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Abstract
We show how to combine a general purpose type system for an
existing language with support for programming with binders and
contexts by refining the type system of ML with a restricted form of
dependent types where index objects are drawn from contextual LF.
This allows the user to specify formal systems within the logical
framework LF and index ML types with contextual LF objects. Our
language design keeps the index language generic only requiring
decidability of equality of the index language providing a modular
design. To illustrate the elegance and effectiveness of our language,
we give programs for closure conversion and normalization by
evaluation.

Our three key technical contribution are: 1) a bi-directional type
system for our core language which is centered around refinement
substitutions instead of constraint solving. As a consequence, type
checking is decidable and easy to trust, although constraint solv-
ing may be undecidable. 2) a big-step environment based opera-
tional semantics with environments which lends itself to efficient
implementation. 3) We prove our language to be type safe and have
mechanized our theoretical development in the proof assistant Coq
using the fresh approach to binding.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

General Terms Design, Languages

Keywords Logical frameworks, higher-order abstract syntax, de-
pendent types, recursive types

1. Introduction
To reason about the runtime behavior of software, we routinely de-
sign and use formal systems, given by axioms and inference rules,
such as logics to reason about access control [Abadi et al. 1993,
1999; Garg and Pfenning 2006] and information flow [Miyamoto
and Igarashi 2004], logics to reason about memory access [Nanevski
et al. 2008a] or simply the scope of names [Pottier 2007]. Over the
last decade we have come closer to narrowing the gap between pro-
gramming software systems and reasoning about them [Chen and
Xi 2005; Sheard 2004; Westbrook et al. 2005]. The general mantra
is to design rich type systems which allow programmers to spec-
ify and enforce statically powerful invariants about their programs
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Yet, existing approaches lack rich abstractions that allow users to
describe formal systems and proofs on a high-level, factor out com-
mon and recurring issues, make it easy to use, and at the same time
have a small trusted kernel.

In this paper, we extend a general purpose language to support
programming with formal systems and ultimately proofs. This is
achieved by indexing types with contextual LF objects [Pientka
2008]. Contextual LF extends the logical framework LF [Harper
et al. 1993] with the power of contextual objects Ψ̂.M of type
A[Ψ]. M denotes an object which may refer to the bound variables
listed in Ψ̂ and has typeA in the context Ψ (see also [Nanevski et al.
2008b]). It also supports first-class contexts and allows us to ab-
stract over contexts. This allows the user to specify formal systems
within the logical framework LF and obtaining support for repre-
senting and managing binders, renaming, fresh name generation,
and capture-avoiding substitutions. Contextual LF allows program-
mers to pack “open” LF objects together with the context in which
they are meaningful thereby obtaining closed objects which can be
passed and manipulated. In particular, contextual LF objects can be
used to index types and track rich formal properties. We demon-
strate the advantages of combining contextual LF with data-types
by discussing implementations of closure conversion and normal-
ization by evaluation. These examples have been a good benchmark
in comparing systems and demonstrate the benefits and elegance of
our approach.

Fundamentally, our approach follows the tradition of indexed
types (see Xi and Pfenning [1999]; Zenger [1997]) choosing as an
index domain contextual LF which allows us to express properties
about open objects, the scope of variables and contexts which previ-
ous systems such as ATS/LF [Xi 2004] lack. Instead of generating
and propagating constraints which is common in indexed type sys-
tems, we will associate patterns with refinements substitution and
work only with constraints in solved form. This leads to a small
trusted kernel.

Compared to languages such as Beluga [Pientka and Dunfield
2010] or Delphin [Poswolsky and Schürmann 2009, 2008] which
support programming with binders already, the language we pro-
pose in this paper supports recursive types which the former lan-
guages lack; this extension is key to tackle important problems such
as normalization by evaluation which are typically out of reach
for these languages. Having the ability to define data-types is con-
venient; it is also more efficient than supporting data-types via a
Church-encoding which is in principle already possible.

In contrast to Licata and Harper [2009] which supports mixing
binding and computation, we keep the separation of data and com-
putations. This has several advantages: Because our index language
remains pure, it is straightforward to establish adequacy of the for-
mal system and its encoding using standard techniques (see for ex-
ample Harper and Licata [2007]). This allows us to maintain all the
good properties of contextual objects, namely strong normaliza-
tion and decidable equality. Moreover, our computation language
remains close to traditional ML-like languages and is designed to
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be modular in the index domain. As a consequence, one can easily
replace contextual LF with for example a higher-order logic with
inductive types without affecting the computations. Compared to
other systems with a uniform language for computations and types
such as the Calculus of Construction or Martin Löf type theory,
our computation language can easily be combined with imperative
features, allows non-termination computation, and requires fewer
annotations to make type checking decidable.

The main technical contributions of this paper are:

• We present a core language with dependent types where we
separate the types from computations. One can think of this
core language as the target of elaborating a surface language
where we may omit implicit indices via type reconstruction.
Our language is a conservative extension of a general purpose
language where types are indexed by contextual LF objects and
contexts and at the same time supports pattern matching on
its index objects. Because it may be viewed as an extension
of Beluga with recursive types, we call our language Belugaµ.
However, we emphasize that our design of the computation
language is generic and we can replace the index language
which in our case is contextual LF with any other language
where equality between two index objects is decidable.
• We present a bi-directional type system for our core language.

Theoretically, we model dependently typed recursive types as
fixpoints with explicit equality constraints on contextual ob-
jects. This is similar to Xi et al. [2003] and Sulzmann et al.
[2007] where recursive types are endowed with equalities be-
tween types to model GADTs. However, instead of accumulat-
ing and solving constraints during type checking, our approach
relies on refinement substitutions in branches. Although con-
straint solving may be undecidable in our setting, type check-
ing based on refinements remains decidable. Type checking is
hence easier to trust.
• We give a big-step environment-based operational semantics.

Because we allow matching on computation-level expressions
and index objects, we distinguish between the environment
for computation-level values and index objects and show that
types are preserved. By extending our operational semantics to
also track diverging computations following Cousot and Cousot
[1992]; Leroy and Grall [2009], we prove progress.
• We have mechanized the typing rules, the operational semantics

and the type safety proof (preservation and progress) in the
proof assistant Coq. We use the fresh approach to binding by
Pouillard and Pottier [2010] to model variables in our language.

The proposed programming language with support for contex-
tual objects and data-types is a prime candidate for programming
code transformations and certified programming. More generally, it
provides a foundation for programming with domain-specific log-
ics and demonstrates how to endow a general purpose program-
ming language with direct support for programming with logics
and proofs.

The remainder of the paper is organized as follows. To illustrate
the main idea of defining types indexed with contextual objects, we
discuss in detail three examples (Section 2): closure-based evalu-
ator, closure conversion and normalization by evaluation. We then
introduce Belugaµ, a language which supports contextual objects
and computation-level data-types in Section 3. We begin by intro-
ducing our index domain in Section 3.1 which in our case is con-
textual LF [Pientka 2008]. This will review and summarize previ-
ous work in this area. We then present the computation language
in Section 4 which includes indexed types, recursive types, vari-
ants and general pattern matching. We will leave out polymorphism
and imperative features which are orthogonal issues and which

are straightforward to add. The typing rules for Belugaµ and an
environment-based big-step semantics together with the type safety
proof are presented in Section 4.4. We explain our mechanization
of the type safety proof in Section 5. The rest of the paper is con-
cerned with some related work, current status and future research
directions.

2. Motivating Examples
In this section, we discuss three examples which illustrate the utility
of a language combining contextual types with indexed recursive
types. We use an informal surface syntax inspired by both Beluga
and Agda [Norell 2007]. This surface syntax is intended to elabo-
rate to the core language presented in Section 4.

2.1 Closure-based evaluator for the lambda-calculus
We begin with a demonstration of a closure-based evaluator for
the untyped lambda-calculus which is directly comparable to that
of Licata and Harper [2009]. This allows us to explain contextual
objects in a simple setting. We first represent the untyped lambda
calculus in LF with higher order abstract syntax (HOAS).

lam: (tm → tm) → tm.
app: tm → tm → tm.

To implement an evaluator, we must analyze and pattern match
on lambda-terms and consequently we must be able to handle
open objects. Hence, the evaluator will be parameterized with a
contextψ which keeps track of variables of type tm and manipulates
contextual objects of type tm[ψ]. To type contexts we define a
context schema ctx as follows: schema ctx = tm; To express that
ψ contains only variables of type tm we write ψ:ctx.

The highlight of this example, when compared to Beluga or Del-
phin, is that we can write the closure of a term under an environ-
ment of bindings as a computation-level data-type with a single
constructor cl as follows:

datatype clos : ctype =
cl : {ψ:ctx} → tm[ψ,x:tm] → (#tm[ψ] → clos) → clos

type envr ψ = #tm[ψ] → clos

We write tm[ψ] for the type of terms whose free variables
come only from the context ψ. We write #tm[ψ] for the type of
variables of type tm in context ψ – i.e. elements of ψ. We overload
→ using it for LF types as well as computation-level types; since
datatype is part of the computation language, the arrow in #tm[ψ
] → clos does not indicate the LF function space, but rather the
usual computational function space. Hence this datatype represents
the bodies of lambda abstractions in some context together with a
binding for each of the free variables minus one. Note that we wrap
arguments in {} to indicate that they are passed implicitly.

