Skip to content. Skip to navigation
McGill Home SOCS Home
Personal tools
You are here: Home Research Publications

Research Areas
Research Labs
Workshops
Publications
Technical Reports

All Publications

(Publications ordered by researcher or supervisor's last name)

Godfried Toussaint

[1] 2012. Click below for a complete listing of publications.
[ .html ]
[2] Liu, Y., and Toussaint, G. T. A tessellation-transformation method for categorizing and generating geometric textile design patterns. Design Principles and Practices, 2008, v. 2, n. 4, pp. 101-112.
[3] Francisco Gomez, P. T., and Toussaint, G. Convergence of the shadow sequence of inscribed polygons. In Proceedings of the 18th Fall Workshop on Computational Geometry, Troy, New York. Rensselaer Polytechnic Institute, October 2008, pp. 10-11.
[4] Khoury, I., Toussaint, G. T., Ciampi, A., Antoniano, I., Murie, C., and Nadon, R. Proximity-graph-based tools for DNA clustering, v. 4. August 2008. Pro-Z.
[5] Thul, E., and Toussaint, G. T. Rhythm complexity measures: A comparison of mathematical models of human perception and performance. In Proc. 9th Iternational Conference on Music Information Retrieval, Philadelphia, PA. September 2008.
[6] ORourke, J., Taslakian, P., and Toussaint, G. T. A pumping lemma for homometric rhythms. August 2008, pp. 99-102.
[7] Thul, E., and Toussaint, G. A comparative phylogenetic analysis of african timelines and north indian talas. In The 11th Annual Bridges Conference, July 2008.
[8] Guastavino, C., Toussaint, G., Gomez, F., Marandola, F., and Absar, R. Rhythmic similarity in flamenco music: comparing psychological and mathematical measures. In Proceedings of the Fourth Conference on Interdisciplinary Musicology (CIM08), Thessaloniki, Greece. July 2008, pp. 76-77.
[9] Agarwal, P., Hurtado, F., Toussaint, G. T., and Trias, J. On polyhedra induced by point sets in space. Discrete Applied Mathematics, 2008, v. 156, pp. 42-54.
[10] Guastavino, C., Marandola, F., Toussaint, G., Gomez, F., and Absar, R. Perception of rhythmic similarity in flamenco music: comparing musicians and non-musicians. In Proceedings of the Fourth Conference on Interdisciplinary Musicology (CIM08), Thessaloniki, Greece. July 2008, pp. 74-75.
[11] Aloupis, G., Demaine, E., Langerman, S., Morin, P., ORourke, J., Ileana, Streinu, and Toussaint, G. T. Edge-unfolding nested polyhedral bands. Computational Geometry: Theory and Applications, 2008, v. 39, pp. 30-42.
[12] Liu, Y., and Toussaint, G. T. A tessellation-transformation method for categorizing and generating geometric textile design patterns, January 2008.
[13] Thul, E., and Toussaint, G. T. Analysis of musical rhythm complexity measures in a cultural context. In Desai, B. C., editor, Proceedings of the Canadian Conference on Computer Science and Software Engineering, Montreal, Canada. Concordia University, May 2008, pp. 1-9.
[14] Toussaint, G. T. Computational tools for generating salient musical rhythms: What makes a Good Rhythm good?, January 2008. Design Conference 2008:Second International Conference on Design Principles and Practices.
[15] Thul, E., and Toussaint, G. T. On the relation between rhythm complexity measures and human rhythmic performance. In Desai, B. C., editor, Proceedings of the Canadian Conference on Computer Science and Software Engineering, Montreal, Canada. Concordia University, May 2008, pp. 199-204.
[16] Gomez, F., Taslakian, P., and Toussaint, G. T. Evenness preserving operations on musical rhythms. In Desai, B. C., editor, Proceedings of the Canadian Conference on Computer Science and Software Engineering, May 2008, pp. 121-123.
[17] Deflating the pentagon, 2008. Proceedings of KyotoCGGT-2007, The Kyoto International Conference on Computational Geometry and Graph Theory (in honor of Jin Akiyama and Vasek Chvatal).
[18] Demaine, E. D., Gassend, B., O'Rourke, J., and Toussaint, G. T. Polygons flip finitely...right. 2008, v. 453, pp. 231-255. In J. E. Goodman, J. Pach and R. Pollack, editors, Contemporary Mathematics, Proceedings of the Snowbird Conference on Discrete and Computational Geometry: Twenty Years Later.
[19] Toussaint, G. T. Computational geometric aspects of rhythm and melody. Computational Geometry: Theory and Applications, January 2007.
[20] Diaz-Banez, J.-M., Gomez, F., and Toussaint, G. Computational analysis of flamenco music. In 4th International Workshop on Computational Music Theory, Barcelona, Spain,. Escola Superior de Musica de Catalunya, July 2007.
[21] Toussaint, G. T. New measures for comparing musical sequences. In 4th International Workshop on Computational Music Theory, Barcelona, Spain. Escola Superior de Musica de Catalunya, July 2007.
[22] Gomez-Martin, F., Taslakian, P., and Toussaint, G. Distance-geometric properties of euclidean rhythms. In The Kyoto International Conference on Computational Geometry and Graph Theory (in honor of Jin Akiyama and Vasek Chvatal), Kyoto, Japan. June 2007.
