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Abstract— Minimum distance localization is the problem
of finding the shortest possible path for a robot to elim-
inate ambiguity regarding its position in the environment.
We consider the problem of minimum distance localization
in self-similar environments, where the robot’s sensor has
limited visibility, and describe two randomized algorithms
that solve the problem. Our algorithms reduce the risk of
requiring impractical observations and solve the problem
without excessive computation. Our results are validated using
numerical simulations.

I. INTRODUCTION

In this paper we consider the problem of global local-
ization, that is localization of a robot without an initial
estimate of its position. In general, localization of a mobile
robot may require motion to new vantage points to resolve
ambiguity about the robot’s position. This is true for most
sensors and, in particular, for range sensors, even idealized
ones, which is the case we consider here. The fundamental
cause of such ambiguity is that some regions of the
environment may be locally indistinguishable. Even with a
perfect map, a perfect compass, and a perfect range sensor
in a 2-dimensional planar world, the problem of selecting
an optimum path for localization is difficult. Computing
a good approximation to the optimal localizing path is
tractable, but nevertheless computationally complex.

Localization is one of the most fundamental problems
in mobile robotics and is the essence of more elaborate
procedures such as mapping, simultaneous localization and
mapping, and task execution.

The existing results regarding the complexity of global
localization, and most other results regarding the complex-
ity of related problems, deal with the case of ideal range
sensors with infinite range. Likewise, existing algorithms
that explicitly solve for, or approximate, the ideal path also
deal with sensors with no limits on their maximum range.

In our previous work [7] we introduced two randomized
approximation algorithms that solve minimum distance lo-
calization, namely, the common overlay localization (COL)
algorithm and the useful region localization (UAL)1 algo-
rithm. In this paper, we extend these algorithms to consider
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the feasibility of minimum distance global localization
given a range sensor with bounded maximum range. This
problem is fundamentally more difficult than the traditional
infinite-range problem due to the reduced information
available to the robot and hence the much greater potential
for ambiguity. Our approach to the problem is stochastic in
nature, and demonstrates that good approximations to an
optimal path can be feasibly computed.

A. Outline

In the next section, we briefly discuss related work.
Section 3 provides a formal description of the problem
and states the assumptions underlying our approach. In
Section 4 we review our two algorithms, COL and UAL,
and explain how we incorporated the constraint of limited
sensor visibility into them. Experimental results from sim-
ulation are presented in Section 5. Finally, we close with
a discussion of open problems, directions for future work
and conclusions from our results.

II. RELATED WORK

Dudek, Romanik, and Whitesides [2] show that min-
imum distance localization is NP-hard and propose an
approximation algorithm that assumes perfect sensor vis-
ibility. One implication of the perfect idealized sensor
model is that the problem will only get more difficult with
more realistic, error-prone sensors. That work exploits a
result by Guibas, Motwani, and Raghavan [4] who present
a technique for preprocessing a map polygon P so that
given a robot’s visibility polygon V the set of points in
P whose visibility polygon is congruent under translation
to V is returned. Here, too, perfect sensor visibility is
assumed. Schuierer [6] proposes a technique that uses
geometric overlay trees to speed up the implementation
of the greedy localization strategy put forth by [2]. While
his approach reduces the time and space complexity, no
implementation results are given, and it is unclear how to
extend the technique to address more practical issues such
as limited sensor visibility. Kleinberg [5] approaches robot
localization by modeling the environment as a bounded
geometric tree.

Brown and Donald [1] describe algorithms for robot
localization that allow for uncertainty in the data returned
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Fig. 1. Visible vertices from location A. The visibility data at locations
A and B are the same.

by the range sensor. Fox, Burgard, and Thrun [3] use
Markov localization to determine the position of a mobile
robot from sensor data. In that work, global localization
is achieved, but the length of the localizing trajectory
relative to the optimum is not considered. Several authors
have considered action and localization in a compound
setting where the effects of actions can be accounted for
probabilistically. In particular, techniques such as Markov
localization and its derivatives are able to predict the belief
states that may ensue from various actions [3]. Long-range
path planning using such methods remains problematic,
however, due to the large state spaces involved. Moreover,
intractability of optimum length decision planning has
already been well established.