We can now proceed to evaluate a term in a context ψ and in an
environment which provides bindings for the variables in ψ.

rec eval : {ψ:ctx} tm[ψ] → envr ψ → clos =
fn e ⇒ fn env ⇒ case e of
| ψ. #p .. ⇒ env (ψ. #p ..)
| ψ. lam (λx. E .. x) ⇒ cl (ψ,x:exp . E .. x) env
| ψ. app (E1 ..) (E2 ..) ⇒

let cl (φ,x:tm . E .. x) env’ = eval (ψ. E1 ..) env
let v = eval (ψ. E2 ..) env in
in eval (φ,x:tm . E .. x) (fn var ⇒ case var of

| φ,x:tm . x ⇒ v
| φ,x:tm . #p .. ⇒ env’ (φ. #p .. ))

When we pattern match on a contextual object e : tm[ψ], we
might obtain a variable in ψ, which we write as ψ. #p .. . The
item #p is a parameter variable, standing for a position in ψ. Its
association with the identity substitution for ψ (written .. ) turns
it from a position into a genuine tm[ψ]. In this case, we look it
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up in the environment. A lambda abstraction simply evaluates to a
closure. We think of the ψ in ψ. lam (λx. E .. x) as binding
all the free variables of lam (λx. E .. x). We explicitly apply
ψ’s identity substitution .. to E in the pattern to indicate that the
variables in ψ are permitted to occur in E. Conversely, writing the
pattern as ψ. lam (λx. E x) attempts to strengthen the variables
of ψ out of E, which is not the intention.

An application evaluates the function position to obtain a body E

in the possibly different context φwith an associated env’ providing
bindings for the variables in φ. We now evaluate the body E in the
environment env’ extended with the appropriate binding for x.

This implementation is quite close to that of Licata and Harper
[2009]. One noticeable difference is that contexts appear explicitly
in our definition of clos, which is arguably more readable.

2.2 Relating Contexts: Closure Conversion
When implementing a transformation between languages, as is
common in compilers, we often need the resulting terms to be in
a different but related context. In systems such as Twelf [Pfenning
and Schürmann 1999] and Beluga, the solution is somewhat un-
satisfactory. The programmer states results in a combined context,
and relies on sophisticated subordination and subsumption mecha-
nisms. However, by encoding this relation on contexts as an induc-
tive predicate, we can express this directly and do away with world
subsumption.

We demonstrate this idea with an implementation of clo-
sure conversion. Guillemette and Monnier [2007] provide a good
overview of closure conversion. Our implementation resembles
theirs, although we use HOAS for our term representations. The
particulars of closure conversion are not tremendously important
here. We wish primarily to demonstrate how data-types comple-
ment contextual types.

The source language is the language of Section 2.1. The target
language is augmented with constructs for explicit closures, shown
in part below:

clam : (envr → ctm) → ctm. proj : envr → nat → ctm.
close : ctm → envr → ctm. nil : envr.
create : envr → ctm. snoc : envr → ctm → envr

An envr is an arbitrary length tuple of terms. Closure conversion
will turn contexts into explicit ctm objects such that the bodies
of lambda abstractions will only refer to their envr and no other
variables. The reason is that we want to be able to hoist them to the
top level. close constructs an explicit closure which binds all but
the last argument. proj E N projects out the Nth component of the
environment E.

We must now do as we promised and turn the open bodies of
lambdas into closed terms which instead project from their envi-
ronment. To characterize the free variables in the open bodies we
define the context cctx. We depart from Guillemette and Monnier
[2007] by performing substitutions instead of let-bindings, which
is easy thanks to HOAS.

schema cctx = ctm;

rec addProjs : (φ:cctx) (N:nat[]) (M:cexp[φ,e:envr])
→ cexp[e:envr] =

λ φ ⇒ λ N ⇒ λ M ⇒ case φ of
| [] ⇒ [e:envr]. M e
| φ,x:ctm ⇒ addProjs φ (s N) (φ,e. M .. (proj e N) e)

We write [] for the empty context and [e:envr] for a singleton
context containing a single variable of type envr.

Of course if we insist that contexts be passed explicitly as envi-
ronments, we had better be able to turn contexts into environments:

rec ctxToEnv : (φ:cctx) envr[φ] =
λ φ ⇒ case φ of
| [] ⇒ []. nil

| φ,x:ctm ⇒ let φ. env .. = ctxToEnv φ in
φ,x:ctm. snoc (env ..) x

So far this is more or less standard Beluga code. The raison
d’être for this example is the recursive relation on contexts:

datatype ctx_rel : ctx → cctx → ctype
| rnil : ctx_rel [] []
| rsnoc : {ψ φ} → ctx_rel ψ φ
→ ctx_rel (ψ,x:tm) (φ,x:ctm)

We freely omit types where they might reasonably be inferred.
ctx_rel ψ φ states only that ψ and φ are the same length. We

illustrate more sophisticated relations later.
The closure conversion function takes vanilla terms in a context

ψ into target language terms in a related context φ. We only explain
the cases for variables and lambda-abstraction. The full implemen-
tation can be found in the appendix.

rec conv : {ψ:ctx} (φ:cctx) → ctx_rel ψ φ→ tm[ψ]
→ ctm[φ] = λ φ ⇒ fn cr ⇒ fn m ⇒ case m of

Variables are taken to corresponding variables. When we learn
that ψ is non-empty, we learn by inspecting cr that so too is φ. The
{φ = ...} syntax passes the implicit argument φ explicitly.

| ψ’,x:tm. x ⇒ let rsnoc {φ=φ’,x:ctm} _ = cr in φ’,x. x
| ψ’,x:tm. #p .. ⇒ let rsnoc {φ=φ’,x:ctm} cr’ = cr in

let φ’. M .. = conv _ cr’ (ψ’. #p ..) in φ’,x. M ..

To closure convert a lambda, we closure convert the body in the
extended context ψ,x using an extended context relation rsnoc cr.
We close it and return an explicit closure. For simplicity, we cheat
and do not compute the set of variables occuring in the body: we
instead close over the entire context.

| ψ. lam (λx. M .. x) ⇒
let φ, x:ctm. M’ .. x =

conv _ (rsnoc cr) (ψ,x. M .. x) in
let [ev:envr]. M’’ ev =

addProjs _ z (φ, x:ctm, ev:envr. M’ .. x) in
let φ. Env .. = ctxToEnv φ in
φ. close (clam (λev. M’’ ev)) (Env ..)

We omit here the case for applications which is straightforward.
A more sophisticated example of a context relation appears if

we wish to express that a transformation is type preserving. In
type-preserving closure conversion (see Minamide et al. [1996]
and Guillemette and Monnier [2007]), there is also a non-trivial
relation between source language types and target language types.
Assuming now that we use intrinsically-typed terms, we might
wish to use a relation such as the following:

datatype ctx_rel : ctx → cctx → ctype =
| rnil : ctx_rel [] []
| rsnoc : {ψ φ} {T:tp[]} {S:ctp[]} → ctx_rel ψ φ
→ tp_rel T S → ctx_rel (ψ, x:tm T) (φ, x:ctm S)

2.3 Logical Relations: Normalization by Evaluation
Implementing normalization proofs or normalization by evaluation
(NbE) in a system such Beluga has been difficult to do directly.
Here we demonstrate an implementation of typed normalization
by evaluation [Berger and Schwichtenberg 1991] in our language
which supports both contextual types and indexed data-types.

The essence of normalization by evaluation is to normalize
object level terms by reusing the evaluation of the computation
level. There are therefore two levels of terms: object language terms
using the LF function space, and computation level (semantic)
terms using the computation level function space. Normalization
proceeds by interpreting object level terms as semantic terms and
reifying the result.

The source language is tm: a standard (intrinsically) simply-
typed family of LF-level terms with lam and app as constructors.
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We have an open type atomic_tp of atomic (base) types which our
implementation is essentially parametric over. The target is simply-
typed terms in β-normal η-long form:

nlam : (neut T → norm S) → norm (arr T S).
rapp : neut (arr T S) → norm T → neut S.
embed : neut (atomic P) → norm (atomic P).

To characterize the free variable context of the source language,
we define schema ctx = some [T:tp] tm T. The context of the tar-
get language is described by schema tctx = some [T:tp] neut T.

Semantic terms must be defined as a datatype, because we must
use the computation-level function space:

type sub ψ φ = {T:tp[]} → #(neut T)[ψ] → #(neut T)[φ]

datatype sem : ctx → tp[] → ctype =
| syn : {ψ} {P:atomic_tp[]}
→ (neut (atomic P))[ψ] → sem ψ (atomic P)

| slam : {ψ A B} ({φ} → sub ψ φ → sem φ A → sem φ B)
→ sem ψ (arr A B)

The type {T:tp[]} → #(neut T)[ψ] → #(neut T)[φ] is read
as the type of (type preserving) substitutions of variables in ψ for
variables in φ. The need for this will become clear in our imple-
mentations of substitution and reification. Observe that we restrict
the embedding of neut into sem to atomic types. This enforces
η-longness.

We must manually implement substitution of variables for vari-
ables in sem, since we do not provide substitution for free for
datatypes. In fact, it is substantially different from LF substitution.
Licata [2011] explains this difference in depth.

The interesting case is slam. It makes essential use of the quan-
tification over substitutions in slam. Similar mechanisms appear in
both Licata and Harper [2009] and Pouillard and Pottier [2010].

rec subst:{ψ φ S} → sub ψ φ → sem ψ S → sem φ S =
fn σ ⇒ fn e ⇒ case e of
| syn (ψ. R ..) ⇒ nsubst σ (ψ. R ..)
| slam f ⇒ slam (fn σ’ ⇒ fn s ⇒ f (σ’ ◦ σ) s)

rec nsubst : {ψ φ S} → sub ψ φ → (neut S)[ψ]
→ (neut S)[φ] = ...

Where nsubst performs substitution on syntactic neutral terms.
We show the full code for this example in the appendix.

Embedding neut into sem is only possible at atomic types, so
we must η-expand in the general case:

rec reflect : (ψ A) (R:(neut A)[ψ]) → sem ψ A =
λ ψ ⇒ λ A ⇒ λ R ⇒ case []. A of
| []. atomic P ⇒ syn (ψ. R ..)
| []. arr T S ⇒ slam (λ {φ} ⇒ fn σ ⇒ fn s ⇒

let φ. R’ .. = nsubst σ (ψ. R ..) in
let φ. N .. = reify _ T s in
reflect _ S (φ. rapp (R’ ..) (N ..)))

