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Abstract—During the design and deployment of increasingly
complex distributed embedded systems, engineers are challenged
by a plethora of design choices. This often results in infeasible
or sub-optimal solutions. In industry and academia, general
and domain-specific optimization techniques are developed to
explore the tradeoffs within these design spaces, though these
techniques are usually not adapted for use within a Model-
Driven Engineering (MDE) process. In this paper we propose
to encode metaheuristics in transformation models as a general
design exploration method. This is complemented by an MDE
framework for combining different heterogeneous techniques at
different abstraction layers using model transformations. Our
approach results in the seamless integration of design space
exploration in the MDE process. The proposed methods are
applied on the deployment of an automotive embedded system,
yielding a set of Pareto-optimal solutions.

I. INTRODUCTION

The design of distributed embedded systems has changed
radically over the last decades. To deal with the increasing
complexity of these complex systems, companies are moving
to model-driven engineering (MDE) techniques for the design
and testing of these systems. This has the advantage that
domain knowledge can be explicitly modelled using languages
closer to the domain experts. The model artefacts can be reused
for later design variants, documentation, etc. To manipulate the
created models, MDE uses model transformations. Examples
of the introduction of MDE can be found in the automotive
industry with the use of Architecture Description Languages
(ADLs) to formalize the design information and AUTOSAR
[1] for the component-based design of automotive systems.

During the design of distributed embedded systems many
design choices need to be made. For example, an optimal
mapping of a set of software components to a set of hardware
components. The process of analysing the feasibility and
optimality of several solutions by searching through the design
space is called Design-Space Exploration (DSE). The solution

space of DSE problems is constrained by the functional and
extra-functional requirements of the system. These constraints
can be either structural, behavioural or derived. On the other
hand, designers want to optimize the solution with respect to
one or a set of goal functions.

In industry and academia, a lot of heterogeneous tech-
niques have been developed to search a solution space. These
techniques include but are not limited to Mixed Integer Lin-
ear Programming (MILP), Constraint Satisfaction (CSP) and
Meta-heuristics, like hill climbing and simulated annealing.
Another set of techniques have been specifically developed for
some domain specific problems, for example list scheduling
techniques for the optimization of scheduling problems. The
multi-criteria and trade-off nature of design space exploration
makes it a challenging task, where manual work needs to be
combined with efficient partial automation. Most traditional
optimization techniques are not designed for use with multi-
criteria optimization. They commonly solve this by reducing
the optimization problem to a single optimization goal through
a weighted goal function based on the optimization parameters.
This is not sufficient for the task at hand in design space
exploration, as it is a broader task than design optimization,
as it also includes e.g. uncovering relations between different
design parameters.

In the research community there has not been a lot of
focus on integrating these heterogeneous techniques within the
MDE development cycle. Integrating these techniques, has the
advantage that the whole process is uniform. Several major
tool integration research projects have explicitly chosen the
model transformation approach as their integration mechanism
[2], [3]. The approach also has the advantage that the design
variability in the model under design is made explicit, in the
same formalism as the model itself, making it readable not
only to optimization experts but also to domain engineers. This
has the effect that the domain knowledge that is used within



the optimization techniques is made explicit. The models can
also be reused, both for later design variants with different
requirements, documentation, etc.

In this paper we propose a solution for integrating these
different techniques in an MDE development cycle. The pro-
posed solution uses model transformation techniques to (a)
integrate meta-heuristics in the transformation models so they
can be used for general optimization problems on models
and (b) a technique to combine multiple transformations on
different levels of abstraction/approximation with different
heterogeneous techniques.

The rest of the paper is structured as follows: section II
gives a general introduction to model transformation and the
principles of implementing meta-heuristics using a model
transformation language, section III explains the principles
behind combining several subsequent transformations, sec-
tion IV validates the approach using an automotive case study,
section V discusses the results, section VI gives an overview
of other similar approaches in the research literature, and
section VII concludes the paper and discusses future work.

