a research

framework is dealing with data structure changes. The per-
fect example of this is the Mammoth world map, whose for-
mat has changed countless times since the beginning of the
project. Creating a map is a time consuming task, and many
researchers have created custom maps for a specific research
purpose. It is therefore impractical to recreate or manu-
ally convert all available maps each time the data structures
change. Only newly created maps that use the new features
introduced into the data structure need to be created using
the new data format, provided that it is still possible to load
maps saved in the old format into the game.

In Mammoth, data structure changes are made possible
through the use of XML. For instance, world maps and item
type definitions are stored in XML. XML tags are assigned
to every object and every attribute. Elaborate attributes,
such as “shape” which describe the shape of an object, have
their own sub tag. Whenever the format of a data structure
changes, a new XML reader / interpreter is written for the
new format, and the readers of the older formats are updated
to simply convert the old format to the new one. That way,
any data structure that is read from disk is automatically
converted. Of course, if the data structure is saved back to
disk, the most recent save format is used.

5. PAST EXPERIMENTS
Mammoth has been successfully applied to several differ-

ent research problems representing different aspects of game
design. The modular design, for example, enabled relatively
simple investigation of the problem of interest management.
Different approaches can be implemented and compared in
the context of a real complex game environment. Our study
in this area used player data gathered from actual game-
play (Orbius experiments); by replaying player movements
we were able to examine the network performance of a vari-
ety of space partitionings designed for interest management,
as well as the potential impact on consistency [5].

[9] uses Mammoth to determine the impact of different
network topologies on the performance of a massively mul-
tiplayer game as the number of players and objects in the
world increases. A client/server, a peer-to-peer, and a hy-
brid topology where nodes are organized in a tree-like hier-
archy are evaluated. The experiments for this study used an
average of 180 clients in a small enclosed space, to simulate a
heavy-load situation on a game server. Although this figure
might seem relatively small when compared to the number
of concurrent users support by modern commercial MMOG,
these games feature much larger worlds distributed and du-
plicated accross several node. As such, these MMOG will
typically reduce load by limiting the number of players that
can multually interact with each other, most often through
game design decision.

Other experimental work has focused on more in-game
algorithmic concerns. Path-finding is an optimization issue
that has seen significant investigation in the literature, but
which remains an interesting problem in the context of a
realistic, complex environment. Our work on this problem
made use of Mammoth to gather and measure real player
data, in this case to investigate the performance of several
path-finding implementations, showing the relative impact
of algorithm design and workload variation [15].

A further research project developed different techniques
for providing persistent game state. Persistence is important
to recover from server failure. While critical events must
be written synchronously to the persistent storage, a set of
approximation strategies have been proposed and analyzed
that are suitable for events with low consistency require-
ments, such as player movements. An evaluation showed
that a distance-based solution offers the scalability and ef-
ficiency required for large-scale games as well as low error
bounds [25].

6. CONCLUSION AND FUTURE WORK
Conducting experiments in the context of multiplayer and

especially massively multiplayer games can be a daunting
task. A considerable development effort is needed to imple-
ment an actual game. There are many important aspects to
consider while designing a computer game, such as graphics,
animation, sound, interactivity, realism, and storytelling. If
any one element is neglected too much, the game’s "fun"
factor can be diminished, if the experiments are supposed
to take place in a real game setting, i.e., with human players.

This paper presented Mammoth, a massively multiplayer
game research framework designed specifically for experi-
mentation in an academic setting. Mammoth provides an
interactive virtual game world without any specific game
goals. Players take control of an avatar, manipulate items,
and communicate with other players. Subgames allow re-
searchers to define game goals for specific research purposes.

The Mammoth architecture has been designed to be ex-

314

tremely flexible and extensible. The Mammoth components,
engines and managers, encapsulate different implementation
strategies or algorithms, and can be easily replaced. Exist-
ing implementations can be used by researchers simply by
activating the desired component in the configuration file.
This flexibility has been achieved through the use of ad-
vanced design techniques such as interfaces, listeners, facto-
ries, other design patterns, and flexible data storage formats
based on XML.

The Mammoth project has been very successful from an
academic point of view. Over the last 3 years, a total of 2
Ph.D. students, 8 master students (6 completed theses so
far), and 15 undergraduates (9 honors or semester projects)
have worked on Mammoth. The project has been demon-
strated at various conferences in Canada and has gained sup-
port and collaboration from game companies such as Elec-
tronic Arts and Quazal. Current research is focussing on
investigating the fault tolerance properties of peer-to-peer
game architectures, integrating cheat detection and fault
tolerance, consistency between multiple subgame instances,
content generation, NPC behavior generation based on stat-
echart models, and automated AI generation based on ob-
servation of human behavior.

