
Separating Point Sets in Polygonal Environments

Erik D. Demaine Jeff Erickson
MIT Laboratory Department of Computer Science

for Computer Science U. of Illinois at Urbana-Champaign
edemaine@mit.edu jeffe@cs.uiuc.edu

Ferran Hurtado∗ John Iacono
Departement de Matemàtica Aplicada II Dept. of Computer and Information Science

Universitat Politècnica de Catalunya Polytechnic University
Ferran.Hurtado@upc.es jiacono@poly.edu

Stefan Langerman† Henk Meijer
Département d’Informatique School of Computing
Université Libre de Bruxelles Queen’s University
Stefan.Langerman@ulb.ac.be henk@cs.queensu.ca

Mark Overmars Sue Whitesides
Institute of Information and Computing Sciences School of Computer Science

Utrecht University McGill University
markov@cs.uu.nl sue@cs.mcgill.ca

ABSTRACT
We consider the separability of two point sets inside a poly-
gon by means of chords or geodesic lines. Specifically, given
a set of red points and a set of blue points in the interior of
a polygon, we provide necessary and sufficient conditions for
the existence of a chord and for the existence of a geodesic
path which separate the two sets; when they exist we also
derive efficient algorithms for their obtention. We study as
well the separation of the two sets using a minimum number
of pairwise non-crossing chords.

Categories and Subject Descriptors: F.2.2 [Nonnu-
merical Algorithms and Problems]

General Terms: Algorithms

Keywords: polygons, chords, geodesics, separability
∗Partially supported by DURSI 2001SGR00224, Acció Integrada
UPC-McGill (DURSI2004) and MCYT BFM2003-0368.
†Chargé de recherches du FNRS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 9–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

1 Introduction

Let us consider the following basic question: given two point
sets R and B in the interior of a polygon (the red points and
the blue points, respectively), is there a chord separating R
from B? This is the starting problem we study in this paper,
where we also consider several related problems.

Problems on separability of point sets and other geomet-
ric objects have generated a significant body of research in
computational geometry, and many kind of separators have
been considered, among others lines [11], circles [3, 4], con-
vex polygons [6] or wedges and strips [9]. A thorough study
is given in [14]. The main motivations underlying these dif-
ferent works arise in disciplines like spatial data organization
or statistical analysis or, more in general, wherever cluster-
ing or classification methods are useful.

In the plane (in fact in every dimension, but we focus here
on the bidimensional case) an ideal paradigm of separability
is by means of a single line, whenever possible. This parti-
tions the plane into two clean regions, and gives an according
easy classification rule for any query point. Nevertheless, if
we constrain our working space to the interior of a polygon,
it is easy to see that points belonging to the same popula-
tion may lie in many different cells (Figure 1, left). On the
opposite sense, it can also be the case that the two point
sets are separable simply by one chord, and that no simple
separation is available in the underlying plane if the polygon
boundary disappears (Figure 1, right).

On the other hand, the study of basic geometric structures

10

Figure 1. Left: red and blue points that are linearly separable in the
plane but generate many regions in the polygon. Right: a chord that
separates point sets which cannot be separated with a line in the
plane.

when only the interior of a polygon is taken in consideration
leads to deal with its geodesic properties, a topic that has
also been attracting a lot of attention; some examples are
the geodesic diameter [15], the relative convex hull [17], the
1-center problem [13, 16] and the geodesic Voronoi diagrams
[1, 2, 12].

In Section 2 we study, both from the structural and com-
putational viewpoint, the two more natural ways to sepa-
rate point sets in a polygon: by means of one chord, and by
means of a single geodesic line, i.e., a shortest path between
two boundary points. In fact, we prove that the necessary
and sufficient conditions for both kinds of separability are
closely related.

In Section 3 we study the problem of separating the two
point sets using as few non-crossing chords as possible. We
show that the problem is polynomially solvable when P is
very simple and that it becomes NP-complete when P may
have holes. In between, there is what we consider to be an
intriguing open problem.

Throughout the paper R and B are two given finite sets of
points inside a polygon P (the red points and the blue points,
respectively), and their cardinalities are denoted by r = |R|
and b = |B|. The points in R ∪ B are occasionally called
sites. The total number of sites and polygonal vertices is
denoted by n, and we use k for the number of reflex vertices
of P .

Let us finally mention that a related problem, the exis-
tence of ham-sandwich separators for two points sets in the
interior of a polygon, is studied in [5].