II. A MODEL TRANSFORMATION LANGUAGE WITH
SEARCH CAPABILITIES

In this section we introduce model transformation tech-
niques and discuss how general search techniques can be used
within model transformations. While it is impossible to give a
complete overview of these techniques, we show that by using
a very expressive transformation language, meta-heuristics can
be implemented in the transformation models.

A. Model Transformation Languages and T-Core

Model transformation languages work on typed, attributed,
labelled graphs that represent the model. A rule represents
manipulation operations on the represented model. A rule
consists of a left-hand side (LHS) pattern representing the pre-
condition for the applicability of the rule. The right-hand side
(RHS) pattern defines the outcome of the operation. A set of
negative application condition (NAC) patterns can be defined
to block the application of the rule.

The developed transformation language is based on the T-
core transformation framework that allows the construction of
custom transformation languages [4]. Figure 1 shows some
of the components of a transformation language. We briefly
discuss the components used in this work. More information
can be found in [4].

• Operators:
– Matcher: The matcher finds the matches of the LHS

condition in the model and stores them in a match-
set.

– Iterator: The iterator is used to select one match to
rewrite.

– Rewriter: The rewriter rewrites the model using the
RHS pattern.

– Rollbacker: The rollbacker enables backtracking in
the transformation language.

• Scheduling Language: The scheduling language is used
to schedule the different rules after each other. Different
kind of scheduling languages can be used. In this work we
use the Python programming language as our scheduling
language.

Transformation Language

Scheduling Language Transformation Operators

Matcher Iterator RewriterRollbacker

Fig. 1. Composition of a Transformation Language
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Fig. 2. Exhaustive Search and Hill climbing

In the following subsections we show how to implement, us-
ing the T-Core Transformation Framework, three well known
search techniques that are used in optimization. The first two:
exhautive and random search create a number of solution
points in the search space. The latter: Hill Climbing starts
optimizing a single solution.

B. Exhaustive Search

While the exhaustive search is infeasible in most problems,
it can be used for the optimisation of small problems. Ex-
haustive search will generate all solutions of the design space.
Figure 2 shows an activity diagram of the implementation of
the exhaustive search method. The transformation starts by
matching all the occurrences in the start model. The iterator
chooses the first match in the match-set. At this point a
checkpoint is made. This checkpoint contains (a) the model,
(b) the match-set, without the chosen match and (c) the
selected match. The selected match is rewritten in the model.
If more rules are available or the same rule that has to be
executed multiple times, this is done by using the same method
(match, select match, checkpoint and rewrite). The complete
solution is archived for further analysis. Then backtracking can
start. Since the backtracker can contain multiple checkpoints
(from multiple rule applications), the last one is selected. This



restores (a) the model, (b) the match-set and (c) the match that
was selected at the time instant the checkpoint was made. The
iterator is used to replace the previously chosen match with
another one from the match-set, again this is check-pointed
and rewritten. The process continues as described above until
all matches in the match-sets of all checkpoints have been
applied.

C. Random Search

In random search a set of solutions is created in a random
way. Random search uses only the matcher, iterator and
rewriter. After matching all occurrences of the pattern in the
model, a random match is selected for rewrite. This requires a
different iterator than in exhaustive case. The rewriter applies
the randomly chosen match on the model. Another rule, or the
same rule can be executed after that until a solution point is
obtained. A loop is used to create a set of solutions.

D. Hill Climbing

Hill climbing is a local search technique that uses an
incremental method to optimize a single solution. It examines
neighbouring states and accepts the change if it is a better
solution. Figure 2 shows the building blocks of the Hill
Climbing transformation. After matching a (set of) rule(s),
the iterator picks one match at random and rewrites this in
the model. The solution is evaluated and compared with the
original solution. In case the solution is not better, the original
solution (with the matches) is restored and another match is
randomly selected and evaluated. If the solution is a better one,
it is accepted. The evaluator contains a set of transformation
rules to calculate the metrics of the solution or to generate
an analysis or simulation model that can be executed. The
metrics obtained are given back to the hill climbing solution
so a decision can be made. When a better solution has been
found, the process is restarted until no more improvements
can be found.

