Skip to content. Skip to navigation
McGill Home SOCS Home
Personal tools
You are here: Home Announcements and Events Seminars profile

Seminars
Fall 2014 Schedule
Winter 2015 Schedule
Archive


         
     
 
2013/03/25, McConnell 103, 16:00 - 17:00

Parallel approximation of min-max problems
Gus Gutowski , University of Waterloo

Abstract:

This paper presents an efficient parallel approximation scheme for a new class of min-max problems. The algorithm is derived from the matrix multiplicative weights update method and can be used to find near-optimal strategies for competitive two-party classical or quantum interactions in which a referee exchanges any number of messages with one party followed by any number of additional messages with the other. It considerably extends the class of interactions which admit parallel solutions, demonstrating for the first time the existence of a parallel algorithm for an interaction in which one party reacts adaptively to the other. As a consequence, we prove that several competing-provers complexity classes collapse to PSPACE such as QRG(2), SQG and two new classes called DIP and DQIP. A special case of our result is a parallel approximation scheme for a specific class of semidefinite programs whose feasible region consists of lists of semidefinite matrices that satisfy a transcript-like consistency condition. Applied to this special case, our algorithm yields a direct polynomial-space simulation of multi-message quantum interactive proofs resulting in a first-principles proof of QIP=PSPACE. Joint work with Xiaodi Wu. Based on http://arxiv.org/abs/1011.2787.