In [7] we describe the COL and UAL algorithms for
the case of unlimited sensor visibility and determine their
complexity. We motivate our strategy of randomized sam-
pling and present experimental results that show that our
algorithms are effective for the ensemble of environments
evaluated. The performance of our algorithms is demon-
strated to improve rapidly with the number of random
sample points used: typically, a limited number of samples
is sufficient to obtain a near-optimal length localization
trajectory.

III. PROBLEM SPECIFICATION

In this section we formally define the localization prob-
lem and state our assumptions about the robot and its
environment. We are given a random environment modeled
by an n-vertex simple polygon P without holes positioned
somewhere in the 2D plane. A mobile robot is placed at
an unknown initial location within P , for which it has a
map. First, the robot must determine if its initial location
is unique by sensing its surroundings and matching the
resulting visibility data W to the map of the environment.
Given P and W , the robot must generate the set H of all
hypothetical locations pi ∈ P such that the visibility at pi

is congruent under translation to W . Next, the robot must
determine its true initial location by sensing and traveling
in order to eliminate all hypothetical locations but one from
H , while minimizing the distance traveled.

The robot is assumed to be a point robot moving in this
static, 2D, obstacle-free environment. The robot is able to
make error-free motions between arbitrary locations in the
environment. The movement of the robot is restricted to the
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Fig. 2. What the robot sees under a range of visibilities.

inside and along the boundary of the environment. As well,
it is able to determine its orientation; otherwise, it would
be impossible for the robot to uniquely determine its exact
location in an environment with non-trivial symmetry such
as a square 2.

The robot’s sensor behaves using a “perfect” sensor in
that it can precisely detect distances to those points on the
boundary of the environment for which the robot has an
unobstructed line of sight. However, the distance the sensor
can “see” can be bounded by a constant Z. Consequently,
the sensor can measure distances to those points on the
boundary of the environment for which the robot has an
unobstructed line of sight and which lie within a distance
Z.

The visibility data W sensed by the robot is composed of
the counter-clockwise ordering of vertices and edges seen
by the robot (see Figure 1). Geometric relationships among
the data such as vertex angles, distances, adjacencies,
and the robot’s relative position with respect to the data
sensed are available. W can also be regarded as a visibility
polygon. We assume non-null input visibility data W .

When the sensor visibility is limited, the robot can only
observe a subset of the set of vertices and edges comprising
its environment that it would otherwise see with unlimited
visibility. Let Si denote the set of vertices seen by the
robot at visibility di. In general, for visibility values d1 <
d2 < d3 < · · · < d∗, where d∗ represents unlimited or
infinite visibility, the corresponding sets of vertices seen by
the robot satisfy the following relationships: S1 ⊂ S2 ⊂
S3 ⊂ · · · ⊂ S∗. Consider Figure 2. The robot, labeled
L, is situated at the center of the polygonal environment.
With visibility d1 the robot sees none of the vertices of the
polygonal environment. With visibility d2 the robot sees
only those vertices represented by squares. With visibility
d3 the robot sees the vertices represented by squares as well

2Note: the robot could still solve the problem up to rotational symmetry.
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Fig. 3. Overlay arrangement for the situation shown in Figure 1.
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Fig. 4. Shaded area represents the overlay intersection region OI .
Random points are chosen within this region.

as those represented by triangles. With unlimited visibility
d∗ the robot is able to see all the vertices of the polygon
but not beyond since it cannot see through walls or solid
edges.

IV. APPROACH

The original COL and UAL algorithms assume perfect
sensor visibility. We now incorporate the constraint of
limited sensor visibility into these algorithms. UAL is a
variation of COL that is more judicious in selecting where
to make observations. Before we proceed to describe the
steps taken to address localization under limited visibility,
we will first briefly describe some key definitions and
procedures common to both the COL and UAL algorithms
(see [7] for more details).