We can then reify semantic terms as object level terms by calling
the computation level functions on fresh variables:

rec reify : (ψ A) → sem ψ A → (norm A)[ψ] =
λ ψ ⇒ λ A ⇒ fn s ⇒ case []. A of
| []. atomic P ⇒ let syn (ψ. R ..) = s

in ψ. embed (R ..)
| []. arr T S ⇒ let slam f = s in

let ψ,x:tm T. E .. x =
reify (f weaken (reflect _ T (ψ,x:neut T. x)))

in ψ. nlam (λx. E .. x)

Where weaken is the weakening substitution of type:

{ψ:ctx} {S:tp[]} → sub ψ (ψ,x:tm S)

We can now implement evaluation with the help of an environ-
ment of bindings. The lam case evaluates in the extended environ-
ment. In the application case, the evaluation of E1 must produce an
slam since syn is only applicable to atomic types.

rec eval : {ψ φ S} →
→ ({T} #(tm T)[ψ] → sem φ T)
→ (tm S)[ψ] → sem φ S =

fn r ⇒ fn σ ⇒ fn e ⇒ case e of
| ψ. #p .. ⇒ σ (ψ . #p .. )
| ψ. lam (λx. E .. x) ⇒ slam (fn σ’ ⇒ fn s ⇒

eval (extend ((subst σ’) ◦ σ) s) (ψ,x. E .. x)
| ψ. app (E1 ..) (E2 ..) ⇒

let slam f = eval σ (ψ. E1 ..) in
f id (eval σ (ψ. E2 ..))

We have used extend to extend the domain of the environment
in the lam case. Its type is shown below.

rec extend : {ψ:tctx} {φ:ctx} {S}
→ ({T} → #(tm T)[ψ] → sem φ T) → sem φ S
→ ({T} → #(tm T)[ψ,x:tm S] → sem φ T)

Normalization is then simply evaluation followed by reification:

rec nbe : {A} → (tm A)[ ] → (norm A)[ ] =
fn e ⇒ reify [] A (eval (fn y ⇒ impossible y) e)

Notably, this implementation cleanly enforces η-longness and
type preservation by employing dependent types. Expressing these
invariants together with a clean approach to variable binding in
NbE is rarely found in other work. Licata and Harper [2009] and
Shinwell et al. [2003] lack dependent types. Pouillard and Pottier
[2010] have this ability, although their implementation is untyped
NbE, and hence does not employ it. Further, this illustrates that
arbitrary mixing of computation and LF function spaces is not
crucial to NbE, as suggested by Licata and Harper [2009]. Their
framework, however, obtains weakening for free for sem while we
have to do a modicum of work to implement it.

From a logic perspective, this can be seen as a (partial) com-
pleteness and consistency proof for a natural deduction system by
the method of logical relations. We say partial because we post-
pone the issues of totality checking to future work. We anticipate
that this can be scaled to normalization proofs for the simply-typed
lambda calculus without any difficulty. The addition of indexed
data-types hence brings substantial benefit to programming and
proof systems such as Beluga, since it makes such systems capa-
ble of proofs by logical relations.

3. A Review of Contextual LF
Here we describe the index domain, which in our case is contextual
LF [Pientka 2011, 2008] which builds on contextual types which
were first introduced in Nanevski et al. [2008b].

3.1 Contextual LF
Contextual LF extends the logical framework LF [Harper et al.
1993] with the power of contextual objects Ψ̂.M of type A[Ψ].
M denotes an object which may refer to the bound variables listed
in Ψ̂ and has type A in the context Ψ (see also [Nanevski et al.
2008b]). Ψ̂ can be obtained from the context Ψ by simply dropping
the type annotations and keeping only the declared variable names.
We characterize only objects in βη normal form, since these are the
only meaningful objects in LF. Furthermore, we concentrate here
on characterizing well-typed terms, but defining kinds and kinding
rules for types is straightforward and omitted.

Atomic types P,Q ::= a ~M
Types A,B ::= P | Πx:A.B
Heads H ::= x | c | p[σ]
Neutral Terms R ::= H | RN | u[σ]
Normal Terms M,N ::= R | λx.M
Substitutions σ ::= · | idψ | σ,M | σ;H
Contexts Ψ ::= · | ψ | Ψ, x:A
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Normal objects may contain ordinary bound variables which
are used to represent object-level binders and are bound by λ-
abstraction or in a context Ψ. They may also contain meta-variables
u[σ] and parameter variables p[σ] which we call contextual vari-
ables. Contextual variables are associated with a post-poned sub-
stitution σ. The meta-variable u stands for a contextual object Ψ̂.R
where Ψ̂ describes the ordinary bound variables which may occur
in R. This allows us to rename the free variables occurring in R
when necessary. The parameter variable p stands for a contextual
object Ψ̂.R where R must be either an ordinary bound variable
from Ψ̂ or another parameter variable.

In the simultaneous substitutions σ, we do not make its domain
explicit. Rather we think of a substitution together with its domain
Ψ and the i-th element in σ corresponds to the i-th declaration in
Ψ. We have two different ways of building a substitution: either by
using a normal term M or a variable x. Note that a variable x is
only a normal term M if it is of base type. However, as we push a
substitution σ through a λ-abstraction λx.M , we need to extend σ
with x. The resulting substitution σ, xmay not be well-typed, since
x may not be of base type and in fact we do not know its type.
Hence, we allow substitutions not only to be extended with normal
terms M but also with variables x. Without loss of generality we
require that meta-variables have base type.

A bound variable context Ψ contains bound variable declara-
tions in addition to context variables. A context may only contain
at most one context variable and it must occur at the left. This will
make it easier to ensure bound variable dependencies are satisfied
in the dependently typed setting.

Following Pientka [2008] we use a bi-directional type system
where we check normal terms against a type and synthesize a type
for neutral terms. LF objects may depend on variables declared in
the context Ψ and the meta-context ∆ which contains contextual
variables such as meta-variables u, parameter variables p and con-
text variables ψ. We introduce ∆ more formally in the next section.
All typing judgments have access to both contexts and a well-typed
signature Σ where we store constants together with their types and
kinds.

∆; Ψ `M ⇐ A Normal term M checks against type A
∆; Ψ ` R⇒ A Neutral term R synthesizes type A
∆; Ψ ` σ ⇐ Ψ′ Substitution σ has domain Ψ′ and range Ψ.

The bi-directional typing rules are mostly straightforward and
are presented in Figure 1. We will tacitly rename bound variables,
and maintain that contexts and substitutions declare no variable
more than once. Note that substitutions σ are defined only on
ordinary variables x and not contextual variables. Moreover, we
require the usual conditions on bound variables. For example in the
rule for λ-abstraction the bound variable xmust be new and cannot
already occur in the context Ψ. This can be always achieved via
α-renaming. Similarly, in meta-terms we tacitly apply α-renaming.

As is common, we rely on hereditary substitutions, written as
[N/x]A(B) (or [σ]Ψ(B)) to guarantee that when we substitute a
term N which has type A for the variable x in the type B, we
obtain a type B′ which is in normal form. Hereditary substitutions
continue to substitute, if a redex is created; for example, when
replacing naively x by λy.c y in the object x z, we would obtain
(λy.c y) z which is not in normal form and hence not a valid term
in our grammar. Hereditary substitutions continue to substitute z
for y in c y to obtain c z as a final result. For a more detailed
description of hereditary substitution, we refer the reader to for
example Nanevski et al. [2008b].

Finally, we remark on equality checking. When checking A =
B we must take into account η-contraction, because we have two

Neutral Terms ∆; Ψ ` R⇒ A

Ψ(x) = A

∆; Ψ ` x⇒ A

∆(p) = #A[Φ] ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` p[σ]⇒ [σ]ΦA

Σ(c) = A

∆; Ψ ` c⇒ A

∆(u) = P [Φ] ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` u[σ]⇒ [σ]ΦP

∆; Ψ ` R⇒ Πx:A.B ∆; Ψ `M ⇐ A

∆; Ψ ` RM ⇒ [M/x]AB

Normal Terms ∆; Ψ `M ⇐ A

∆; Ψ ` R⇒ P P = Q

∆; Ψ ` R⇐ Q

∆; Ψ, x:A `M ⇐ B

∆; Ψ ` λx.M ⇐ Πx:A.B

Substitutions ∆; Ψ ` σ ⇐ Ψ′

∆; Ψ ` · ⇐ ·
∆; Ψ ` σ ⇐ Φ ∆; Ψ ` H ⇒ B B = [σ]ΦA

∆; Ψ ` σ;H ⇐ Φ, x:A

∆;ψ,Ψ ` idψ ⇐ ψ

∆; Ψ ` σ ⇐ Φ ∆; Ψ `M ⇐ [σ]ΦA

∆; Ψ ` σ,M ⇐ Φ, x:A

Figure 1. Typing for contextual LF

ways to build substitutions. If x has type Πy:A.B then we may
have written σ;x or σ, λy.x y.

3.2 Meta-Objects and Meta-types
We lift contextual LF objects to meta-types and meta-objects to
treat abstraction over meta-objects uniformly. Meta-objects are ei-
ther contextual objects written as Ψ̂.R or contexts Ψ. These are the
index objects which can be used to index computation-level types.
There are three different meta-types: P [Ψ] denotes the type of a
meta-variable u and stands for a general contextual object Ψ̂.R.
#A[Ψ] denotes the type of a parameter variable p and it stands for
a variable object, i.e. either Ψ̂.x or Ψ̂.p[π] where π is a variable
substitution. A variable substitution π is a special case for gen-
eral substitutions σ; however unlike p[σ] which can produce a gen-
eral LF object, p[π] guarantees we are producing a variable. G de-
scribes the schema (i.e. type) of a context. The tag # on the type of
parameter variables is a simple syntactic device to distinguish be-
tween the type of meta-variables and parameter variables. It does
not introduce a subtyping relationship between the type #A[Ψ] and
the type A[Ψ]. The meta-context in which an LF object appears
uniquely determines if X denotes a meta-variable, parameter vari-
able or context variable. We use the following convention: if X
denotes a meta-variable we usually write u or v; if it stands for a
parameter-variable, we write p and for context variables we use ψ.