7. ACKNOWLEDGMENTS
This research has been partially funded by the Natural

Sciences and Engineering Research Council of Canada (NSERC)
and the Canadian Foundation for Innovation (CFI). Thanks
also to Mark Lanctot for inventing and implementing the
Orbius subgame.

8. REFERENCES
[1] Mammoth: A Massively Multiplayer Game Research

Framework. http://mammoth.cs.mcgill.ca/.
[2] Ogre: Open source 3d graphics engine.

http://www.ogre3d.org/, 2001.
[3] Quazal Technologies Inc., duplication spaces patent #

6,907,471, DDL patent # 7,096,453.
http://www.quazal.com, 2008.

[4] A. Bharambe, J. Pang, and S. Seshan. Colyseus: a
distributed architecture for online multiplayer games.
In NSDI’06: Proceedings of the 3rd Symposium on
Networked Systems Design & Implementation, pages
155–168, Berkeley, CA, USA, 2006. USENIX
Association.

[5] J.-S. Boulanger, J. Kienzle, and C. Verbrugge.
Comparing Interest Management Algorithms for
Massively Multiplayer Games. In Proceedings of
Netgames 2006: 5th Workshop on Network and System
Support for Games, pages 1 – 12, October 2006.

[6] M. Buro. ORTS: a hack-free RTS game environment.
In International Computers and Games Conference
(CG’02), Edmonton, Canada, 2002.

[7] R. Coleman, S. Roebke, and L. Grayson. Gedi: a
game engine for teaching videogame design and
programming. J. Comput. Small Coll., 21(2):72–82,
2005.

[8] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and
K. Christiansen. Alice: lessons learned from building a
3D system for novices. In CHI ’00: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 486–493, New York, NY, USA, 2000.
ACM.

[9] A. Denault, J. Kienzle, C. Dionne, and C. Verbrugge.
Object-Oriented Network Middleware for Massively
Multiplayer Online Games. Technical report, McGill
University, Montreal, Canada.

[10] R. D. S. Fletcher, T. C. N. Graham, and C. Wolfe.
Plug-replaceable consistency maintenance for
multiplayer games. In NetGames ’06, page 34, New
York, NY, USA, 2006. ACM.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, Reading, MA, USA,
1995.

[12] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch.
RTF: a real-time framework for developing scalable
multiplayer online games. In NetGames ’07, pages
81–86, New York, NY, USA, 2007. ACM.

[13] M. A. Hawker. Subgames in Massively Multiplayer
Online Games. Master’s thesis, School of Computer
Science, McGill University, Montreal, Canada, June
2008.

[14] T.-Y. Hsiao and S.-M. Yuan. Practical middleware for
massively multiplayer online games. IEEE Internet
Computing, 9(5):47–54, 2005.

[15] M. Lanctot, N. N. M. Sun, and C. Verbrugge.
Path-finding for large scale multiplayer computer
games. In Proceedings of the 2nd Annual North
American Game-On Conference (GameOn’NA 2006),
pages 26–33, Monterey, California, sept 2006. Eurosis.

[16] D. Lee, M. Lim, S. Han, and K. Lee. ATLAS: a
scalable network framework for distributed virtual
environments. Presence: Teleoper. Virtual Environ.,
16(2):125–156, 2007.

[17] D. Liang and P. Boustead. Using local lag and
timewarp to improve performance for real life
multi-player online games. In NetGames ’06, page 37,
New York, NY, USA, 2006. ACM.

[18] I. Parberry, J. R. Nunn, J. Scheinberg, E. Carson, and
J. Cole. SAGE: a simple academic game engine. In
Proceedings of the Second Annual Microsoft Academic
Days on Game Development in Computer Science
Education, pages 90–94, 2007.
http://larc.csci.unt.edu/sage/.

[19] M. J. Ponsen, S. Lee-Urban, H. Muñoz-Avila, D. W.
Aha, and M. Molineaux. Stratagus: An open-source
game engine for research in real-time strategy games.
Technical Report AIC-05-12, Navy Center for Applied
Research in Artificial Intelligence, 2005.

[20] M. Powell. JMonkey Engine.
http://www.jmonkeyengine.com/.

[21] J. Schaback. Feng GUI: Java GUIs with OpenGL.
http://www.fenggui.org/.

[22] Sun Microsystems. Java Binding to OpenGL.
http://jogl.dev.java.net/.

[23] J. Voigt. DXFramework: A pedagogical computer
game engine library. http://dxframework.org/, 2006.

[24] S. D. Webb, W. Lau, and S. Soh. NGS: an application
layer network game simulator. In IE ’06: Proceedings
of the 3rd Australasian conference on Interactive
entertainment, pages 15–22, 2006.

[25] K. Zhang, B. Kemme, and A. Denault. Persistence in
massively multiplayer online games. In NetGames ’08,
pages 1 – 10, New York, NY, USA, 2008. ACM.

315