2 Linear separability

Let C be a simple curve connecting two points on the bound-
ary of a polygon P . C decomposes P into two closed subsets

C
+

and C
−

, with C
+ ∪ C

−
= P and C

+ ∩ C
−

= C. We

also write C+ = C
+ −C and C− = C

− −C. We say that C
separates two sets R and B if R ⊆ Cα and B ⊆ Cβ , where
α = +, β = − or α = −, β = +. We say that C weakly

separates two sets R and B if R ⊆ C
α

and B ⊆ C
β
.

When the curve C is a geodesic, the sets C
+

and C
−

are
called half-polygons. The geodesic convex hull GH(S) (also
called relative convex hull) for a set S of points inside a poly-
gon P is the intersection of all half-polygons that contain S.

Theorem 1. Two sets of points in a polygon P are sep-
arable by a chord if and only if their geodesic convex hulls
are disjoint.

Proof. Let C be a chord with endpoints p and q sepa-
rating sets R and B in P . A chord is a geodesic line, so by
the definition of geodesic convex hulls, GH(R) ⊆ C

α
and

GH(B) ⊆ C
β
, and so, GH(R) ∩ GH(B) ⊆ C. Moreover,

since C does not contain any points of R or B, GH(R) (resp.
GH(B)) cannot contain p or q unless that point is a reflex
vertex in Cα (resp. Cβ), and GH(R) (resp. GH(B)) cannot
contain an interior point of C unless it contains both p and
q. Note that p can only be a reflex vertex for at most one of
Cα and Cβ. This implies that GH(R) and GH(B) can not
intersect.

Now suppose GH(R) and GH(B) are disjoint. Let D
be the shortest geodesic with endpoints u ∈ GH(R) and
v ∈ GH(B), let s be some line segment from D, let � be the
bisector of s, and let m = s∩ �. Define the chord C = (p, q)
where p and q are the intersections of � and the boundary
of P closest to m in both directions. We claim that the
chord C separates GH(R) and GH(B). Suppose that on
the contrary, the boundary of GH(R) intersects the segment
mp, and let p′ be the intersection closest to m. Let Q be the
Jordan curve composed of the portion of D from m to u, the
boundary of GH(R) from u to p′, and the segment from p′

to m. Note that the boundary of P does not intersect the
interior of the region surrounded by Q, and so the geodesics
from m to u and from u to p′ (which only intersect in u)
are both concave. Consider the ray r from m, orthogonal
to the line up′, and intersecting that line in u′, and let u′′

be the first intersection of r and the geodesic from u to
p′. Since the geodesic from u to p′ is concave, the geodesic
distance from m to u, d(m, u) ≥ d(m, u′) > d(m, u′′), and
d(v, u) = d(v, m) + d(m, u) > d(v, m) + d(m, u′′) > d(v, u′′).
This implies that D was not the shortest geodesic from R
to B, a contradiction.

Lemma 1. If GH(R) and GH(B) do not intersect, the
two points u ∈ GH(R) and v ∈ GH(B) that minimize the
length of the geodesic path between u and v can be found in
O(n) time.

Proof. Consider a point v ∈ GH(B), and a point u ∈
GH(R). If the geodesic path from v to u (excluding u)
intersects GH(R) then u cannot be the the closest point
from v in GH(R). The same is true for GH(B) and v. Let

d̂(v, u) be the length of that geodesic path if it does not
intersect GH(R) and GH(B) and ∞ otherwise. Note that
the set of points u on the boundary of GH(R) for which

d̂(v, u) < ∞ forms a convex chain. Thus the matrix d̂(v, u)
for all vertices v of GH(B) and u of GH(R) has every row,
and every column unimodal and that a local minimum is a
global minimum, and so we can find the minimum in the ar-
ray after querying O(log2 n) entries using a two-dimensional

Fibonacci search. Querying d̂(v, u) can be done in O(log n)
time after O(n) time preprocessing using the data structure
of Guibas and Hershberger [8]. Once the minimum found,
we can report the shortest path between the two remaining
edges in linear time using the same data structure.

Corollary 1. There is a O(n log n) algorithm which
given sets R of red points and B of blue points in a sim-
ple polygon P , either finds a chord that separates R and B
or reports that no such chord exists.