Context schemas G ::= ∃
−−−→
(x:A).B | G+ ∃

−−−→
(x:A).B

Meta Objects C ::= Ψ̂.R | Ψ
Meta Types U ::= P [Ψ] | #A[Ψ] | G
Meta substitutions θ ::= · | θ, C/X
Meta-context ∆ ::= · | ∆, X:U

Context schemas consist of different schema elements ∃
−−−→
(x:A).B

which are built using +. Intuitively, this means a concrete declara-
tion in a context must be an instance of one of the elements spec-
ified in the schema. For example, a context x:exp nat, y:exp bool
will check against the schema ∃T :tp.exp T .
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Meta Terms ∆ ` C ⇐ U

∆ ` · ⇐ G

∆(ψ) = G

∆ ` ψ ⇐ G

∆ ` Ψ⇐ G

∃
−−−−−→
(x : B′).B ∈ G ∆; Ψ ` σ ⇐

−−−−→
(x:B′) A = [σ]−−−−→

(x:B′)
B

∆ ` Ψ, x:A⇐ G

∆; Ψ ` σ ⇐ Φ

∆ ` Ψ̂.σ ⇐ Φ[Ψ]

∆; Ψ ` R⇐ P

∆ ` Ψ̂.R⇐ P [Ψ]

Ψ(x) = A

∆ ` Ψ̂.x⇐ #A[Ψ]

∆(p) = #A[Φ] ∆; Ψ ` π ⇐ Φ [π]Φ(A) = B

∆ ` Ψ̂.p[π]⇐ #B[Ψ]

Meta-Substitutions ∆ ` θ ⇐ ∆′

∆ ` · ⇐ ·
∆ ` θ ⇐ ∆′ ∆ ` C ⇐ [[θ]]∆′(U)

∆ ` θ, C/X ⇐ ∆′, X:U

Figure 2. Typing for meta-terms

The uniform treatment of meta-terms, called C, and meta-
types, called U , allows us to give a compact definition of meta-
substitutions θ and meta-contexts ∆.

We omit here the rules stating when meta-types and meta-
contexts are well-formed and show only the typing rules for meta-
term and meta-substitutions in Figure 2.

A consequence of the uniform treatment of meta-terms is that
the design of the computation language is modular and parame-
terized over meta-terms and meta-types. This has two main advan-
tages: First, we can in principle easily extend meta-terms and meta-
types without affecting the computation language; in particular, it
is straightforward to add substitution variables which were present
in Pientka [2008] or allow for richer context schemas. Second, it
will be key to a modular, clean design of computations.

The single meta-substitution, written as [[C/X]]U (∗) where ∗
stands for A, M, R, σ, Ψ, is defined inductively on the struc-
ture of the given object. (see for example Pientka [2011] or the
appendix). We only discuss briefly here some of the fundamental
ideas. Let us first consider the case where X stands for a meta-
variable u andC is a meta-object Ψ̂.R. We note that there is no cap-
ture issues when we push [[Ψ̂.R/u]] through a lambda-expression
and the only interesting issue arises when we encounter an object
u[σ]. In this case, we apply [[Ψ̂.R/u]] to σ to obtain σ′. Subse-
quently, we apply σ′ to R to obtain the final result.

Next, we consider the case where X stands for a parameter
variable p and C is a meta-object Ψ̂.x or Ψ̂.q[π]. The only in-
teresting case is when we encounter p[σ]. Similar to the case for
meta-variables, we apply the meta-substitution to σ to obtain σ′

and subsequently apply σ′ to x or q[π]. There is however a small
caveat: since σ′ is an arbitrary substitution, applying it to x, may
yield a normal object M . Hence, simply M may produce a non-
normal term which is not meaningful in our grammar. The solution
to this problem is to define meta-substitutions hereditarily; hence
we index the meta-substitution with its domain.

Finally, the case where X stands for a context variable ψ and
C is a meta-object Ψ. There are two interesting cases: 1) when
we encounter the identity substitution idψ , we unroll Ψ and create
at the same time a concrete identity substitution which maps all
variables from Ψ to themselves. 2) when we encounter a context

variable ψ in a context, then we simply replace it with the concrete
context Ψ. The full definition of meta-substitutions is given in the
appendix and has been previously been described in [Nanevski
et al. 2008b; Pientka 2011, 2008].

The simultaneous meta-substitution, written as [[θ]], is a straight-
forward extension of the single substitution.

Theorem 3.1 (Meta-substitution property).
If ∆′ ` θ ⇐ ∆ and ∆; Ψ ` J then ∆′; [[θ]]∆Ψ ` [[θ]]∆J .

4. Belugaµ: a language with binding support and
recursive types

We present in this section a dependently typed programming lan-
guage Belugaµ along the lines of Mini-ML, including recursive
types, variants and general pattern matching which is critical in
practice and whose theory in this setting is non-trivial. Polymor-
phism, on the other hand, is largely orthogonal and therefore post-
poned. The type index objects are drawn from the domain of meta-
objects presented in the previous section, but we emphasize that
this language is parametric over the index domain, requiring only
decidable equality.

4.1 Types and Kinds
Our type language supports function types (written as T1 → T2),
products (written as T1 × T2), labelled sums (written as 〈

−→
l:T 〉),

dependent types (written as ΠX:U.T ) and dependent products
(written as ΣX:U.T ). We only allow dependencies on meta-terms
not on arbitrary computation-level expressions. The novel part in
our type language is our definition of recursive types together with
the equality constraint which may be associated with a given type.
The recursive type is written as µZ.λ ~X.T ; while Z denotes a
type variable, λ ~X.T describes a type-level function which expects
meta-terms.

Kinds K ::= ctype | ΠX:U.K

Types T ::= Unit | Z | T1 → T2 | T1 × T2 | 〈
−−→
l : T 〉

| ΠX:U.T | ΣX:U.T | C1 = C2 ∧ T
| µZ. λ ~X. T | T ~C | U

Context Γ ::= · | Γ, Z : K | Γ, x : T

We note that we can directly refer to meta-types and embed
them in our computation-level types. Hence meta-objects can be
directly analyzed and manipulated by our computation language.
This is convenient in our setting, however, it also prevents a naive
erasure of all the meta-objects.

We also note that equalities cannot occur just by themselves
in our grammar. The reason is that equalities are treated silently
during type checking and equality proofs which establish C1 = C2

do not pollute our computation-level expressions. In fact, equalities
typically occur inside a recursive type and they are trivially true
once we have chosen the correct instantiation for the existentially
quantified variable. We illustrate this idea shortly.

To illustrate, we give here three examples.

Example 1 The type of a vector of booleans which keeps track of
their length can be defined as follows. We assume an LF signature
which declares nat:type together with two constants, 0:nat and s:

nat → nat. Because all index objects to the recursive type V are
closed, we omit writing the empty context and simply write nat for
nat[] and Y for ·.Y .

Vec = µVec.λX. 〈 nil : X = 0 ∧ Unit ,
cons : ΣY :nat.X = s Y ∧ bool× Vec Y 〉
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Example 2 The relation between contexts from Section 2.2 can
be written as follows:

µCtx rel.λψλφ. 〈 rnil : ψ = · ∧ φ = · ∧ Unit ,
rsnoc: Σψ′:ctx.Σφ′:cctx.

ψ = ψ′, x:tm ∧ φ = φ′, y:ctm
∧ Ctx rel ψ′ φ′ 〉

Our treatment of recursive types with equalities is similar to Xi
et al. [2003] and Sulzmann et al. [2007] where recursive types are
endowed with equalities between types to model GADTs. Recently
fixed points with equalities between terms have appeared in Licata
[2011] and in Baelde et al. [2010] for example. In our setting, we
treat equality between contextual objects. Next, we give the kinding
rules for computation-level types.

Well-kinded computation-level types ∆; Γ ` T : K

∆,
−−→
X:U ; Γ, Z : Π

−−→
X:U.K ` T : K

∆; Γ ` µZ. λ
−→
X.T : Π

−−→
X:U.K

∆; Γ ` T1 : ctype ∆; Γ ` T2 : ctype ∗ ∈ {→,×}
∆; Γ ` T1 ∗ T2 : ctype

∆ ; Γ ` U ⇐ mtype ∆, X:U ; Γ ` T : ctype

∆; Γ ` ΠX:U.T : ctype

∆ ; Γ ` U ⇐ mtype ∆, X:U ; Γ ` T : ctype

∆; Γ ` ΣX:U.T : ctype

∆ ` C1 ⇐ U ∆ ` C2 ⇐ U ∆; Γ ` T : ctype

∆; Γ ` C1 = C2 ∧ T : ctype

∆ ` U ⇐ mtype

∆; Γ ` U : ctype ∆; Γ ` Unit : ctype

Γ(Z) = K

∆; Γ ` Z : K

∆; Γ ` T : ΠX:U.K ∆ ` C : U

∆; Γ ` T C : [[C/X]]K

4.2 Computations
Our language of computations includes recursive functions (writ-
ten as rec f.E), nameless functions (written as fn x.E) and depen-
dent functions (written as λX.E). We also include pairs (written
as (E1, E2)) and dependent pairs (written as pack (C, E)). Fi-
nally, we include labeled variants (written as 〈l = E〉) and a fold
constructor for recursive types.

Expressions I ::= y | I E | I C | (E : T )
(synth.)

