Skip to content. Skip to navigation
McGill Home SOCS Home
Personal tools
You are here: Home People Profile

Adrian Vetta


photo

Email: vetta AT cs DOT mcgill DOT ca
Home Page: http://www.math.mcgill.ca/~vetta/
Office: BURN1118
Phone: +1-514-398-3822
Fax: +1-514-398-3883
Address:

Research Description

Algorithmic game theory; combinatorial oprimisation; approximation algorithms; graph theory; discrete mathematics.

Research Interests

Research Labs

Teaching

Selected Publications (click link in front of each publication to see bibtex in ASCII format)

[1] Farzad, B., Olver, N., and Vetta, A. A priority-based model of routing. Chicago Journal of Theoretical Computer Science, 2008. Article #1, 29 pages.
[2] Drescher, M., and Vetta, A. An approximation algorithm for the maximum leaf spanning arborescence problem. ACM Transactions on Algorithms, 2008. In Press.
[3] Fiorini, S., Hardy, N., Reed, B., and Vetta, A. Planar graph bipartization in linear time. Discrete Applied Mathematics, 2008, v. 156, n. 7, pp. 1175-1180.
[4] Fiorini, S., Hardy, N., Reed, B., and Vetta, A. Planar graph bipartization in linear time. Discrete Applied Mathematics, 2008, v. 156, n. 7, pp. 1175-1180.
[5] Donovan, P., Shepherd, B., Vetta, A., and Wilfong, G. Bifurcated network flows. In Proceedings of 39th Symposium on Theory of Computing (STOC), 2007.
[6] Chen, J., Kleinberg, R. D., Lovász, L., Rajaraman, R., Sundaram, R., and Vetta, A. (almost) tight bounds and existence theorems for single-commodity confluent flows. Journal of the ACM, July 2007, v. 54, n. 4.
[7] Cheriya, J., and Vetta, A. Approximation algorithms for network design with metric costs. SIAM Journal on Discrete Mathematics, 2007, v. 21, n. 3, pp. 612-636.
[8] Addario-Berry, L., Olver, N., and Vetta, A. A polynomial-time algorithm for finding nash equilibria in planar win-lose games. Journal of Graph Algorithms and Applications, 2007, v. 11, n. 1, pp. 309-319.
[9] Shepherd, B., and Vetta, A. The demand-matching problem. Mathematics of Operations Research, August 2007, v. 32, pp. 563-578.
[10] King, A. D., Reed, B. A., and Vetta, A. R. An upper bound for the chromatic number of line graphs. European Journal of Combinatorics, 2007, v. 28, n. 8.
[11] Fiorini, S., Hardy, N., Reed, B., and Vetta, A. Approximate min-max relations for odd cycles in planar graphs. Mathematical Programming B, 2007, v. 110, n. 1, pp. 71-91.
[12] Bárány, I., Vempala, S., and Vetta, A. Nash equilibria in random games. Random Structures and Algorithms, 2007, v. 31, n. 4, pp. 391-405.
[13] Donovan, P., Shepherd, B., Vetta, A., and Wilfong, G. Bifurcated network flows. In Proceedings of 39th Symposium on Theory of Computing (STOC), 2007, pp. 681-688.
[14] J.Cheriyan, Vempala, S., and Vetta, A. Network design via iterative rounding of setpair relaxations. Combinatorica, 2006, v. 26, n. 3, pp. 255-275.
[15] Fiorini, S., Hardy, N., Reed, B., and Vetta, A. Approximate min-max relations for odd cycles in planar graphs. Journal of Mathematical Programming Series B, January 2006.
[16] J.Cheriyan, and Vetta, A. Approximation algorithms for network design with metric costs. SIAM Journal on Discrete Mathematics, February 2006.
[17] King, A., Reed, B., and Vetta, A. An upper bound for the chromatic number of line graphs. European Journal of Combinatorics, March 2006.
[18] Shepherd, B., and Vetta, A. The demand matching problem. Mathematics of Opertaions Research, July 2006.
[19] S.Fiorini, N.Hardy, B.Reed, and A.Vetta. Planar graph bipartization in linear time. Discrete Applied Mathematics, November 2005.

Last Update:   2013/08/05 08:48:38.039 GMT-4