Proof. Computing GH(R) and GH(B) can be done in
O(n log n) time [17] and verifying that they don’t intersect

11

can be done within the same time bounds. By the previous
lemma, we can find the shortest geodesic connecting GH(A)
and GH(B) in O(n) time. The separating chord chord can
then be found in O(n) time.

Theorem 2. Two sets of points in a polygon P are
weakly separable by a geodesic line if and only if the inte-
rior of their geodesic convex hulls are disjoint.

Proof. By the definition of a geodesic convex hull, if
a geodesic line C weakly separates R and B in P , then

GH(R) ⊆ C
α

and GH(B) ⊆ C
β
, and so GH(R) and GH(B)

have disjoint interiors.

On the other hand, if GH(R) and GH(B) have disjoint in-
teriors, then I = GH(R)∩GH(B), if not empty, is a curve.
Furthermore, it is a geodesic between its two endpoints u
and v. The boundaries of GH(R) and GH(B) are intersect-
ing on one side of u, and start with two disjoint line segments
sα and sβ on the other side. Draw a line segment from u
along a ray bisecting the angle between sα and sβ, until the
first intersection with P , and do the same for v. The re-
sulting curve I ′ is a geodesic line, and we claim it weakly
separates R and B. Indeed, suppose that the ray from u is
intersected by GH(R), and let u′ be the closest intersection
to u. The segment uu′ is not intersected by the boundary of
P , so that segment must be contained in GH(R), But then
uu′ must also be included into GH(B) since uu′ bisects the
angle between sα and sβ , and therefore uu′ ⊆ I which is a
contradiction.

Corollary 2. There is a O(n log n) algorithm which
given sets R of red points and B of blue points in a sim-
ple polygon P , either finds a geodesic that weakly separates
R and B or reports that no such geodesic exists.

Proof. Computing GH(R) and GH(B) can be done
in O(n log n) time and verifying that their interiors don’t
intersect can be done within the same time bounds. If
there is a separating chord, we can find it in O(n log n)
time using the algorithm from Corollary 1. Otherwise, find
I = GH(R) ∩ GH(B) in O(n log n) time using a linesweep
algorithm, and extend I as explained in Theorem 2.

Theorem 3. Given sets R of red points and B of blue
points in a simple polygon P , deciding whether any geodesic
(or any chord) in P separates r from B requires Ω(n log n)
time in the algebraic computation tree model.

Proof. We prove the lower bound by describing a linear-
time reduction from the integer set intersection problem:
Given two sets X and Y of integers, determine whether any
integer lies in both sets.1 Yao [18] proved that solving this
problem requires Ω(n log n) time in the algebraic computa-
tion tree model; the lower bound applies even if one of the
sets is given in sorted order. Let X be a set of n integers,
and let Y be a sorted sequence of n integers. We construct a
simple polygon P with O(n) edges as follows. The polygon
is a rectangle centered along the x-axis, with a thin crack of
width 1/8, mostly along the x-axis. For every integer y ∈ Y ,
the crack has a square bump of width 1/2 and height 1 cen-
tered at the point (y, 1/2). Next, we transform Y into a set

1We can avoid the restriction to integer sets by replacing the small
fractions in our construction with formal infinitesimals; however,
this change would limit our lower bound to algebraic decision
trees.

of n blue points {(y, 1/3) | y ∈ Y }. Finally, we transform
X into a set of n + 4 red points; a point at (x, 2/3) for each
x ∈ X, plus two additional red points near the bottom cor-
ners of the large rectangle. The reduction can be performed
in linear time in the algebraic computation tree model. If
X and Y are disjoint, then all the non-corner red points are
above the crack. In this case, the red and blue points can
be separated by a geodesic. In fact, by making a few small
adjustments to the ends of the crack, we can guarantee that
there actually is a separating chord; see Figure 2.

1 2 43 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2. The result of our reduction from X = {3, 4, 7, 9, 14, 16}
and Y = 〈1, 5, 8, 12, 15〉.

On the other hand, if X and Y are not disjoint, then one
of the bumps in the crack has both a red point r and a blue
point b immediately below it. Any geodesic that separates
these two points must pass below r and above b; however,
every separating geodesic is above both of the bottom corner
red points. It follows that the red and blue points cannot
be separated by any geodesic in P .

3 Separability by non-crossing chords

We consider next a natural generalization of one of the prob-
lems studied in Section 2: to separate the two point sets us-
ing as few non-crossing chords as possible. If crossings were
allowed and the points were placed closely together, the so-
lution would consist of a minimum set of lines separating
the sets in the plane, and finding such a set is known to be
NP-hard [7].