Expressions E ::= I | C | fn y.E | λX.E | rec f.E | unit
(checked) | fold E | 〈l = E〉 | pack (C,E)

| (E1, E2) | case I of ~B
Pattern pat ::= x | C | unit | fold pat | 〈l = pat〉

| pack (C, pat) | (pat1, pat2)
Branch B ::= ∆; Γ . pat : θ 7→ E

Contexts Γ ::= · | Γ, y:T

Our language is split into expressions for which we synthesize
types and expressions which are checked against a type. This min-
imizes the necessary type annotations and provides a syntax di-
rected recipe for a type checker. Intuitively, the expressions which
introduce a type are expressions which are checked and expres-
sions which eliminate a type are in the synthesis category. We
have two different kinds of function applications, one for applying
computation-level functions to an expression and the other to apply
a dependent function to a meta-object C. Pairs and dependent pairs
are analyzed by pattern matching.

∆; Γ ` I ⇒ T Expression I synthesizes type T

y:T ∈ Γ

∆; Γ ` y ⇒ T

∆; Γ ` I ⇒ C = C ∧ T
∆; Γ ` I ⇒ T

∆; Γ ` I ⇒ T2 → T ∆; Γ ` E ⇐ T2

∆; Γ ` I E ⇒ T

∆; Γ ` I ⇒ ΠX:U.T ∆ ` C ⇐ U

∆; Γ ` I C ⇒ [[C/X]]T

∆; Γ ` E ⇐ T

∆; Γ ` (E : T )⇒ T

∆; Γ ` E ⇐ T Expression E checks against type T

∆; Γ ` Ei ⇐ Ti where li : Ti ∈
−−→
l : T

∆; Γ ` 〈li = Ei〉 ⇐ 〈
−−→
l : T 〉

∆; Γ, f : T ` E ⇐ T

∆; Γ ` rec f.E ⇐ T

∆; Γ, y:T1 ` E ⇐ T2

∆; Γ ` fn y.E ⇐ T1 → T2

∆, X:U ; Γ ` E ⇐ T

∆; Γ ` λX.E ⇐ ΠX:U.T

∆; Γ ` E1 ⇐ T1 ∆; Γ ` E2 ⇐ T2

∆; Γ ` (E1, E2)⇐ T1 × T2

∆; Γ ` I ⇒ T T = T ′

∆; Γ ` I ⇐ T ′

∆ ` C ⇐ U ∆; Γ ` E ⇐ [[C/X]]T

∆; Γ ` pack (C,E)⇐ ΣX:U.T
∆ ` C ⇐ U

∆; Γ ` C ⇐ U

∆; Γ ` E ⇐ [µZ.λ ~X. S/Z][[ ~C/ ~X]]S

∆; Γ ` fold E ⇐ (µZ.λ ~X. S) ~C

∆; Γ ` E ⇐ T

∆; Γ ` E ⇐ C = C ∧ T

∆; Γ ` I ⇒ S for all i ∆; Γ ` Bi ⇐ S → T

∆; Γ ` case I of ~B ⇐ T

∆; Γ ` B ⇐ S → T Branch B with pattern of S checks against T

∆i ` θi ⇐ ∆ ∆i; Γi ` pat⇐ [[θi]]S ∆i; [[θi]]Γ,Γi ` E ⇐ [[θi]]T

∆; Γ ` ∆i; Γi . pat : θi 7→ E ⇐ S → T

Figure 3. Typing for computations

Branches are modelled by ∆; Γ . pat : θ 7→ E where ∆
describes the meta-variables occurring in the pattern which are
often left implicit in the surface language, while Γ corresponds
to the explicit arguments. The refinement substitution θ describes
how the type of the scrutinee is instantiated so the given branch is
applicable.

Example 3 We show next the elaboration of a simple program to
compute the tail of a vector and its elaboration:

rec tail : {N:nat[]} → vec (s N) → vec N =
fn l ⇒ case l of cons h t ⇒ t

Which can be elaborated into:
rec tail.λN. fn l. case l of
|M : tp ; h : int, t:VecM .
fold 〈 cons = pack (M, (h, t) ) 〉 : M/N 7→ t

We insert the length argument to cons which was left implicit in
the source-level program and the refinement M/N which guarantees
that the type of the pattern is compatible with the type of the
scrutinee. We also list explicitly the type of the index variable M

as well as the type of the arguments h and t.

4.3 Typing rules
Next, we give the typing rules for computations in Figure 3. We
present bi-directional typing rules for computations which will
minimize the amount of typing annotations. We distinguish be-
tween typing of expressions and branches. In the typing judgment,
we will distinguish between the context ∆ for contextual variables
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from our index domain and the context Γ which includes decla-
rations of computation-level variables. Contextual variables will be
introduced via λ-abstraction. The contextual variables in ∆ are also
introduced in the branch of a case-expression. Computation-level
variables in Γ are introduced by recursion or functions and in addi-
tion in branches. We use the following judgments:

∆; Γ`E⇐ T Expression E checks against type T
∆; Γ`I ⇒ T Expression I synthesizes type T
∆; Γ`B⇐ S → T BranchB with pattern of type S checks

against T

The typing rules are given in Figure 3. We will tacitly rename
bound variables, and maintain that contexts declare no variable
more than once. Moreover, we require the usual conditions on
bound variables. For example in the rule for λ-abstraction the
contextual variable X must be new and cannot already occur in the
context ∆. This can be always achieved via α-renaming. Similarly,
in the rule for recursion and function abstraction, the variable x
must be new and cannot already occur in Γ.

The rules which synthesize and checking are mostly standard
and we only point out a few rules. We have two rules for appli-
cations: to synthesize the type S of a non-dependent application
(I E), we synthesize the type for I to be T → S and check E
against T . For the dependent application I C, we synthesize the
type ΠX:U.T for I and check thatC is a well-typed meta-object of
typeU . Note that we drop the computation context Γ when we tran-
sition to type check a meta-object, since meta-objects cannot refer
to computations. The final type for I C is [[C/X]]T . If we have
synthesized a type T together with a trivial equality constraint, we
simply drop the constraint and return T .

To check a λ-abstraction against ΠX:U.T , we add X:U to
the meta-context ∆ and continue to check that the body of the
abstraction has type T . To check that a function fn y.E has type
T1 → T2, we add the assumption y:T1 to the computation context
Γ and continue to check the body E against T2. For checking a
non-dependent pair (E1, E2) against the type T1 × T2, we check
each part of the pair against their respective type. For checking a
dependent pair pack (C, E) against ΣX:U.T , we check that C
is a well-typed meta-object of type U switching to the typing rules
for the meta-level and dropping the context Γ. In addition, we check
that E has type [[C/X]]T .

When we check a contextual meta-object C against a type U ,
we simply convert to the type checking rules for meta-objects and
forget about the computation-level context Γ. Our typing rules
will ensure that meta-objects are pure objects and do not contain
any computation-level expressions. When checking an expression
against C = C ∧ T , we can simply drop the constraint C = C,
since it is trivially true. We check (fold E) against the recur-
sive type (µZ.λ ~X. S) ~C by unrolling the fixed point definition
and checking E against [µZ.λ ~X. S/Z][[~C/ ~X]]S. The difference to
simply-typed recursive types is that dependently typed recursive
types are applied to index objects ~C.

To illustrate that our data carries enough information to ensure
that the equality constraints are trivially true, if the term is well-
typed, we show the typing derivation for cons (true,nil) in Fig-
ure 4.

In the rule for case expressions, we first infer the type S of
the scrutinee and then proceed to check that each branch Bi has
a pattern compatible with S and its body has a type compatible
with T . To check a branch ∆i; Γi ` pati : θi 7→ Ei, we check
that the refinement substitution θ provides instantiations from the
outer meta-context ∆ to the current meta-context ∆i. Moreover,
the pattern has type [[θi]]S, i.e. it is compatible with the type of
the scrutinee, and only refers to the local variables ∆i and Γi.
We then proceed to check the body Ei against [[θi]]T . Because the

pattern may refine the types, we must make sure to apply θi to the
appropriate parts and extend the computation context [[θi]]Γ with
the bindings Γi introduced in the branch.

The typing rules for patterns are given in Fig. 5. They duplicate
some of the type checking rules for tuples, dependent pairs, meta-
objects, recursive types, and variants. We ensure that the compu-
tation variables occurring in patterns occur uniquely and we split
the computation context in the rule for tuples. The meta-context
on the other hand remains. As a consequence, contextual variables
may occur more than once, which is also often necessary to obtain
well-typed expressions, but we enforce linearity for computation
variables occurring in patterns.

Theorem 4.1 (Decidability of Type Checking).
Type-checking computation-level expressions is decidable.

Proof. The typing judgments are syntax-directed and therefore
clearly decidable.

4.4 Big-step operational semantics
Next, we define the operational semantics for computations in
Fig. 7. We adopt an environment-based approach where we do
not eagerly propagate values. Recall that we distinguish between
meta-variables in ∆ and program variables in Γ. To work elegantly
with refinement substitutions in branches, we hence define two
environments: θ denotes the instantiation for meta-variables in ∆;
ρ provides instantiations for program variables in Γ.

Values V ::= F [θ ; ρ] | unit | fold V | 〈l = V 〉
| pack (C, V ) | (V1, V2)

Function Values F ::= fn y.E | λX.E
Extended Values W ::= V | (rec f.E)[θ; ρ]

Closures L ::= E [θ ; ρ]

Environments ρ ::= · | ρ,W/y

Values are either meta-terms C, unit, pairs (V1, V2), dependent
pairs pack (C, V ), variants 〈l = V 〉, fold V , or functions as clo-
sures. Since we have non-dependent and dependent functions, we
have two corresponding closures. Closures are snapshots of com-
putation inside an environment. The environment is represented by
the two suspended substitutions θ and ρ for each of the two contexts
∆ and Γ respectively. We write E[θ; ρ] for a closure consisting of
the expression E and the suspended meta-substitution θ and the
program environment ρ. The intended meaning is that first meta-
substitution θ is applied to E and then ordinary substitution ρ to
the result. For clarification, we show the typing for environments
and values in Figure 6.

