
Copyright c©2005 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
full citation in a prominent place. Copyright for components
of this work owned by others than T. H. Merrett must be
honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or fee. Re-
quest permission to republish from: T. H. Merrett, School
of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the tax-

payers of Québec and of Canada who have paid his salary

and research grants while this work was developed at McGill

University, and from his students (who built the implemen-

tations and investigated the data structures and algorithms)

and their funding agencies.

T. H. Merrett c©05/11

1

Trie Joins

T. H. Merrett, McGill University

Objective: represent two relations as kd-tries and

compute directly the kd-trie representing their nat-

ural join.

Benefit: work purely with tries, without decom-

pressing the data.

T. H. Merrett c©05/11

2

Three relations as kd-tries

R(A B) S(B C) T (A B C)
7 0 1 6 7 1 6

7 1 2 5 3 4 2

1 3 4 2 3 4 3

3 4 4 3 3 4 4

5 4 4 4 5 4 2

2 7 5 4 3

5 4 4

000111, 011010, 011101, 101010, 101010, 110010 010110, 011001, 100100, 100101, 110000

010101100, 010101101, 011100100, 101101110, 110001100, 110001101, 111000100

b

c

a

a) R(A, B) b) S(B, C) c) T (A, B, C)

T. H. Merrett c©05/11
3

R(A, B) as bitpairs

000111, 011010, 011101, 101010, 101010, 110010

11

11 11

10 01 01 10

01 11 10 10

01 01 10 01 01

01 10 01 11 10

T. H. Merrett c©05/11

4

S(B, C) as bitpairs

010110, 011001, 100100, 100101, 110000

11

01 11

11 10 10

01 10 01 10

01 10 10 10

10 01 11 10

T. H. Merrett c©05/11

5

T (A, B, C) as bitpairs

010101100, 010101101, 011100100, 101101110, 110001100, 110001101, 111000100

11

01 11

11 01 11

01 01 01 10 10

10 10 10 10 10

01 10 01 01 10

01 01 01 01 01

10 10 01 10 10

11 10 10 11 10

T. H. Merrett c©05/11

6

T <−R ijoin S

R(A, B) S(B, C) T (A, B, C)

11 11

J 11 11 11 01 11

01 11 11 01 11

10 01 01 10 01 01 01 10 10

J 01 11 10 10 11 10 10 10 10 10 10 10

01 10 01 10 01 10 01 01 10

01 01 10 01 01 01 01 01 01 01

J 01 10 01 11 10 01 10 10 10 10 10 01 10 10

10 01 11 10 11 10 10 11 10

Note that the rows cycle:

• left (R)

• both (R, S; join attribute)

• right (S)

T. H. Merrett c©05/11

7

The algorithm

1. Use the paths in the result so far to predict all
possible next steps.

2. See whether and whence these come from the
source(s): left, both, right.

The first cycle
left right result final
lev pos path bp lev pos path bp lev pos path bp
0 0 11 0 0 11

1 1 l 11 0 0 11 1 1 l 11 01

2 r 11 2 r 11

1 1 l 01 2 3 ll 01 X
2 r 11 4 lr 11

5 rl 01

5 rr 11
left

• 11 from left −→ result.

both

• (1) Result level 1 will have l node and r node.

• (2) Left level 1 has 2 nodes; right level 1 has 1 node:

and the Cartesian product, giving result 11, 11.

• (The l node 11 will eventually be corrected to 01 but we don’t know

this yet.)

right

• (1) Result level 2 will have 4 nodes: ll, lr, rl rr. (ll removed: later.)

• (2) The ll result must come from left l, both l, so copy over right l: 01.

• (2) The lr result must come from left l, both r, so copy over right r: 11.

• (2) The rl result must come from left r, both l, so copy over right l: 01.

• (2) The rr result must come from left r, both r, so copy over right r: 11.

T. H. Merrett c©05/11
8

The second cycle
left right result final
lev pos path bp lev pos path bp lev pos path bp
2 3 ll 10 3 7 llr 10 X

4 lr 01 8 lrl 01

5 rl 01 9 lrr 01

6 rr 10 10 rlr 01

11 rrl 10

12 rrr 10

3 7 lll 01 2 3 lr 11 4 13 llrl 01 X
8 lrr 11 4 rl 10 14 lrlr 10

9 rlr 10 5 rr 10 15 lrrr 10

10 rrl 10 16 rlrr 10

17 rrll 10

18 rrrl 10

3 6 lrl 01 5 19 llrlr 10 X
7 lrr 10 20 lrlrl 01

8 rll 01 21 lrrrl 10

9 rrr 10 22 rlrrl 01

23 rrlll 01

24 rrrll 10

left

• (1) Result level 3 will have 6 nodes: llr, lrl, lrr, rlr, rrl, rrr.

• (2) The llr result must come from left l, both l, right r so copy over 10

(the left ll node). And so on: both lrl and lrr from left lr (01), rlr from

left rl (01), and both rrl and rrr from left rr (10).

both

• (1) Result level 4 will have 6 nodes: llrl, lrlr, lrrr, rlrr, rrll, rrrl.

• (2) The llrl result must come from left l, both l, right r and left l, so

and left lll (01) with right lr (11) giving 01.

Similarly, lrlr comes from left lrr and right rl, etc.

T. H. Merrett c©05/11

9

The third cycle (last for this ex.)
left right result final
lev pos path bp lev pos path bp lev pos path bp
4 11 lllr 01 6 25 llrlrl 01 X

12 lrrl 01 26 lrlrlr 01

13 lrrr 10 27 lrrrll 01

14 rlrl 01 28 rlrrlr 01

15 rrll 01 29 rrlllr 01

30 rrrlll 01

5 16 lllrr 01 4 10 lrlr 01 7 31 llrlrlr X
17 lrrlr 10 11 lrrl 10 31 lrlrlrr 10

18 lrrrl 01 12 rllr 10 32 lrrrllr 10

19 rlrlr 11 13 rlll 10 33 rlrrlrr 01

20 rrllr 10 34 rrlllrr 10

35 rrrlllr 10

5 14 lrlrr 10 8 36 lrlrlrrl 11

15 lrrll 01 37 lrrrllrl 10

16 rllrl 11 38 rlrrlrrr 10

17 rrlll 10 39 lrrrllrl 11

40 rrrllrll 10

both

• (1) Result level 7 will have 6 nodes: llrlrlr, lrlrlrr, lrrrllr, rlrrlr, rrlllr, rrrlll.

• (2) The llrlrlr result must come from left lllrr and right lrrl, but the latter

doesn’t exist.

So this is the end of a false trail, and the path llrlrlr must be removed

(i.e., all entries that are prefixes of llrlrlr).

The earlier pos numbers will also change, but we just continue without

the llrlrlr entry.

T. H. Merrett c©05/11

10

Fixing up the algorithm

By expanding the paths as lrlrlrrl, etc, we have

lost all the compression, so just use the original

and growing tries instead.

Analyzing the algorithm

Natural join complexity is O(n2) for two operands

of size n.

So note the double contributions of the operands

to the result, in all three phases of the cycle (left,

both, right). The doubling starts with a 11 in the

common attribute (“both” phase of the cycle),

right in cycle 1 for the example. It may double

again with further common 11s, and again, and so

on. Thus the algorithm is super-linear.

T. H. Merrett c©05/11

11

