
COMP-202A: Foundations of Programming

McGill University, Fall 2016

Course Details

Instructor: Melanie Lyman-Abramovitch
Office: McConnell Engineering Building (MC) 328
Office hours: M : 10-11:30 (or by appointment)

Section 1 Contact info: melanie.lyman-abramovitch@mail.mcgill.ca

Lecture room: Adams Auditorium
Class times: MWF 8:35-9:25
Instructor: Kaleem Siddiqi
Office: McConnell Engineering Building (MC) 420
Office hours: T 10:00–11:30 (or by appointment)

Section 2 Contact info: siddiqi@cim.mcgill.ca

Lecture room: Stuart Bio S1/4
Class times: TR 8:35-9:55
Instructor: Dan Pomerantz
Office: McConnell Engineering Building (MC) 328
Office hours: W 14:30-16:00 (or by appointment)

Section 2 Contact info: dpomer@cs.mcgill.ca

Lecture room: Strathcona (SADB) M-1
Class times: MWF 4:35-5:25pm

Important Link

• myCourses : http://www.mcgill.ca/lms/

Contacting Instructors and Teaching Assistants

Post all your questions about assignments on the myCourses message boards so everyone can see both the
questions and the answers. You may freely answer other students’ questions as well, with one important
exception: you may not provide solution code (although you are permitted to provide one or two lines of
code to illustrate a point). Of course, you can send e-mail to a teaching assistant or instructor directly for
private matters; to that end, you may use the e-mail facilities provided by McGill or any e-mail account you
have with any e-mail provider.

Students are expected to monitor their McGill e-mail account and myCourses for course-
related news and information.

Course Description

Welcome to COMP-202! Please read this document carefully and keep it for reference throughout the
term.

1



This course introduces students to computer programming and is intended for those with little or no back-
ground in the subject. No knowledge of computer science in general is necessary or expected. On the other
hand, basic computer skills such as browsing the Web, sending e-mail, creating documents with a word
processor, and other such fundamental tasks will be a valuable asset in this course.

The course uses the Java programming language. Java is an example of an object-oriented language (as is
C++ and many others). We will see what this term means later in the course. Other kinds of programming
languages include functional and logical programming languages. Despite these differences, there are some
basic building blocks in all languages that are fundamental to programming and software development. A
large part of this course will focus on these basic building blocks before we move to object-oriented or other
language-specific concepts.

Learning how to program is not easy; it is not a set of facts that one can simply memorize. In principle, a
computer program is simply a set of instructions that tells a computer to perform a task. However, finding
the right set of instructions can be quite challenging. For that, one has to learn how to structure a larger
problem into small subsets, and then find the solution to each particular subset. This course aims to teach
students a way of thinking that will enable them to build non-trivial programs.

Primary Learning Objectives

By the end of this course, you will be able to:

• Design and describe precise, unambiguous instructions that can be used [by a computer] to solve a
problem or perform a task;

• Translate these instructions into a language that a computer can understand (Java);

• Write programs that solve complex problems by decomposing them into simpler subproblems;

• Apply programming-style conventions to make your programs easy to understand, debug and modify;

• Learn independently about new programming-language features and libraries, as you encounter them,
by reading documentation and by experimenting.

What this course is not about

This course is not about how to use a computer. It will not teach you how to send e-mail, browse the Web,
create word processing documents or spreadsheets, set-up and configure a computer, use specific software
applications (except those needed to complete coursework), design Web pages, or deal with operating system
or hardware problems. However, the course offers introductory tutorials that provide instruction in aspects
of computer usage necessary to complete coursework.

Course Prerequisites and Textbooks

Prerequisites:

• A CEGEP-level mathematics course or equivalent. For students who did not attend CEGEP, any upper-
level mathematics course is sufficient. However, attention to detail, rigour, and the ability to think in
an abstract manner is much more important than knowledge of calculus, algebra, or trigonometry.

Recommended textbooks:

• How to Think Like a Computer Scientist: Java Version, 4th edition. Allen B. Downey.

Available at no cost under the GNU Free Documentation License at:

http://www.greenteapress.com/thinkapjava/thinkapjava.pdf

2



Other references:

• Java Documentation. You can browse or download this from Oracle’s Web site. Use the documentation
appropriate for the Java version you are using.