We show that the problem is polynomially solvable when
P is very simple, namely a pair of parallel lines or a trian-
gle, and becomes NP-complete when P may have holes. In
between, there is an intriguing open problem on which we
comment at the end of the paper.

3.1 Separating points inside a strip

Let R and B be sets of red and blue points in a vertical
strip. Theorem 1 implies that if R and B are separable by
a chord, then they have disjoint convex hulls. In this case,
R and B can be weakly separated by a chord that passes
through one red point and one blue point, and this canonical
separating chord can be found in O(n) time using linear
programming. In the more general case where more than
one chord is required to separate the red and blue points,
we define a canonical set of separating chords as follows. Say
that a chord is pinned if it passes through a point in R ∪ B
and trapped if it passes through a point in R and a point
in B. A fan is a set of chords with a common endpoint,
called its apex. A canonical fan is a fan where every chord
is pinned and at least one chord is trapped. Finally, a set of
chords that weakly separate R∪B is canonical if it consists

12

of a sequence of canonical fans whose apexes lie on alternate
sides of the strip. See Figure 3.

Figure 3. Left: red and blue points in a strip, separated by non-
crossing chords. Right: a canonical weak separation into the same
red and blue subsets; thicker chords are trapped.

Lemma 2. Let R and B be sets of red and blue points
in a strip. For any set of non-crossing chords that weakly
separate R and B, there is a canonical set of non-crossing
chords that weakly separates R and B into the same subsets.

Proof. We describe an algorithm to canonicalize any
weakly-separating set C of non-crossing chords. The algo-
rithm proceeds in two phases. In the first phase, we move
each chord in turn, from lowest to highest. Each chord is
moved downward as far as possible until it touches either
a point in R ∪ B or an endpoint of the next lower chord.
In the latter case, we rotate the chord around the common
endpoint until it touches a point in R ∪ B. At the end of
this phase, every chord is pinned; we call the point in R∪B
on any chord the pivot. In the second phase, the algorithm
maintains an active fan of chords with a common endpoint
on one side of the strip. The chords below the active fan
(if any) belong to an alternating sequence of canonical fans;
the apex of the active fan (if any) lies on the opposite side of
the strip from the highest canonical fan. Initially, the active
fan consists of just the lowest chord; we can choose either
endpoint as the apex. We lift the apex of the active fan,
maintaining contact between each chord in the fan and its
pivot point, until one of the following events occurs:

1. The top chord in the active fan touches an endpoint of
the next higher chord. In this case, we add the next
higher chord to the active fan and continue.

2. The bottom chord in the active fan touches the apex
of the next lower canonical fan. In this case, we freeze
the lowest chord, removing it from the active fan and
adding it to the next lower fan. If the active fan is now
empty, we use the next higher chord as the new active
fan.

3. A chord in the active fan touches a second point in
R∪B with the same color as its pivot. In this case, we
consider the new point to be the pivot of that chord
and continue.

4. A chord in the active fan touches a second point in
R ∪ B with the opposite color from its pivot. (This
includes the case where two chords in the fan coincide.)
In this case, that chord is now trapped. We freeze the
active fan, and the next higher chord (if any) becomes
the new active fan, with its apex on the opposite side
of the strip from the old active fan’s apex.

The process ends when the topmost chord is frozen, at which
point the entire set of chords is canonical.

Theorem 4. A minimal set of non-crossing chords that
weakly separate a set of red points from a set of blue points
in an infinite strip can be computed in O(n5) time.

Proof. The previous lemma implies that it is sufficient
to search for a minimal canonical set of non-crossing chords.
We compute such a set by considering all possible sequences
of non-crossing trapped chords, using a straightforward dy-
namic programming algorithm. As we show below, for
each such sequence, the minimum number of additional
non-trapped chords that must be added to weakly sepa-
rate the red and blue points can be computed in linear
time, after a global preprocessing stage. For any two non-
crossing trapped chords t− and t+, where t− is above t+, let
T (t−, t+, left) denote the minimum number of non-crossing
chords that weakly separate the red and blue points between
t− and t+, where (1) every chord shares either the left end-
point of t− or the non-left endpoint of t+; (2) any points
between t− and the next higher chord are the same color
as the left point on t−; and (3) any points between t+ and
the next lower chord are the same color as the left point
on t+. We define T (t−, t+, right) analogously. See Figure 4.
We can easily compute T (t−, t+, left) by drawing a chord