Our localization algorithms comprise two phases: hy-
pothesis generation and hypothesis elimination. Given an
environment P and visibility data sensed by the robot W ,
the hypothesis generation phase determines the set H of
all hypothetical locations p1, p2, . . . , pk ⊂ P such that
the visibility data V is(pi) computed at pi matches W for
i = 1, . . . , k (see Figure 1). The hypothesis elimination
phase begins by computing an overlay arrangement cen-
tered around a reference point or origin (see Figure 3). We
consider only the connected component of the intersection
region of the overlay arrangement that contains the origin
since it is the area known to exist in all hypotheses
(see Figure 4). We will refer to this connected overlay
intersection component containing the origin as OI .

A. Hypothesis Elimination

A set R of random points is chosen by randomly sam-
pling the interior of OI according to a uniform distribution
(see Figure 4). R is then evaluated to see if any of the
random points contained in R prove useful - i.e. if sensing
at this location is guaranteed to yield new information that
distinguishes among the different hypothetical locations.

For each random point picked, r ∈ R, a value function
V alue(r) = info/distanceOI is computed, where info is
the expected number of hypotheses that could be eliminated
at r, assuming all the hypothesized initial locations are
equally likely, and distanceOI is the shortest path trajec-
tory, constrained to lie within OI , from the robot’s initial
location at the origin of the overlay to r.

We calculate info for a point r as follows. We as-
sume that all hypotheses are equally likely. We say two
hypotheses hi and hj are equivalent at r if V is(hi, r)
is congruent to V is(hj , r) and has the same orientation.
V is(hi, r) refers to the visibility data computed at a point
z such that the relative position of z with respect to
the hypothetical location pi is equivalent to the relative
position of r with respect to the overlay origin. If there
exist b equivalence classes of hypotheses at r of sizes
s1, s2, . . . , sb respectively, where the total number of hy-
potheses k = s1 + s2 + · · · + sb, then

info(r) = (s1/k)(k − s1) + (s2/k)(k − s2) + · · · +
(sb/k)(k − sb)

The robot is moved to the random point r′ in OI with the
highest non-zero value of V alue(r′). Those hypotheses hi

where V is(hi, r
′) does not match the visibility data sensed

by the robot at its new location are ruled out.

B. Limited Visibility

All visibility computations and comparisons are re-
stricted by the distance limit d beyond which the robot is
assumed to not see. When computing the initial visibility
data W sensed by the robot, those vertices and edges lying
outside the circular area of radius d centered at the robot’s
initial location are not included. Likewise, in the hypothesis
generation phase, we only look for patterns of vertices
that conform to W as calculated incorporating the distance
limit. During hypothesis elimination, the robot’s visibility
at a particular random point is calculated in the same way
as W . In addition, the distance limit is taken into account
when we determine which random points provide non-zero
information.

C. Common Overlay Localization Algorithm

We now present how we incorporated the limited sensor
visibility constraint into our COL algorithm. Given an input
polygonal environment P and a robot placed at an unknown
initial location in P , the COL algorithm is as follows.

1) Sense visibility data W from the robot’s current
unknown initial location. Only vertices and edges
lying within the circular area of radius d centered
at the robot’s initial location are included.

2) Generate the set of all hypothetical locations H in the
environment P that match the visibility data sensed
W . The matching pattern of vertices and edges seen
from each hypothetical location must lie within the
circular area of radius d centered at the hypothetical
location.



3) Choose an arbitrary hypothetical location in H as the
origin.

4) Construct an overlay arrangement centered on the
origin.

5) Compute the connected overlay intersection compo-
nent containing the origin, OI .

6) Randomly choose a predetermined number of loca-
tions or points within OI .

7) For each random point picked, r, compute the value
function V alue(r) = info/distanceOI . When com-
puting info for a random point the visibility range
d is taken into account. Only points that can see
landmarks within a radius d are assigned non-zero
info.

8) Observe that at each overlay intersection, there is
latent information to be gained that is guaranteed to
eliminate some hypotheses. Therefore, if none of the
random points yield non-zero info, then the number
of random points required is increased and chosen all
over again within the current overlay intersection area
OI . Steps 6, 7 and 8 are repeated for a predetermined
number of trials 3.

9) Move the robot to the random point r′ in the overlay
with the highest non-zero value of V alue(r′).

10) