Copyright © 2006 Timothy Howard Merrett Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 5143983883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid his salary and research grants while this work was developed at McGill University, and from his students (who built the implementations and investigated the data structures and algorithms) and their funding agencies.

T. H. Merrett

The Pointerless Representation of Tries

T. H. Merrett McGill University

I Tries

- Compression down to $2 / \lg n$ on n data items e.g., 90% (1 Mbyte) 93% (1 Gbyte) 95\% (1 Tbyte)
- Good for suffix trees better than suffix arrays [FODO'93]
- Support regex and approximate matching
- Variable resolution
- Multidimensional tries and Z-order
- Dynamic
T. H. Merrett

The Pointerless Representation of Tries

II Pointerless representation

1. RAM: main memory
2. SS: secondary storage

Orenstein 1983
www.cs.mcgill.cs/~cs420/logarithmicTxt.ps
T. H. Merrett
(C) $06 / 2$

I Tries

Compression

Raw data: 2^{h} items of h bits each.
Trie: $2^{h}-1$ nodes of 2 bits each
(pointerless representation).
Compression: $h \longrightarrow 2$
For n items, $h=\operatorname{Ig} n$.
Theoretical best:
90\% (1 Mbyte) 93\% (1 Gbyte) 95\% (1 Tbyte)
Experiment (log-log scale; 90% at 10^{7} records):

T. H. Merrett

I Tries

Suffix tries vs. suffix arrays

Simplistic suffix array size
$n \lg N / 8$ for n suffixes, N bytes
E.g., $3.4 n$ for 100 Mbytes
[FODO '93]:
"For an index of 100 million entries, our experiments show size factors of less than 3, as compared with 3.4 for the best previous method.

Our measurements show expected access costs of 0.1 sec ., and construction times of 18 to 55 hours, depending on the text characteristics."
www.cs.mcgill.cs/~tim/cv/theses/shang.ps.gz
T. H. Merrett

I Tries

Regex and approximate matching

[FODO '93]:
"Our organization .. supports searches for general patterns, as well as a variety of special searches, such as proximity, range, longest repetitions and most frequent occurrences."

[IEEE TKDE 8 '96]:

"We discuss a variety of applications and extensions, including best match (for spelling checkers), case insensitivity, and limited approximate regular expression matching."
T. H. Merrett

I Tries

Variable resolution

For low resolution, access only top of trie.
For higher resolution, go deeper.
E.g., a simple map:

T. H. Merrett
(C) $06 / 2$

I Tries

Multidimensional tries and Z-order

Trie interpreted in 2D:
Bentley's "discriminator"

T. H. Merrett
${ }^{\text {© } 06 / 2}$

I Tries

Multidimensional tries and Z-order, cont.

A 1D ordering of the same 2D data

T. H. Merrett
(C) $06 / 2$

I Tries

Dynamic

E.g., adding 00101111

T. H. Merrett
(C)06/2

II Pointerless representation

Trie in RAM

E.g., eight data values

00000011	00101100	10000000	10000101
10001000	10100000	10101100	11000000

T. H. Merrett

II Pointerless representation: RAM

Two bits per node

T. H. Merrett
(C) $06 / 2$

II Pointerless representation: RAM

Two bits per node, cont.

$\left.\begin{array}{lllllll}11 & & & & & & \\ 10 & & 11 & & & & \\ 11 & & 11 & & & & \\ 10 & 10 & 10 & & & 10 & \\ 10 & 01 & 11 & & & 11 & \\ 10 & 01 & 11 & & 10 & 10 & 01 \\ 01 & 10 & 10 & 10 & 10 & 10 & 10 \\ 01 & 10 & 10 & 01 & 10 & 10 & 10\end{array}\right)$

11
1011
111110
$\begin{array}{lllll}10 & 10 & 10 & 10 & 10\end{array}$
$\begin{array}{lllll}10 & 01 & 11 & 11 & 10\end{array}$
$\begin{array}{lllllll}10 & 01 & 11 & 10 & 10 & 01 & 10\end{array}$
$\begin{array}{llllllll}01 & 10 & 10 & 10 & 10 & 10 & 10 & 10\end{array}$
$\begin{array}{llllllll}01 & 10 & 10 & 01 & 10 & 10 & 10 & 10\end{array}$

```
11}101011111 11 10 10 10 10 10 10 10 01 11 11 10 10 01 11 10
10}00
```

T. H. Merrett
©06/2

II Pointerless representation: RAM

Searching

Search for 10001000

11
1011
111110
1010101010
1001111110
10011110100110
0110101010101010
0110100110101010

1x
10×1
11 x 110
1010 xO 1010
1001 1x 1110
100111 x0 100110
01101010 x0 101010
01101001×0101010
T. H. Merrett
look in 2nd node, next level look in 2nd node, next level look in 3rd node, next level

II Pointerless representation

Trie on SS

T	0	11					
B							
B	0	10	11				
	11	11	10				
	10	10	10	10	10		

T	0	10	01
B	0	10	01
		01	10
		01	10

$\left.\begin{array}{llllll}T & 2 & 11 & 11 & & \\ \\ B & 2 & 11 & 10 & 10 & 01 \\ & & 10 & 10 & 10 & 10 \\ & & 10 \\ & & 10 & 01 & 10 & 10\end{array}\right)$

$T 4$	10		T
B	5		
$B 7$	10		B
	10	8	
		10	

T. H. Merrett

II Pointerless representation: SS
Search [Orenstein, '83]
1x
10×1
11 x1 10
1010 x0 1010
1001 1x 1110
100111 x0 100110
01101010 x0 101010
01101001 x0 101010

.. Iook in 3rd node, next level ..
3rd node must be in page headed $T=2$:

T. H. Merrett

The Pointerless Representation of Tries

Conclusion

Two bits per node, shared storage of prefixes, hence compression.

Multidimensional tries and variable resolution both follow.

Paged representation (Orenstein) adds only 2 integers per page.

Dynamic tries follow.

- Orenstein, Algorithms for Implementing Relational Databases, 1983, Ph.D. Thesis, McGill University, School of Computer Science
- Merrett \& Shang, Trie Methods for Representing Text, FODO'93 LNCS 730, 1993, 130-45.
- Shang, Trie Methods for Text and Spatial Data on Secondary Storage, 1995, www.cs.mcgill.ca/~tim/cv/students.html
- Shang \& Merrett, Tries for Approximate String Matching, IEEE TKDE 8 (4), 1996, 540-7.
- www.cs.mcgill.cs/~cs420/logarithmicTxt.ps
T. H. Merrett