We give a big-step semantics for computations in Figure 7. To
evaluate a variable y in the environment θ and ρ, we simply look
up its binding in the computation environment ρ. Since ρ contains
extended values, in particular y may be bound to a recursive func-
tion which in itself is not a valid result, we continue to evaluate
the extended value we retrieve from ρ to a proper value. When we
encounter a meta-object C in the environment θ and ρ, we apply θ
to C to compute a closed meta-object. unit simply evaluates to it-
self regardless of the environment. Evaluating a function fn y.E in
the environment θ and ρ simply returns the closure fn y.E [θ ; ρ].
When evaluating a recursive function rec f.E in an environment θ
and ρ, we evaluate the body E and extend the computation envi-
ronment ρ binding f to itself.

Evaluating a tuple (E1, E2) in the environment θ and ρ is
straightforward: we evaluate E1 in the environment θ and ρ and
we proceed similarly to evaluate E2. The evaluation rules for fold
and variants are straightforward.
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` 0⇐ nat

` true⇐ bool

()⇐ Unit

()⇐ 0 = 0 ∧ Unit

` 〈 nil = ()〉 ⇐ 〈nil : 0 = 0 ∧ Unit , cons : ΣY :nat.0 = s Y ∧ bool× Vec Y 〉
` fold 〈 nil = ()〉 ⇐ Vec 0

` (true, fold 〈 nil = () 〉 )bool× Vec 0

` (true, fold 〈 nil = () 〉 )⇐ s 0 = s 0 ∧ bool× Vec 0

` pack (0, (true, fold 〈 nil = () 〉 ))⇐ ΣY :nat.s 0 = s Y ∧ bool× Vec Y
` 〈 cons = pack (0, (true, fold 〈 nil = () 〉 )) 〉 ⇐ 〈nil : s 0 = 0 ∧ Unit , cons : ΣY :nat.s 0 = s Y ∧ bool× Vec Y 〉

` fold 〈 cons = pack (0, (true, fold 〈 nil = () 〉 )) 〉 ⇐ Vec (s 0)

Figure 4. Typing derivation for vector cons (true, nil) := fold 〈 cons = pack (0, (true, fold 〈 nil = () 〉 )) 〉

∆; Γ ` pat⇐ T Pattern checks against type T

Γ(x) = T

∆; Γ ` x⇐ T
∆ ` C ⇐ U

∆; Γ ` C ⇐ U ∆; Γ ` unit⇐ Unit

T = µZ.λ ~X. S ∆; Γ ` pat⇐ [T/Z][[~C/ ~X]]S

∆; Γ ` fold pat⇐ T ~C

∆; Γ ` pat⇐ T

∆; Γ ` pat⇐ C = C ∧ T

∆; Γ ` pati ⇐ Ti where li : Ti ∈
−−→
l : T

∆; Γ ` 〈li = pati〉 ⇐ 〈
−−→
l : T 〉

∆ ` C ⇐ U ∆; Γ ` pat⇐ [[C/X]]T

∆; Γ ` pack (C, pat)⇐ ΣX:U.T

∆; Γ1 ` pat1 ⇐ T1 ∆; Γ2 ` pat2 ⇐ T2

∆; Γ1,Γ2 ` (pat1, pat2)⇐ T1 × T2

Figure 5. Typing rules for patterns

E [θ ; ρ] ⇓ V Expression E in environment [θ; ρ] evaluates to value V

I1 [θ ; ρ] ⇓ (fn y.E) [θ1 ; ρ1] E2 [θ ; ρ] ⇓ V2 E [θ1 ; ρ1, V2/y] ⇓ V
(I1 E2) [θ ; ρ] ⇓ V

I [θ ; ρ] ⇓ (λX.E) [θ1 ; ρ1] E [θ1, [[θ]]C/X ; ρ1] ⇓ V
(I C) [θ ; ρ] ⇓ V

C [θ ; ρ] ⇓ [[θ]]C unit [θ ; ρ] ⇓ unit

ρ(y) = V

y [θ ; ρ] ⇓ V
ρ(y) = (rec f.E) [θ1 ; ρ1] ρ(y) ⇓ V

y [θ ; ρ] ⇓ V
E [θ ; ρ] ⇓ V

(E : T ) [θ ; ρ] ⇓ V
E [θ ; ρ] ⇓ V

(fold E) [θ ; ρ] ⇓ fold V

E [θ ; ρ] ⇓ V
〈l = E〉 [θ ; ρ] ⇓ 〈l = V 〉 (fn y.E) [θ ; ρ] ⇓ (fn y.E) [θ ; ρ] (λX.E) [θ ; ρ] ⇓ (λX.E) [θ ; ρ]

E [θ ; ρ, (rec f.E) [θ ; ρ]/f ] ⇓ V
(rec f.E) [θ ; ρ] ⇓ V

E [θ ; ρ] ⇓ V
pack (C,E) [θ ; ρ] ⇓ pack ([[θ]]C, V )

E1 [θ ; ρ] ⇓ V1 E2 [θ ; ρ] ⇓ V2

(E1, E2) [θ ; ρ] ⇓ (V1, V2)

∆i ` θ 6
.
= θi case I of ~B [θ ; ρ] ⇓ V

case I of (∆i; Γi . pat : θi 7→ Ei | ~B) [θ ; ρ] ⇓ V

∆i ` θ
.
= θi/(θ

′; ∆′i)
I [θ ; ρ] ⇓ V1

∆′i; [[θ′]]Γi ` V1 6
.
= [[θ′]]pat

case I of ~B [θ ; ρ] ⇓ V

case I of (∆i; Γi . pat : θi 7→ Ei | ~B) [θ ; ρ] ⇓ V

∆i ` θ
.
= θi/(θ

′; ∆′i)
I [θ ; ρ] ⇓ V1

∆′i; [[θ′]]Γi ` V1
.
= [[θ′]]pat/(θ′′; ρ′)

Ei [[[θ′′]]θ′ ; ρ, ρ′] ⇓ V

case I of (∆i; Γi . pat : θi 7→ Ei | ~B) [θ ; ρ] ⇓ V

Figure 7. Big-step semantics

We have two rules for evaluating applications: the first is for
a non-dependent application I1 E2 in an environment [θ; ρ]. We
first evaluate I1 in the given environment obtaining a closure
(fn y.E) [θ1 ; ρ1]. Then we evaluate E2 to a value V2 and finally
proceed to evaluate E in the extended environment [θ1 ; ρ1, V2/y]
where the meta-substitution θ1 remains unchanged. On the other
hand, when evaluating a dependent application I C in an environ-
ment [θ ; ρ], we evaluate I to a closure (λX.E) [θ1 ; ρ1]. We
now extend the meta-substitution θ with the binding [[θ]]C/X and
evaluate E in the extended environment [θ1, [[θ]]C/X ; ρ1] where
the computation environment ρ1 remains unchanged.

The most interesting cases are those for case-expressions. A
branch may be skipped if either the type of the scrutinee and

the type of the pattern are not compatible, i.e. the current meta-
substitution and the refinement substitution in the given branch do
not unify, or if the types are compatible then the scrutinee itself
may still be incompatible with the pattern of the current branch.
Evaluating a case expression, we first evaluate the scrutinee I
in the current environment [θ ; ρ] to some value V1. Next, we
check that the current meta-substitution θ is unifiable with the
refinement substitution θi of the given branch. This is written as
∆i ` θ

.
= θi/(θ

′ ; ∆′i) and θ′ is the result of unifying θ with
θi s.t. θ = [[θ′]]θi and θ′ is a substitution which maps contextual
variables from ∆i to ∆′i. Unifying the contextual substitutions
ensures that the type of the scrutinee and the type of the pattern are
compatible. Next, we check that the pattern is compatible with the

9



V : T Value V has type T

· ` θ ⇐ ∆ ρ : [[θ]]Γ ∆; Γ ` F ⇐ T

F [θ ; ρ] : [[θ]]T
· ` C ⇐ U
C : U unit : Unit

V : Ti where li : Ti ∈
−−→
l : T

〈li = V 〉 : 〈
−−→
l : T 〉

T = µZ.λ ~X. S V : [T/Z][[ ~C/ ~X]]S

fold V : T ~C

V : T
V : C = C ∧ T

· ` C ⇐ U V : [[C/X]]T

pack (C, V ) : ΣX:U.T

V1 : T1 V2 : T2

(V1, V2) : T1 × T2

L : T Closure L has type T

· ` θ ⇐ ∆ ρ : [[θ]]Γ ∆; Γ ` E ⇐ T or ∆; Γ ` E ⇒ T

E [θ ; ρ] : [[θ]]T

ρ : Γ Environment ρ has domain Γ

· : ·
ρ : Γ W : T

(ρ,W/y) : Γ, y:T

Figure 6. Value and closure typing

value of the scrutinee. Before matching the value of the scrutinee
against the the pattern, we apply the contextual substitution θ′ to
the pattern pat and also to the variables listed Γi which occur in
the pattern. The result will be a contextual substitution θ′′ for the
meta-context ∆′i and a substitution ρ′ for actual pattern variables
from [[θ′]]Γi. Finally, the body of the branchEi is evaluated. Recall
that if the overall case-expression has type T in a meta-context
∆ and computation context Γ, then Ei has type [[θi]]T in a meta-
context ∆i and computation context [[θi]]Γ,Γi. Therefore, we will
now evaluate Ei in the contextual environment [[θ′′]]θ′ and extend
the computation environment ρ with the new bindings in ρ′.

We now proceed to prove subject reduction which guarantees
that types are preserved during evaluation.

