

COMP 102 : Computers and Computing

Fall 2016, McGill University

Syllabus + Links

Lecture 1. Due diligence for the course + Overview.

- Hour of Code
- Computer Science Unplugged
- This Is MEGA-Mathematics!

Lecture 2. *A short history.* Pre-electronic computation. First computing devices. Development of underlying concepts to computing.

- Antikythera Mechanism (youtube) (wiring diagram of gears)
- Napier's bones (simulator)
- Jacquard Loom
- Babbage's machine (Video series episode 1 through 4)
- History of Computers
- History of Computer Science
 - from J Shallit (Waterloo, CS 134)
 - from J Kopplin
- The Enigma, a biography of A Turing (The Imitation Game, movie)
- Turing Award Winners

Lecture 3. Modern Information Technology.

- Workplace transformations: Google Drive + Forms + Doodle + Trello + HipChat.
- Multidimensional on-line personalities: from websites to integrated social media and mobile computing.
- Internet of Things: IFTTT and NEST technologies. (wiki)

Lecture 4. Fundamentals. How computer science often uses simple, abstract, elegant models that allow us to see the main issues: the Turing Machine, a surprisingly powerful model of computing.

- Definition of a Turing machine (Cambridge University)
- Turing machine simulator

Lecture 5. What "discrete" means to a computer scientist. Bits, circuits, logic.

Lecture 6. *The Central Dogma of Computer Science*: Input -> Algorithms -> Output. And **how this is made concrete:** programs, variables, assignment, operations.

- Code: Blocks and JavaScript
- Interactive Java Interpreter

Lecture 7. Instructing computers to react to their environment: Conditional execution.

Stackoverflow

Lecture 8. Enslaving computers. Iteration and looping combined with conditionals.

Lecture 9. *Popular media and Computer Science* (A break from geeky programming...) Life lessons for seducing computer scientists: memorizing important moments from 2001 A Space Odyssey, Wargames, Ghost in the Shell, Mr Robot, and HBO's Silicon Valley.

Bachmanity

Lecture 10. Compression: The Lost Art. From silly to serious algorithms.

- Pied Piper Inc.
- Compression
- CS Unplugged Compression
- Scratch
- Scratch version of exercises

Lecture 11. Efficiently repaying Montreal streets. Minimum spanning trees.

■ This Is MEGA-Mathematics!

Lecture 12. *Computational Complexity.* Coloring maps with two colors versus coloring maps with three (or more colors). Tractable versus intractable problems.

This Is MEGA-Mathematics!

Lecture 13. Syntactic sugar Functions, Modules, Packages. Software Engineering. Open Access + Open Source.

- Size of Software Systems
- GIT
- Github
- Google Code

Lecture 14. Web and mobile applications. Building a smart phone app for voting

- Code
- App Lab

Lecture 15. Cloud services and Cloud Computing.

- Silicon Valley, s03.e9 minute: 5:50
- Google Cloud Computing.
- Amazon Web Services.

Lecture 16. Databases. Building them and querying them. SQL.

SQL Fiddle

Lecture 17. *How to train your computer.* Determining the next song you will listen too. APIs and Spotify.

- Spotify
- Spotify API

Lecture 18. The Singularity and what it means for you. Neural networks and deep learning.

- Where will you be in 2040?
- Book: The singularity is near; R Kurzwell
- Ted talk: A university for the coming singularity
- Stephen Hawking in The Independent. We aren't taking artificial intelligence seriously enough.
- Centre for the Study of Existential Risk, Cambridge University.
- The dreams from Google's Artificial Intelligence

Lecture 19. Social Networks. Graph and network representation. Information flow.

Lecture 20. *Privacy* + *Cryptography* + *Security* + *Hacking*. Building our own cryptographic systems. Anonymous.org. NSA. Conspiracy theories. Chaos.

- Introduction to Hacking
- The Peruvian Coin Flip
- Public Key Encryption

Lecture 21. Robotics. An excuse for us all to play with Lego Mindstorm.

• Introduction to Mindstorm and programming software.

Lecture 22. *Bioinformatics.* Using computers to understand noisy, imprecise, illogical, irreproducible, dirty, non-discrete, and generally badly behaving biological systems like bacteria, fungi and humans.