III. COMBINING MULTIPLE TRANSFORMATIONS

The second part of our contribution consists of combining
different transformations, search-based transformations and
Model-to-Model transformations, in sequence or in parallel
to optimize a system. We leverage a number of techniques
to alleviate the state space explosion problem during the
optimization of a system:

• Different levels of abstraction or approximation: Based
on the idea of platform based design [5], clear ap-
proximation or abstraction levels1 can be added where
intermediate solutions can be evaluated and pruned early.

1Abstraction levels are used to describe the same system in different levels
of detail in order to hide lower-level implementation details when they are not
relevant. Approximation levels are similar, however they describe the same
model. For an example of approximation levels, a scheduling problem may
be analysed through the classical Liu-Layland utilization bound, using exact
response time analysis [6], or even more intricate analysis, e.g. using timed
automata [7] if the task models do not fit the classical assumptions, such as
absence of task communication.

• Other optimization techniques: When a general solution
method is already available, for example through the
capabilities of standard tool, we transform the model
to this representation. The results are transformed back
to the original representation for further exploration or
synthesis activities.

• Manual activities: When the designer has a solution
(manually or using external tools) without an avail-
able automatic transformation, the designer can manually
change the model. The exploration activity resumes from
this point.

In this work the Formalism Transformation Graph and
Process Model (FTG+PM), defined in [8], is used as the base
for chaining different transformations. The framework can be
used to incorporate all the different steps of the MDE lifecycle
and thus allows the embedding of the exploration activity in
the design and verification of complex systems [9].

The FTG+PM framework is comprised of the Formalism
Transformation Graph (FTG) and its complement, the Process
Model (PM). The FTG is a hypergraph with languages as
nodes and transformations as edges. It charts the relationships
among the multitude of languages and transformations used to
develop systems within a domain. The PM precisely models
the control and data flow between the transformation activities
taking place throughout the software development lifecycle
starting from requirements analysis and design, to verification,
simulation, and deployment. The elements used in the PM-
side are typed by the nodes and edges in the FTG. We use
a subset of the UML 2.0 activity diagram formalism for the
PM. The FTG+PM can be enacted to allow the automatic and
semi-automatic execution of the MDE design process.
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Fig. 3. An example FTG+PM for design space exploration

Figure 3 shows an example FTG+PM for the purpose of
design space exploration. On the left side of the figure, all
languages involved in the optimization chain are displayed.
We only present three languages: (a) The deployment language
where the design space should be explored, (b) The MILP
language, representing the model in a Mixed Integer Linear



Program, and (c) The MILPTrace language, representing the
results produced by the MILP solver. At the FTG level, five
transformations are defined: (a) Random Sampling, (b) Hill
Climbing, (c) ToMILP, (d) Execute MILP and (e) ToDeploy-
ment. For each of these transformations the input and output
languages are defined. On the right side of the figure these
transformations are scheduled after each other in the process.
The optimization chain starts with the Random sampling of
a number of solutions. These solutions are further explored
using an instance of the hill climbing transformation. Later,
the intermediate results are stored and this process repeats
until a fixed number of solutions are found. At another
approximation level, a set of these solutions are transformed
to a MILP representation. This MILP representation is solved
using standard solvers such as CPLEX. Finally, the traces are
translated to the original representation.

IV. CASE STUDY

We show our contributions using an automotive case study
based on [10] where a set of software functions need to be
assigned to a set of electronic control units (ECU), and the
designer can select the types of ECUs. The software functions
are further executed on a real-time operating system with a
fixed priority preemptive scheduler, where the priorities of the
tasks need to be selected, and the communication signals need
to be packed into communication frames on a communica-
tion bus with fixed-priority non-preemptive scheduler (like in
Controller Area Network). The solutions are constrained by
typical end-to-end deadlines. Due to space constraints of this
paper, we cannot show all transformations and (meta-) models
involved in this case study.

We use two case studies in our experiments. An industrial
size design consists of 40 software functions, 81 signals, and
9 ECUs (each has two types to choose from). A small subset
of the design containing six software functions and two ECUs
was created, to allow the validation using exhaustive search.