– Java 6.0 Documentation: http://download.oracle.com/javase/6/docs/

– Java 7.0 Documentation: http://download.oracle.com/javase/7/docs/

– Java 8.0 Documentation: http://download.oracle.com/javase/8/docs/

• The Java Tutorial. You can also browse or download this from Oracle’s Web site.

– http://download.oracle.com/javase/tutorial/index.html

Grading Scheme and Deadline Policy

Your final grade in the course is calculated by taking the maximum of the two below options.

• Assignments: 40%

• Midterm Examination: 20%

• Final Examination: 40%

OR

• Assignments: 40%

• Final Examination: 60%

This means that students who perform better on the final than on the midterm exam will have the (automatic)
option to make their grading scheme 40% assignments, 60% final. However, the assignments are a key part
of learning the material, and as such there is no 100 % final option.

In exceptional situations, students may write a supplemental examination. However, ability to do so is not
automatic, and depends on your exact situation; contact your Student Affairs Office for further information.
The supplemental examination represents 100% of your supplemental grade.

Students who receive unsatisfactory final grades will NOT have the option to submit additional work in
order to improve their grades.

Official language policy for graded work: In accordance with McGill University’s Charter of Students’
Rights, students in this course have the right to submit in English or in French any written work that is to
be graded.

Assignments

There will be four assignments, each of which will require programming. The first two assignments will
be designed to give you some practice programming and applying the concepts you learn in class. The
third assignment will be more involved and will be closer to a small project in length. The fourth and final
assignment will be designed to give you practice with a few concepts not covered in any of the first three
assignments but on the final examination.

• Assignment 1: 5%

• Assignment 2: 10%

• Assignment 3: 15%

• Assignment 4: 10%

It is important that you complete all assignments, as this is the major way in which you will learn the
material. By working hard on the assignments, you will gain essential experience needed to solve problems
on the midterm and final examinations.

3



To receive full grades, assignments (as well as all other course work) MUST represent your own personal
efforts (see the section on Plagiarism Policy and Assignments below).

Late Policy: Late assignments will be deducted 10% each day or fraction thereof for which they are late,
including weekend days and holidays; that is, assignments that are between 0 and 24 hours late will be
deducted 10%, assignments that are between 24 and 48 hours late will be deducted 20%. Assignments
submitted more than 48 hours after the deadline will not be accepted, nor graded, and will therefore receive
a grade of 0%.

Assignment submission will always take place on myCourses. Instructors and TAs will discuss how to use
it during the lectures and tutorials, but every student is responsible for verifying that their submissions are
successful. If you believe the content of your myCourses submission box is different from what you have
submitted, you must e-mail your section instructor within 5 days of the assignment deadline in question
to provide evidence of your correct submission. Assignment marks will also be posted on myCourses. It is
your responsibility to check that the marks are correct and to notify your section instructor of any errors
or missing marks. If you believe your assignment was graded incorrectly, you should first email the TA who
marked your assignment (emails will be posted on mycourses). If you don’t agree after discussion with the
TA, then you should contact your instructor.

The instructors reserve the right to modify the lateness policy for a particular assignment; any such mod-
ifications will be clearly indicated at the beginning of the relevant assignment specifications. Plan ap-
propriately and do not submit to myCourses only minutes before the assignment deadline;
programming assignments are notoriously time-consuming and individual exceptions to the lateness policy
will not be granted without appropriate justification submitted in writing and supported by documentary
evidence.

Midterm Examination

The midterm examination will take place in the evening at the following date and time:

• October 31st, 18:00-21:00

The room assignments will be announced in class and posted on mycourses when it is closer to the date.

Campus Computer Laboratories

Using the SOCS computer laboratory facilities: All students registered in COMP-202 may use the
SOCS computer laboratory facilities to do their work regardless of the program in which they are registered.
These facilities are located on the third floor of the Trottier building. All computers are physically accessible
on weekdays from 10:00 until 20:00, and on weekends from 12:00 until 20:00; a consultant will be on duty
during these times. Outside of these hours, only the computers located in the open area will be physically
accessible, and no consultant will be on duty. Please note that these hours may vary for the first week of
lectures.