Theorem 4.2 (Subject reduction). Let L : T . If L ⇓ V then V : T .

Proof. Structural induction on L ⇓ V .

To prove progress, we follow Cousot and Cousot [1992] and
Leroy and Grall [2009] and extend our big-step operational seman-
tics to allow for non-terminating computations. In addition to the
judgment E [θ ; ρ] ⇓ V we also allow for diverging computation
using the judgment E [θ ; ρ] ⇓∞. For example, the diverging eval-
uation rules for products are shown below:

E1 [θ ; ρ] ⇓∞

(E1, E2) [θ ; ρ] ⇓∞
E1 [θ ; ρ] ⇓ V1 E2 [θ ; ρ] ⇓∞

(E1, E2) [θ ; ρ] ⇓∞

These rules should be read coinductively. We note that matching
described by .

= and the substitution operation do not lead to non-
termination in our operational semantics.

Lemma 4.3 (Canonical Forms).

1. If V : T → S then V is of the form: (fn y.E) [θ ; ρ]
2. If V : ΠX:U.T then V is of the form: (λX.E) [θ ; ρ]

Proof. By inversion on value typing.

Assuming that patterns cover all cases, we finally can state and
prove progress.

Theorem 4.4.
If L : T and for all values V , ¬L ⇓ V then L ⇓∞

Proof. (Classical) By coinduction and case analysis on the typing
derivation, appealing to canonical forms.

Corollary 4.5 (Progress).
If L : T then either L ⇓ V or L ⇓∞.

5. Mechanization
We have mechanized the proofs of the subject reduction and
progress theorems presented in Section 4.4 in the Coq proof assis-
tant. The development is approximately 800 lines of specification
and under 500 lines of proof. We refer the interested reader to the
supplementary material for this paper for the Coq proofs.

We do not formalize contextual LF. Rather, the proofs are ab-
stract over the domain of meta-termsC and meta-types U . We need
only assume that they behave well with meta-substitution and that
pattern matching for C is decidable. This demonstrates our point
that the computation language forms a general core for dependently
typed languages parametric over the domain C.

We use the fresh look approach to binding due to Pouillard
and Pottier [2010], which is an abstract interface to well-scoped de
Brujin indices. Informally we found that the additional abstraction
pushed us to towards a more high-level algebraic approach relying
heavily on simultaneous substitutions in place of low level de
Bruijn shifting.

A natural question to ask is why we did not choose to for-
malize the language in a system with built-in support for binding
and substitution such as Beluga. One answer is that Beluga is cur-
rently lacking the recursive types we propose here. We would ar-
gue that the computation language is best represented as a recur-
sive type, since the syntax contains meta-substitutions θ, which are
conveniently represented as computational functions #tm[ψ] ->
tm[φ] which cannot be written in LF. In fact we never perform
substitutions on computation level expressions, hence the lack of
substitution for free is moot.

6. Related Work
Over the past two decades, programming language researchers have
been investigating language-based approaches to design safe and
reliable software. Our work draws on and combines two domains:
programming with binders and programming with indexed types.

Our work follows the tradition of indexed types [Xi and Pfen-
ning 1999; Zenger 1997] where we separate the index domain
of types from the computation-language. This has several known
advantages: it is easy to allow state, exceptions, and polymor-
phism. Moreover, we are not restricted to total functions as in full
dependently-typed languages such as Coq [Bertot and Castéran
2004] or Agda [Norell 2007]. However, since we can pattern match
on index objects, we cannot naively erase them.

Most closely related to our work is the work by Chen and Xi
[2005]; Xi [2004] and Sarkar [2009]. The ATS system designed
by Xi and collaborators [Xi 2004] allows programmers to specify
formal systems within the logical framework LF and embed LF ob-
jects as indices in computation-level types (see [Donnelly and Xi
2005]). The programmer can then supply her own proofs witness-
ing the equality between two objects when automatic constraint
solving in ATS fails. However, the major challenge when manip-
ulating and traversing LF objects is that we will encounter open LF
objects, i.e. LF objects which may contain “free” variables. Unfor-
tunately, ATS does not provide support for manipulating such open
LF objects. To support certified programming, Sarkar [2009] pro-
posed ML/LF which extended an ML-like language with LF as an
index domain. To allow programming with open LF objects, he pro-
poses to reify the dynamic assumptions which arise when travers-
ing a binder and manipulate their representatives explicitly. This
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requires an extension of LF with Sigma-types and unit to model
contexts and their dependencies. In contrast, our work builds on
contextual LF [Pientka 2008] and explicitly supports contexts and
parameter variables and types for them. This allows us to express
strong invariants by for example stating that we map variables from
a context to variables to another context which seems difficult in
Sarkar’s approach, since there is no guarantee by the underlying
type system that we are only storing and manipulating variables in
the reified context.

Westbrook et al. [2005] also suggests to index types with LF
objects in a type-safe functional language to support programming
with proofs in the presence of unrestricted recursion and imperative
features while retaining decidable type checking. However their
work restricts LF to the first-order fragment and explicitly forbids
λ-abstractions. As a consequence, encodings based on higher-order
abstract syntax are not supported.

In recent years, we have also made substantial advances in pro-
gramming with binders. We build on the idea of contextual types
which is central to Beluga [Pientka 2008]; however so far, Beluga
and similar systems such as Delphin [Poswolsky and Schürmann
2008] are limited to only manipulating contextual LF objects. We
take it in this paper one step further of allowing contextual objects
and contexts as indices to computation-level types. Recently, Li-
cata and Harper [2009] has proposed a system where one can mix
computation functions and binding abstractions; this builds on their
earlier ideas in Licata et al. [2008]. A prototype based on these
ideas is implemented as a library within Agda and has been used
to for example implement normalization by evaluation. Structural
properties such as weakening or substitution do however not hold
in general, but they can be implemented generically. While [Li-
cata and Harper 2009] demonstrate convincingly that their library
within Agda elegantly supports programming with binders, it is less
clear whether their prototype will scale to support dependent types
and meta-reasoning. It is also remarkable that we do not need to
fully mix LF function space with the function space for computa-
tions to implement normalization-by-evaluation.

Taking a broader view on programming with binders, our work
also seems superficially similar to Pouillard and Pottier [2010]
where the authors describe an Agda library to support safe pro-
gramming with names. The fundamental idea is to index terms with
a world which names inhabit. When traversing a binding construct,
we build up a chain of worlds which is similar to our context. How-
ever, it is unclear whether their work scales to support dependent
types and hence encoding proofs and meta-reasoning. We hope that
the presented work will enable us to shed further light on the rela-
tionship between nominal systems and LF-style encodings.

An interesting application of the presented work is its use as a
tactic language for an interactive theorem prover. Stampoulis and
Shao [2010] for example propose a language VeriML where we
write computations about λHOLind, a higher-order logic with in-
ductive definitions. At this point, VeriML only allows direct pat-
tern matching on λHOLind objects, but does not allow in general
computation-level types to be indexed with λHOLind objects. As
a consequence, recursive types in VeriML cannot be dependently
typed. Our approach of adding dependently-typed inductive types
to the computation language is directly applicable to their work and
would add additional flexibility to their language.

Our work takes inspiration of the work on inductive definitions
in proof theory, in particular the work by McDowell and Miller
[2002] and more recently Baelde et al. [2010]; Gacek et al. [2008]
which targets reasoning about higher-order abstract syntax repre-
sentations. Our addition of recursive types in Belugaµ gives us ef-
fectively the same power as fixpoint definitions in their work. To
facilitate reasoning about HOAS representations, Miller and his
collaborators have extended the logic itself with the ∇-quantifier

which allows generic quantification. Contexts must be modelled
and reasoned about explicitly. In contrast, our work allows us to re-
main in first-order logic by generalizing the term language to allow
for contextual meta-objects and contexts. This allows us to parame-
terize our recursive types over contexts and provide explicit support
for reasoning about contexts. We believe the described work is an
important step of understanding the differences and similarities be-
tween the approaches based on proof theory on the one hand and
the approaches grounded in type theory on the other hand.

7. Conclusion and future work
We presented a type-theoretic foundation for programming with
binders and indexed data-types. In particular, we have shown how
to add indexed recursive types to the Beluga language and proven
the extension to be type safe. We have also mechanized the type
safety proof in Coq.

There are however more general lessons: we have streamlined
earlier presentations of Beluga by separating meta-objects from
computations. This has two important consequence: first, our com-
putation language becomes modular; we can in fact easily replace
contextual objects by another decidable index domain. Second, our
modular approach lays the groundwork for adding contextual ob-
jects to other languages richer than the ML-like computation lan-
guage we used in this paper, such as Agda.