[23] Khoury, I., Ciampi, A., Toussaint, G., Antoniano, I., Murie, C., and Nadon, R. Proximity-graphs-based clustering of micro-array probes. June 2007.
[24] Toussaint, G. T. Elementary proofs of the hexachordal theorem. In Special Session on Mathematical Techniques in Music Analysis - I, 113th Annual Meeting of the American Mathematical Society, New Orleans, U.S.A. January 2007.
[25] Colannino, J., Damian, M., Hurtado, F., Langerman, S., Meijer, H., Ramaswami, S., Souvaine, D., and Toussaint, G. T. Efficient many-to-many point matching in one dimension. Graphs and Combinatorics, June 2007, v. 23, pp. 169-178. Computational Geometry and Graph Theory, The Akiyama-Chvatal Festschri.
[26] Demaine, E. D., Demaine, M. L., Taslakian, P., and Toussaint, G. Sand drawings and gaussian graphs. Journal of Mathematics and the Arts, June 2007, v. 1, n. 2, pp. 125-132.
[27] Gomez, F., Khoury, I., and Toussaint, G. Perception-based rhythmic transformations. In Proceedings of the Acoustics Week in Canada, Montreal, Quebec. Concordia University, Canadian Acoustics, October 2007.
[28] Absar, R., Gomez, F., Guastavino, C., Marandola, F., and Toussaint, G. T. Perception of meter similarity in flamenco music. In Proceedings of the Acoustics Week in Canada, Montreal, Quebec. Concordia University, Canadian Acoustics, October 2007.
[29] Gomez, F., Thul, E., and Toussaint, G. T. An experimental comparison of formal measures of rhythmic syncopation. In Proceedings of the International Computer Music Conference, Holmen Island, Copenhagen. August 2007, pp. 101-104.
[30] Aloupis, G., Ballinger, B., Bose, P., Damian, M., Demaine, E., Demaine, M., Flatland, R., Hurtado, F., Langerman, S., O'Rourke, J., Taslakian, P., and Toussaint, G. T. Vertex pops and popturns. In Proceedings of the 19th Canadian Conference on Computational Geometry (CCCG2007), Ottawa, Canada. Carleton University, August 2007, pp. 137-140.
[31] Gomez, F., Khoury, I., Kienzle, J., McLeish, E., Melvin, A., Perez-Fernandez, R., Rappaport, D., and Toussaint, G. T. Mathematical models for binarization and ternarization of musical rhythms. In Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, San Sebastian, Spain. July 2007, pp. 99-108.
[32] Aloupis, G., Fevens, T., Langerman, S., Matsui, T., Mesa, A., Nunez, Y., Rappaport, D., and Toussaint, G. Algorithms for computing geometric measures of melodic similarity. Computer Music Journal, 2006, v. 30, n. 3, pp. 67-76.
[33] Toussaint, G. T. A comparison of rhythmic dissimilarity measures. FORMA, November 2006, v. 21, n. 2, pp. 129-149.
[34] Colannino, J., Damian, M., Hurtado, F., Iacono, J., Meijer, H., Ramaswami, S., and Toussaint, G. T. An O(n log n)-time algorithm for the restriction scaffold assignment problem. Journal of Computational Biology, May 2006, v. 13, n. 4, pp. 979-989.
[35] Taslakian, P., and Toussaint, G. T. Geometric properties of musical rhythm. In Proceedings of the16th Fall Workshop on Computational and Combinatorial Geometry, Northampton, Massachussetts. Smith College, November 2006.
[36] Demaine, E., Gassend, B., O'Rourke, J., and Toussaint, G. T. Polygons flip finitely: flaws and a fix. In Proceedings of the 18th Canadian Conference on Computational Geometry, Kingston, Ontario, Canada. Queen's University, August 2006, pp. 109-112.
[37] Damian, M., Demaine, E. D., Demaine, M. L., Dujmovic, V., El-Khechen, D., Flatland, R., Iacono, J., Langerman, S., Meijer, H., Ramaswami, S., Souvaine, D. L., Taslakian, P., and Toussaint, G. T. Curves in the sand: algorithmic drawing. In Proceedings of the 18th Canadian Conference on Computational Geometry, Kingston, Ontario, Canada. Queen's University, August 2006, pp. 11-14.
[38] Teitelbaum, J., and Toussaint, G. T. Rhythmos: an interactive system for exploring rhythm from the mathematical and musical points of view. In Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, London, United Kingdom. August 2006, pp. 541-548.
[39] Demaine, E., Demaine, M., Taslakian, P., and Toussaint, G. T. Sand drawings and Gaussian graphs. In Proceedings of the 9th Annual Conference of BRIDGES: Mathematical Connections in Art, Music, and Science (BRIDGES 2006), London, England. August 2006, pp. 79-88.
[40] Colannino, J., Gomez, F., and Toussaint, G. T. Steve Reich's clapping music and the Yoruba bell timeline. In Proceedings of the 9th Annual Conference of BRIDGES: Mathematical Connections in Art, Music, and Science (BRIDGES 2006), London, United Kingdom. August 2006, pp. 49-58.
[41] Bremner, D., Chan, T. M., Demaine, E. D., Hurtado, F., Langerman, J. I. S., and Taslakian, P. Necklaces, convolutions, and x+y. In Proceedings of the 14th Annual Symposium on Algorithms, Zurich, Switzerland. September 2006, pp. 160-171. (supervised Ph.D. student Perouz Taslakian).
[42] Toussaint, G. T. Classification and phylogenetic analysis of african rhythm timelines. Musicae Scientiae, April 2005.
[43] Aloupis, G., Demaine, E., Langerman, S., Morin, P., Streinu, J. O. I., and Toussaint, G. T. Edge-unfolding nested polyhedral bands. Computational Geometry: Theory and Applications, 2004.