Figure 4. T (t−, t+, left) = 6 and T (t−, t+, right) = 8.

through every point in the trapezoid, either from the bot-
tom left corner or from the top non-left corner—only one of
these two chords lies entirely within the strip—and then dis-
carding any chord that passes through the same color point
as the chord above it, or the left point of the top chord.
With no preprocessing, this computation requires O(n log n)
time to sort points angularly around the opposite corners of
the trapezoid, plus O(n) time to scan through the sorted
list. We can speed this up by computing the arrangement
of lines dual to R ∪ B in a O(n2)-time preprocessing phase.
The angular order of R∪B around any point p is identical to
the order in which the lines dual to R∪ B intersect the line

13

p∗ dual to p; the Zone Theorem implies that we can com-
pute this order in O(n) time by simply walking around the
boundary of the zone of p∗. A similar algorithm computes
T (t−, t+, right) in linear time. Now for any trapped chord t,
let C(t, left) denote the size of the minimum canonical set of
chords that weakly separate the red and blue points on or
above t, where apex of the lowest fan is the left endpoint of
t, and the points between t and the next higher chord have
the same color as the left point on t. We define C(t, right)
analogously. Clearly, C(t, left) = 0 if every point above t has
the same color as the left point on t (in particular, if there
are no points above t). Otherwise, we have the recurrence

C(t, left) = 1 + min
t′

`
T (t, t′, left) + C(t′, right)

´

where t′ ranges over all trapped chords that lie entirely above
t. For each trapped chord t, the function C(t, left) depends
on O(n2) other trapped chords t′, and each T (t, t′, left) can
be evaluated in time O(n). Thus, not counting recursion, we
can compute C(t, left) in O(n3) time. Since there are O(n2)
trapped chords t, we can compute C(t, left)—and analo-
gously, C(t, right)—for all t in O(n5) time by straightfor-
ward dynamic programming. Finally, the minimum number
of non-crossing chords that separate R from B is the smaller
of C(−∞, left) and C(−∞, right), where −∞ denotes a sym-
bolic chord infinitely far below all of the points.

Our algorithm requires one slight modification if we desire a
minimal set of chords that strictly separate the red and blue
points, where no point in R ∪ B lies on a chord. Instead of
using the points themselves to define canonical chord sets,
we replace each point p with two perturbed points p� = p−
(0, ε) and p� = p+(0, ε), where ε is a symbolic infinitesimal.
Now a pinned chord passes through at least one perturbed
point p� and a trapped chord passes through two perturbed
points p� and q� of different colors. The remainder of the
algorithm is unchanged.

3.2 Separating points in a triangle

Now suppose the points lie inside a triangle. If the optimal
set of separating chords has a simple linear structure, then
a straightforward generalization of our strip algorithm can
find it in O(n5) time—we simply treat two edges of the tri-
angle as one side of the “strip”, with the third edge forming
the other side. However, the optimal separating set could
have a tree-like structure instead, with a single central re-
gion bounded by three chords and three (possibly empty)
subsets of triangle edges. In this case, more effort is re-
quired, in part because we cannot assume that any of these
three chords passes through a point of each color. Figure 5
shows a set of red and blue points separated by three non-
crossing chords; if we require some chord to pass through
both a red point and a blue point, then at least four chords
are required. To find an optimal solution of this form, we
must modify our definition of “canonical” separating sets.
We still require that the chords comprise three sequences of
alternating fans, where each fan contains either a trapped
chord or bounding chord of the central region. The cen-
tral region is bounded by three chords, which can be either
trapped or merely pinned. However, any pinned chord must
share an endpoint with an adjacent chord, and two pinned
chords can only share an endpoint if all three central chords
are pinned and form a triangle, as in Figure 5.

Figure 5. Separating points in a triangle. There is no separating set
of three chords where one chord hits points of both colors.

Theorem 5. A minimal set of non-crossing chords that
weakly separate a set of red points from a set of blue points
in a triangle can be computed in O(n6) time.