In order to enter the Trottier building before 7:00 or after 21:00 from Monday to Friday, or at anytime during
weekends, your McGill ID must be added to the building access list. This will enable card readers located
at the entrances of the building to recognize your McGill ID card. Your McGill ID will automatically be
added to the building access list if you are officially registered in a computer science course. However, if you
registered late or had other registration problems, this might not have been done in your case. If you are
officially registered in the course but unable to enter the Trottier building using your McGill ID card outside
the building’s opening hours, contact the SOCS Systems Staff by e-mail at help@cs.mcgill.ca, and request
that your McGill ID be added to the building access list.

Students who wish to use the SOCS computer laboratory facilities must first create an account; this can be
accomplished by going to any computer on the third floor of the Trottier building, logging in as newuser,

4



and supplying newuser as the password. You will then be invited to fill out a Web form. Upon completion
of this form, you will be provided with the user ID and password with which you will be able to use the
SOCS computer systems. Note that if you are not officially registered in this course, you will not be able to
create an account for use with the SOCS computer systems. You only need to perform the account creation
procedure once.

All computers in the SOCS laboratory facilities run Ubuntu GNU/Linux, which is a Unix-like operating
system. Members of the SOCS Systems Staff will hold Unix seminars at the beginning of the term for those
who are new to Unix. Information regarding these seminars will be given during the first lectures. If you are
only familiar with a Windows or Mac OS X environment, it is recommended but not required
that you attend these seminars.

Refer to http://socsinfo.cs.mcgill.ca/wiki/Main_Page for more information on the SOCS computer
laboratory facilities.

Other computer laboratory facilities: You may also use other computer laboratory facilities on campus
to do your work. Most facilities are available to all McGill students, but there are facilities which grant
usage privileges only to students registered in a course or program offered by the faculty or department
which manages the facility.

Students should contact the work area of their choice to inquire about access requirements, opening hours,
or any further information such as software availability.

Personal Computers and Required Software

You will use the Java compiler on personal computers to compile the programs you are required to write for
the assignments. The Java compiler is included in a larger software package called the Java Development
Kit (JDK). You can use any plain-text editor of your choice to write your programs, and then use the
tools included with the JDK to compile and run them. There are several of these tools such as Notepad++
and RText. (Note that Microsoft Word will NOT work properly.) However, we strongly encourage you to
use a program Dr. Java. The installation is very simple and the programs we develop in this course will not
be sophisticated enough to take advantage of any of the features of a more advanced IDE such as Eclipse.
All TAs and instructors will provide support with Dr. Java, but will not necessarily with other IDEs.

The JDK and Dr Java are installed on the computers in the SOCS laboratory. You are encouraged to
install the JDK and Dr. Java on your own computer so you do not have to depend on the SOCS computer
laboratory facilities to do your work. Installing any of these is fairly straightforward. If you need help, you
can consult a TA during office hours.

• Required: The JDK.

– Windows users: You may download the JDK installation program from the following Web site:
http://www.oracle.com/technetwork/java/javase/downloads (choose Java - Download or
JDK (click on the Download JDK button), with no additional software such as Java EE or
NetBeans). The JDK is available at no cost, and there is no time limit on its use. You should
install the JDK before any IDE.

– Mac users: JDK 6.0 or 7.0 is installed by default on most Mac computers. It is available as a
Mac OS software update.

– GNU/Linux users: JDK 6.0 or 7.0 is available in the software repositories of most of the major
GNU/Linux distributions like Ubuntu, Fedora, and OpenSUSE; you can install it through your
package manager.

• Highly Recommended: Dr. Java. You should download this only after you have installed the JDK,
as this will enable you to avoid several configuration problems. You may download Dr. Java from
the following website.

– Dr. Java: http://drjava.sourceforge.net

5



Plagiarism Policy

Official policy: McGill University values academic integrity. Therefore all students must understand the
meaning and consequences of cheating, plagiarism, and other academic offenses under the Code of Student
Conduct and Disciplinary Procedures (see www.mcgill.ca/integrity/ for more information).

Plagiarism Policy and Assignments

Work submitted for this course must represent your own efforts. Assignments must be done
individually; you must not work in groups. Do not rely on friends or tutors to do your work for you.
You must not copy any other person’s work in any manner (electronically or otherwise), even if this work
is in the public domain or you have permission from its author to use it and/or modify it in your own work
(obviously, this prohibition does not apply to source code supplied by instructors explicitly for this purpose).
Furthermore, you must not give a copy of your work to any other person.