In this paper, we have concentrated on programming with
binders and indexed data-types, however frameworks such as Bel-
uga are also proof development environments. To use the presented
language as a core language for a proof assistant, we need to guar-
antee that the implemented functions are total, i.e. all cases are
covered and the functions themselves are terminating. We believe
coverage checking can be solved by extending prior work on cov-
erage checking contextual objects [Dunfield and Pientka 2009;
Schürmann and Pfenning 2003]. Termination checking requires us
to identity a suitable notion of acceptable inductive datatypes, e.g.
based on strict positivity as in Coq [Paulin-Mohring 1993], and we
plan to adapt sized types as for example in Abel [2007, 2006] in
the future.
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A. Hereditary substitution

Meta-substitution for terms

[[C/X]]U (λx.M) = λx.M ′ where [[C/X]]U (M) = M ′

[[C/X]]U (u[σ]) = R′ where [[C/X]]U (σ) = σ′ and
[[C/X]]U = [[Ψ̂.R/u]]P [Ψ]

and [σ′]Ψ(R) = R′

[[C/X]]U (u[σ]) = u[σ′]′ where [[C/X]]U (σ) = σ′ and
[[C/X]]U 6= [[Ψ̂.R/u]]P [Ψ]

[[C/X]]U (RN) = R ′N ′ where [[C/X]]U (R) = R′

and [[C/X]]U (N) = N ′

[[C/X]]U (RN) = M ′′ : B
if [[C/X]]U (R) = λy.M ′ :Πx:A1.B where Πx:A1.B ≤ U

and N ′ = [[C/X]]U (N) and M ′′ = [N ′/y]A1(M ′)

[[C/X]]U (x) = x
[[C/X]]U (c) = c
[[C/X]]U (p[σ]) = R′ where [[C/X]]U (σ) = σ′ and

[[C/X]]U = [[Ψ̂.R/p]]#A[Ψ]

and[σ′]Ψ(R) = R′

[[C/X]]U (p[σ]) = M ′ : A where [[C/X]]U (σ) = σ′

[[C/X]]U = [[Ψ̂.R/p]]#A[Ψ]

and [σ′]Ψ(R) = M ′ : A
[[C/X]]U (p[σ]) = p[σ′] where [[C/X]]U (σ) = σ′ and

[[C/X]]U 6= [[Ψ̂.R/p]]#A[Ψ]

Meta-substitution for substitutions

[[C/X]]U (·) = ·
[[C/X]]U (idψ) = σ where [[C/X]]U = [[Ψ/ψ]]G

and id(Ψ) = σ
[[C/X]]U (idψ) = idψ where [[C/X]]U 6= [[Ψ/ψ]]G
[[C/X]]U (σ,M) = σ′,M ′ where [[C/X]]U (σ) = σ′ and

[[C/X]]U (M) = M ′

[[C/X]]U (σ;x) = σ′;x where [[C/X]]U (σ) = σ′

Meta-substitution for context

[[C/X]]U (·) = ·
[[C/X]]U (ψ) = Ψ where [[C/X]]U = [[Ψ/ψ]]G
[[C/X]]U (ψ) = ψ where [[C/X]]U 6= [[Ψ/ψ]]G
[[C/X]]U (Ψ, x:A) = Ψ′, x:A′ where [[C/X]]U (Ψ) = Ψ′

and [[C/X]]U (A) = A′

B. Examples
B.1 Closure conversion

tm : type .
lam: (tm → tm) → tm.
app: tm → tm → tm.

schema ctx = tm;

envr : type .
ctm : type .
clam : (envr → ctm) → ctm.
proj : envr → nat → ctm.
close : ctm → envr → ctm.
open : ctm → (env → ctm → ctm) → ctm
nil : envr.
create : envr → ctm.
snoc : envr → ctm → envr.

schema cctx = ctm;

rec addProjs : (φ:cctx) (N:nat[]) (M:cexp[φ,e:envr])
→ cexp[e:envr] =
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λ φ ⇒ λ N ⇒ λ M ⇒ case φ of
| [] ⇒ [e:envr]. M e
| φ,x:ctm ⇒ addProjs φ (s N) (φ,e. M .. (proj e N) e)

rec ctxToEnv : (φ:cctx) envr[φ] =
λ φ ⇒ case φ of
| [] ⇒ []. nil
| φ,x:ctm ⇒ let φ. env .. = ctxToEnv φ in
φ,x:ctm. snoc (env ..) x

datatype ctx_rel : ctx → cctx → ctype
| rnil : ctx_rel [] []
| rsnoc : {ψ φ} → ctx_rel ψ φ
→ ctx_rel (ψ,x:tm) (φ,x:ctm)

rec conv : {ψ:ctx} (φ:cctx) → ctx_rel ψ φ→ tm[ψ]
→ ctm[φ] =

λ φ ⇒ fn cr ⇒ fn m ⇒ case m of
| ψ’,x. x ⇒ let rsnoc {φ = φ’,x} _ = cr in φ’,x. x
| ψ’,x. #p .. ⇒ let rsnoc {φ = φ’,x} cr’ = cr in

let φ’. M .. = conv _ cr’ (ψ’. #p ..) in φ’,x. M ..
| ψ. lam (λx. M .. x) ⇒

let φ, x. M’ .. x = conv _ (rsnoc cr) (ψ,x. M .. x) in
let [ev:envr]. M’’ ev = addProjs (φ,x) z (φ, x:ctm, ev:

envr. M’ .. x) in
let φ. Env .. = ctxToEnv φ in
φ. close (clam (λev. M’’ ev)) (Env ..)

| ψ. app (M ..) (N ..) ⇒
let φ. M’ .. = conv _ cr (ψ. M ..) in
let φ. N’ .. = conv _ cr (ψ. N ..) in
φ. open (M’ ..)

(λenv. λf. capp f (create (snoc env (N’ ..))))

B.2 Normalization by Evaluation

atomic_tp : type .
tp : type .
atomic : atomic_tp → tp.
arr : tp → tp → tp.

tm : tp → type .
app : tm (arr T S) → tm T → tm S.
lam : (tm T → tm S) → tm (arr T S).

schema tctx = some [T:tp] tm T;

neut : tp → type .
norm : tp → type .
nlam : (neut T → norm S) → norm (arr T S).
rapp : neut (arr T S) → norm T → neut S.
embed : neut (atomic P) → norm (atomic P).

schema ctx = some [T:tp] neut T;

type sub ψ φ = {T:tp[]} → #(neut T)[ψ] → #(neut T)[φ]

datatype sem : ctx → tp[] → ctype =
| syn : {ψ} {P:atomic_tp[]}
→ (neut (atomic P))[ψ] → sem ψ (atomic P)

| slam : {ψ A B} ({φ} → sub ψ φ → sem φ A → sem φ B)
→ sem ψ (arr A B)

rec subst:{ψ φ S} → sub ψ φ → sem ψ S → sem φ S =
fn σ ⇒ fn e ⇒ case e of
| syn (ψ. R ..) ⇒ nsubst σ (ψ. R ..)
| slam f ⇒ slam (fn σ’ ⇒ fn s ⇒ f (σ’ ◦ σ) s)

rec nsubst : {ψ φ S} → sub ψ φ → (neut S)[ψ]
→ (neut S)[φ] =

fn σ ⇒ fn e ⇒ case e of
| ψ. #p .. ⇒ σ (ψ. #p ..)
| ψ. rapp (R ..) (N ..) ⇒

let φ. R’ .. = nsubst σ (ψ. R ..) in
let φ. N’ .. = nosubst σ (φ. N ..) in
φ. rapp (R’ ..) (N’ ..)

rec nosubst : {ψ φ S} → sub ψ φ → (norm S)[ψ]
→ (norm S)[φ] =

fn σ ⇒ fn e ⇒ case e of
| ψ. embed (R ..) ⇒

let φ. R’ .. = nsubst σ (ψ. R ..) in
φ. embed (R’ ..)

| ψ. nlam (λx. N .. x) ⇒
let φ,x:neut _. N’ .. x = nosubst

(fn y ⇒ case y of
| ψ,x:neut _. x ⇒ φ,x:neut _. x
| ψ,x:neut _. #p .. ⇒

let φ. #q .. = σ (ψ. #p ..) in
φ,x:neut _. #q ..

) (ψ,x:neut _. N .. x) in
φ. nlam (λx. N’ .. x)

We remark that if we add the type ψ[φ] of substitutions [Pien-
tka 2008] to the domain of contextual objects then the above im-
plementations of nsubst and nosubst could take advantage of
substitution-for-free by first writing a conversion function of type
{ψ φ} → sub ψ φ → ψ[φ].

rec reflect : (ψ A) (R:(neut A)[ψ]) → sem ψ A =
λ ψ ⇒ λ A ⇒ λ R ⇒ case []. A of
| []. atomic P ⇒ syn (ψ. R ..)
| []. arr T S ⇒ slam (λ {φ} ⇒ fn σ ⇒ fn s ⇒

let φ. R’ .. = nsubst σ (ψ. R ..) in
let φ. N .. = reify _ T s in
reflect _ S (φ. rapp (R’ ..) (N ..)))

rec reify : (ψ A) → sem ψ A → (norm A)[ψ] =
λ ψ ⇒ λ A ⇒ fn s ⇒ case []. A of
| []. atomic P ⇒ let syn (ψ. R ..) = s

in ψ. embed (R ..)
| []. arr T S ⇒ let slam f = s in

let ψ,x:tm T. E .. x =
reify (f weaken (reflect _ T (ψ,x:neut T. x)))

in ψ. nlam (λx. E .. x)

rec weaken : {ψ:ctx} {S:tp[]} → sub ψ (ψ,x:tm S) =
fn y ⇒ case y of
| ψ. #p .. ⇒ ψ,x:neut _. #p ..

rec eval : {ψ φ S} →
→ ({T} #(tm T)[ψ] → sem φ T)
→ (tm S)[ψ] → sem φ S =

fn r ⇒ fn σ ⇒ fn e ⇒ case e of
| ψ. #p .. ⇒ σ (ψ . #p .. )
| ψ. lam (λx. E .. x) ⇒ slam (fn σ’ ⇒ fn s ⇒

eval (extend ((subst σ’) ◦ σ) s) (ψ,x. E .. x)
| ψ. app (E1 ..) (E2 ..) ⇒

let slam f = eval σ (ψ. E1 ..) in
f id (eval σ (ψ. E2 ..))

rec extend : {ψ:tctx} {φ:ctx} {S}
→ ({T} → #(tm T)[ψ] → sem φ T) → sem φ S
→ ({T} → #(tm T)[ψ,x:tm S] → sem φ T) =

fn σ ⇒ fn s ⇒ fn y ⇒ case y of
| ψ,x:tm S. ⇒ s
| ψ,x:tm S. #p .. ⇒ σ (ψ. #p ..)

rec nbe : {A} → (tm A)[ ] → (norm A)[ ] =
fn e ⇒ reify [] A (eval (fn y ⇒ impossible y) e)
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