Proof. The algorithm begins by computing the optimal
strip-like solution in O(n5) time, and only then considers
tree-like solutions. There are O(n3) pinned triangles. We
can compute the optimal decomposition outside any pinned
triangle in O(n3) time, by determining the trapped chord
closest to each pinned triangle edge; the best decomposition
beyond that trapped chord was already computed during
the strip-like phase of the algorithm. To handle the case
where the central region has a trapped bounding chord, we
introduce a pair of ghost chords. These ghost chords form
a triangle with the trapped chord, and exactly one of the
ghost chords passes through an input point. There are O(n3)
ghost chords, and we can compute the optimal decomposi-
tion outside each ghost chord in O(n3) time, exactly as we
did for trapped triangle edges. (The ghost chords do not
actually contribute to the cost of the solution.) Finally, for
any trapped chord, we can find the best pair of ghost chords
in O(n) time.

For any constant t, a similar dynamic programming algo-
rithm can be used to separate red and blue points in any
simple t-gon, or any polygon with holes with a total of t
edges, in time nO(t). As t increases, the algorithm considers
chords determined by larger subsets of input points. Since
the algorithm is inefficient even for very small value of t, we
omit further details.

3.3 Polygons with holes
Theorem 6. Finding the minimal number of non-

intersecting chords that separate blue from red points in a
polygon with holes is NP-hard.

Proof. Let Exp(x) be a boolean expression in conjunc-
tive normal form with n variables and m clauses such that
each clause has three literals. Let GExp be the graph (V, E)
where V consists of the variables and clauses of Exp(x),
and (xi, cj) ∈ E if and only if variable xi occurs in clause
cj . If GExp is planar, then deciding whether there is a as-
signment of true and false values for x such that Exp(x) is

14

true is known as the planar 3SAT problem. If we also require
that each clause has exactly one true literal, the problem is
known as planar 1-in-3SAT. Laroche [10] proved that pla-
nar 1-in-3SAT is NP-complete. We prove our theorem by
describing a polynomial-time reduction from this problem.

We first show how to create a polygon P and a set of blue
and red points from a planar embedding of the graph GExp.
Figure 6 shows the encoding of a variable. We imagine that

xivariable xi

inside

outside

xi

xi

xi

xi

xi

Figure 6. A variable contained in six clauses; black and white dots
represent blue and red points respectively.

the boundary of the variable gadget is oriented clockwise.
The inside of the variable is the connected portion of the
boundary that bounds a hole; the remainder of the bound-
ary is the outside. There are exactly two minimal sets of
chords that separate the blue and red points within each
variable gadget; these correspond to assigning the values
true and false to the variable. The true setting consists of
chords that from the inside of the variable gadget go in clock-
wise direction across to the outside; in the false setting, the
chords are oriented counterclockwise. Figure 7 shows two
close ups of part of a variable, one set to true and one set
to false. We assume that the true and false settings each
consist of k chords. Notice that any other set of chords that
separate the red and blue points in a variable gadget requires
more than k chords.

Clauses are encoded as equilateral triangles that meet its
three variables in the corners as shown in Figure 8. A bump
is placed on each side of the triangle to prevent chords from
intersecting more than one variable gadget. A variable gad-
get meets a clause gadget on its outside boundary. At the
place where they touch, there is a little connection between
the variable and the clause. If a clause contains a variable
xi, then the gadget for variable xi approaches the triangle
with an angle of 30◦. If a clause contains x̄i, then the gadget
for variable xi approaches the triangle with an angle of 90◦.
Since GExp is planar, the variable and clause gadgets can
be connected to form a polygon P with holes.

Notice that if the gadget of xi is set to true in a clause
containing xi, or if the gadget of xi is set to false in a clause
containing x̄i, then two parallel chords from xi’s gadget cross
the triangle. These two parallel chords separate the three
blue points in the center of triangle from the remaining red
points in the triangle.

We now show that Exp(x) can be satisfied with exactly
one true literal per clause if and only if the blue and red
points in P can be separated by exactly kn non-intersecting
chords.

outside

inside

false

setting

outside

inside

true

setting

xi

xi

Figure 7. True and false settings of a variable.

First, suppose Exp(x) can be satisfied with exactly one
true literal per clause. We can separate the blue from the
red points in each variable xi with k chords, depending on
the truth value of xi. Since each clause has exactly one
true literal, only the corresponding variable has two parallel
chords that pass through through the triangle. So we have
separated all blue from all red points in the polygon using
kn chords.

On the other hand, suppose kn chords suffice the separate
the blue and red points. Each variable requires at least k
separating chords, and the shape of the clause gadget im-
pose that chords intersect no more than one variable gadget.
This implies there are exactly k chords per variable. There-
fore each variable is set to true or false. The blue points
at the center of each clause gadget are separated from the
red points in that gadget, which implies that each clause
contains exactly one true literal.

We conclude this section remarking that between the re-
sults described in Theorems 4, 5 and 6 there is a gap raising
an intriguing question:

Open Problem 1. What is the complexity of finding a
minimal set of non-crossing chords that weakly separate two
point sets contained in the interior of

(a) a convex k-gon? (with k as part of the input)

(b) a disk?

(c) a simple polygon?

15

xi

xh

xj

Figure 8. The clause (x̄h ∨ xi ∨ x̄j).

Acknowledgement

This research was initiated at the McGill Workshop on
Instance-Based Learning at Belairs Marine Biology Insti-
tute, Jan. 31–Feb.6, 2003. The authors would like to
thank the workshop organizer Godfried Toussaint and the
other workshop participants, namely, Greg Aloupis, Prosen-
jit Bose, David Bremner, Vida Dujmovic, Danny Krizanc,
Pat Morin, Tom Shermer, and David Wood for helpful dis-
cussions and for providing a stimulating working environ-
ment.

References
[1] B. Aronov. On the geodesic Voronoi diagram of point

sites in a simple polygon. Algorithmica, 4:109–140,
1989.

[2] B. Aronov, S. J. Fortune, and G. Wilfong. Furthest-site
geodesic Voronoi diagram. Discrete & Computational
Geometry, 9:217–255, 1993.

[3] B. K. Bhathacharya. Circular separability of planar
point sets. In G. T. Toussaint, editor, Computational
Morphology. North Holland, Amsterdam, 1988.

[4] J.-D. Boissonnat, J. Czyzowicz, O. Devillers, J. Urrutia,
and M. Yvinec. Computing largest circles separating
two sets of segments. International Journal of Compu-
tational Geometry and Applications, 10(1):41–53, 2000.

[5] P. Bose, E. D. Demaine, F. Hurtado, J. Iacono,
S. Langerman, and P. Morin. Geodesic ham-sandwich
cuts. In Proceedings of the 2004 ACM Symposium on
Computational Geometry (SoCG 2004), 2004.

[6] H. Edelsbrunner and F. P. Preparata. Minimum polyg-
onal separation. Information and Computation, 77:218–
232, 1988.

[7] R. W. Freimer. Investigations in Geometric Subdivi-
sions: Linear Shattering and Cartographic Map Col-
oring. PhD thesis, Cornell Universit, 2000.

[8] L. J. Guibas and J. Hershberger. Optimal shortest path
queries in a simple polygon. In Proceedings of the third
annual symposium on Computational geometry, pages
50–63. ACM Press, 1987.

[9] F. Hurtado, M. Noy, P. A. Ramos, and C. Seara. Sep-
arating objects in the plane with wedges and strips.
Discrete Applied Mathematics, 109:109–138, 2001.

[10] P. Laroche. Satisfiabilite de 1-parmi-3 planaire est np-
complet. C.R. Acad. Sci. Paris, pages 389–392, 1993.

[11] N. Megiddo. Linear-time algorithms for linear program-
ming in r3 and related problems. SIAM Journal on
Computing, 12(4):759–776, 1983.

[12] E. Papadopoulou and D. T. Lee. A new approach for the
geodesic voronoi diagram of points in a simple polygon
and other restricted polygonal domains. Algorithmica,
20(4):319–352, 1998.

[13] R. Pollack, M. Sharir, and G. Rote. Computing the
geodesic center of a simple polygon. Discrete & Com-
putational Geometry, 4:611–626, 1989.

[14] C. Seara. On Geometric Separability. PhD thesis, Univ.
Politècnica de Catalunya, June 2002.

[15] S. Suri. Computing geodesic furthest neighbors in sim-
ple polygons. Journal of Computer and System Sci-
ences, 39:220–235, 1989.

[16] G. T. T. Asano. Computing the geodesic center of a
simple polygon. In Discrete Algorithms and Complex-
ity, Perspectives in Computing, pages 65–79. Academic
Press, 1987.

[17] G. T. Toussaint. An optimal algorithm for computing
the relative convex hull of a set of points in a polygon. In
Signal Processing III: Theories and Applications, Proc.
EURASIP-86, Part 2, pages 853–856, September 1986.

[18] A. C. Yao. Lower bounds for algebraic computation
trees with integer inputs. SIAM Journal on Comput-
ing, 20(4):655–668, 1991.

16