The plagiarism policy is not meant to discourage interaction or discussion among students. You
are encouraged to discuss assignment questions with instructors, TAs, and your fellow students. However,
there is a difference between discussing ideas and copying someone else’s solution. A good rule of thumb
is that when you discuss assignments with your fellow students, you should not leave the discussion with
written notes. Also, when you write your solution to an assignment, you should do it on your own.

Students who require assistance with their assignments should see a TA or instructor during their office
hours. If you have only partially finished an assignment, document the parts that do not work, and
submit what you managed to complete for partial credit. However, the code to answer any question must
compile (with the test engine provided to you, if any), or else you will receive a maximum grade of 25% on
that question.

We will be using automated software similarity detection tools to compare your assignment
submissions to that of all other students registered in the course, and these tools are very effective
at what they have been designed for. However, note that the main use of these tools is to determine which
submissions should be manually checked for similarity by an instructor or TA; we will not accuse anyone of
copying or working in groups based solely on the output of these tools.

You may also be asked to present and explain your assignment submissions to an instructor
at any time.

Students who put their name on programs or modules that are not entirely their own work will be referred
to the appropriate university official who will assess the need for disciplinary action.

Teaching Assistants (TAs)

TAs will be available for office hours, on the third floor of the Trottier building, to help you with your
assignments and answer questions about the course material. You can also contact TAs by e-mail. Each
TA’s office hours and e-mail address will be posted on mycourses.

Course Content

Note that minor changes in content, reading material, and times for tutorials and assignments may occur.
It is your responsibility to attend class and generally be aware of what content is being covered.

6



Tutorials

Throughout the term, there will be several (optional) tutorials. These will be designed to help you with the
material and assignments. Further information will be posted on myCourses. It is not necessary to register
for tutorials and the exact times will be posted on mycourses. The tutorials will give you a chance to ask
questions in a smaller environment than lectures.

The tutorials will be covering (approximately)

Tutorial Title Contents

T0 Basics of Course Software Tools Dr. Java and the JDK: creating, loading, editing,
saving, compiling, and running programs
Binary numbers

T1 Programming Basics Variables and primitive data types
Expressions and the assignment statement
Type conversions
Input and output
Methods
if and if-else blocks
while and for blocks
Syntactic, run-time, and logical errors

T2 Control Flow Using arrays and Strings
Case studies

T3 Using classes and objects Defining your own objects
Constructors
Static vs non-static

TM Midterm review

T4 Advanced topics ArrayList
HTML
Recursive programming
Data structure

TF Final Exam Review

Approximate Schedule of Topics

The references to chapters in the table below are from the recommended online textbook cited above.
Although our lectures will not follow the textbook exactly, especially later in the semester, reading the
textbook is highly recommended. The following schedule is only approximate and may change
slightly depending on how the semester unfolds.

Week Topics Reference Events

1 What is programming?
What is computer science?
How does a computer work?

Chapter 1, A, B A1 out

7



Week Topics Reference Events

F
u
n
d
a
m

en
ta

ls

2 Structure of a Java program
Variables and primitive data types
Expressions and the assignment statement
Primitive type conversions

Chapter 2, A, B

3 Methods
Command line arguments for input

Parts of Chapters 3, 4 and 6 A1 due

4 if

if-else blocks
while and for statements
Chapter 7

A2 out

5 Arrays
Strings

Chapter 12 (arrays) and 8
(strings)

O
b

ject
O

rien
ted

P
ro

g
ra

m
m

in
g

6 Try/catching Exceptions
Throwing an exception
Examples/review

A2 due, A3
out

7 Classes and objects
Instantiating and using objects
Java Standard Library classes

8 Building your own classes
Instance variables and methods
Constructors
Static variables and methods

Parts of Chapters 9, 11–12

In
d
ep

th

9 Reference Types and Aliases
Passing Reference Types to Methods
Encapsulation Techniques
Class Relationships

Midterm

10 Using provided libraries
The ArrayList class
Command line arguments

A3 Due, A4
Out

11 More Object oriented programming examples
Reading from and writing to a file

12 Review and Advanced Topics (if time allows) A4 Due

13 Continue review

8