A. Validation

Figure 4 shows a part of the start model. The blue boxes
represent the software functions, with periods, that need to
be deployed on the ECUs (green boxes). Signals between the
software functions are represented by purple circles. ECU-
types are shown as white boxes with a T inside. The worst-case
execution times of a software function on a specific hardware
type is represented as a scope icon.

To validate the different search methods of section II, an
exhaustive search was implemented. The monetary cost of
ECUs, communication cost and processor utilisation are used
as metrics. In parallel, 100 random solutions are created and
hill-climbed.

B. Industrial size model

The industrial size model uses the same deployment lan-
guage as shown in Figure 4. We defined two approximation
levels where bad solutions can be pruned:

Ecu0

SWC0

SWC

SWC1

SWC

SWC2

SWC

T

T

Fig. 4. A small fraction of the case study start model

• Architecture Level: At the architecture level, we assign
the different software functions to an ECU and assign
a type to the ECUs. We can calculate the classical
schedulability test, defined by Liu and Layland [11], to
prune infeasible solutions. Optimality is defined in terms
of cost (based on the hardware cost, the extensibility of
the solution (based on computation power left with a type
penalty for the slow processor), and communication cost.

• Scheduling Level: At this approximation level the pri-
orities are assigned to the tasks, signals are packed to
messages and messages are assigned a priority. Optimal-
ity is defined by minimizing the end-to-end latencies of
the sum of all the paths within the application.

The FTG+PM of the case study is shown in Figure 3. On the
first approximation level, 1000 random solutions are created.
These solution points are hill-climbed. The hill climber only
accepts feasible solutions that are equal on all goal functions
and at least better on one goal function. From the solutions
found after the first approximation level, the Pareto optimal
solutions are selected and transformed to a MILP representa-
tion. This MILP representation is executed and the results are
transformed back to the deployment model representation.

C. Transformations
We give a brief overview of the transformation rules in-

volved in this case study. The transformation rules for ran-
domly searching the design space consist of:

• Ecu2Type: This rule maps an ECU to a type. The first
part of the rule selects an unmapped ECU and assigns it
a pivot. The second part of the rule assigns the selected
ECU (using the pivot) to a type. The rule is executed
until all ECUs have type information.

• Task2Ecu: This rule, shown in Figure 5, maps an un-
mapped software function to an ECU. As with the pre-
vious rule it is executed until all software functions are
mapped to an ECU.

• CheckFeasible: This transformation rule checks whether
all software functions are mapped to an ECU and that no
ECU has a load bigger then 69%.

Hill climbing is done with two rules that can move a
software function from one ECU to another ECU (Figure
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6). For the evaluation of a single solution point, we use
transformations as well. One rule calculates the total cost and
the total load of the system. The second rule calculates the
total communication cost. Note that this could also be done
by transforming the model to another language where analysis
or simulation can be done.

Finally, three rules create a Mixed Integer Linear Program
from a model after the architecture deployment step. We regard
the execution of the MILP as a transformation as well since
it manipulates the MILP-model and returns a set of traces
containing the solution of the problem. Two rules transform
the traces back to the original representation.

D. Results

For the small validation case study, the Pareto-curve of the
exhaustive search and the Pareto-curve of the random and hill
climbed solutions gave the same solutions as Pareto optimal.
This is due to small size of the model where only 256 different
solutions exist. Though the proposed techniques presented in
Section II can be used to search through the design space.

The industrial size model has 29 × 940 = 7.57 × 1040

possible solutions at the first approximation level. The created
solutions before hill climbing are shown in Figure 7. After the
hill-climbing, 254 unique local optima remained. These are
shown in Figure 8. As can be seen, the search is maximizing
the extensibility while reducing the communication cost. This
process used 7500 minutes of computation time on an 8 core
Intel Xeon processor running at 2.66 GHz. This is due to the
size of the model, though our focus was not the performance
of the approach.

At the second level of approximation, the number of possi-
ble solutions depends on the configuration after the first step.
Nine Pareto front solutions got selected for the second part.

Fig. 7. The solutions before hill climbing

Fig. 8. The local optima after hill climbing

The transformations and execution of the second approxima-
tion level used 10 minutes, on the same machine, to produce
the optimal solution. The nine solutions are scheduled all
within the deadlines of the case-study.

V. DISCUSSION

In this section we discuss some of the issues and op-
portunities of having a transformation based approach to
design space exploration. The most limiting factor in our
prototype search transformation model is the execution time.
The most expensive operation in the transformation language
is the matching algorithm. The complexity of this operation is
exponential with respect to the size of the model. When using
algorithms like hill climbing, a lot of matching restarts from
the beginning while only a small portion of the model has been
changed. To increase the speed of the matching operation, an
incremental approach to model transformation can be used as
proposed in [12]. Parallelism can also be used to speed up
the process, since a lot of the branches in the approach can in
fact be executed in parallel. Other techniques like pivots and
scoping can be used to define regions where to start the search
for matches or to define a specific region where to optimize,
reducing the load on the matching process.



On the other hand different opportunities exist besides
those mentioned in the introduction. The transformations make
domain knowledge explicit but they can also encode domain
knowledge already known by the domain and/or integration
experts. For example, when it is known that certain software
functions have to be mapped together, a rule can be written
that encodes this knowledge. Other domain knowledge can be
discovered by mining the traces of the transformations. This
can uncover the sensitivity of parameters, where the change
of certain parameters has more effect then others. These are
the choices that should be focussed on during design space
exploration. The mining of the traces can also be used to
uncover domain knowledge, for example when certain choices
always lead to good or bad solutions.

VI. RELATED WORK

Transformation based approaches to Design Space Explo-
ration are relatively new topics in the field.

The DESERT tool-suite [13] provides a framework for
design space exploration. It allows an automated search for
designs that meet structural requirements. Possible solutions
are represented in a binary encoding that can generate all
possibilities. A pruning tool is used to allow the user to select
the designs that meet the requirements. These can then be
reconstructed by decoding the selected design. In [14], Saxena
and Karsai present an MDE framework for general design
space exploration. It comprises of an abstract design space
exploration language and constraint specification language.
Model transformation is used to transform the models and
constraints to an intermediate language. This intermediate
language can then be transformed to a representation that
is used by a solver. As in our approach, a set of solvers
can be supported by using model transformations. Though
our approach combines different optimization steps where
the process of exploration is defined explicitly. The con-
straints in our approach are made explicit in the transfor-
mation rules and not in a separate language. Schätz et al.
developed a declarative, rule-based transformation technique
[15] to generate the constrained solutions of an embedded
system. The rules are modified interactively to guide the
exploration activity. In [16] a transformation-based approach
is proposed to generate the full design-space of a cyber-
physical system. The transformation language is based on
Answer-Set Programming. Different approximation levels are
introduced where non-feasible solutions can be pruned. In
[17], a framework for guided design space exploration using
graph transformations is proposed. The approach uses hints,
provided by analysis, to reduce the traversal of states. The
OCTOPUS toolchain [18] is a domain specific tool for the
design space exploration of embedded systems. The tool is
organised around an intermediate language used for connecting
different tools together. The FTG+PM is used for the same
purpose but uses an alternative approach without the need for
an intermediate language.

VII. CONCLUSIONS

In this paper, we have shown that it is feasible to imple-
ment design space exploration through the usage of model
transformations. An expressive transformation language can
be used to implement meta-heuristics in the transformation
models. This is complimented with the FTG+PM to combine
different heterogeneous techniques at different levels of ab-
straction or approximation. In the approach, the design space
exploration step is integrated in the MDE development cycle
with the benefit of having a uniform process. This results in
documented, explicit design space exploration models that can
be reused for later design variants, documentation, etc. The
approach was applied to an automotive case study, yielding a
set of Pareto-optimal solutions.

In future work, we plan to integrate incremental matching
techniques in the T-Core transformation language to speed up
the matching process. Other work will focus on integrating
other techniques like Simulated Annealing, Heuristic Search,
etc.
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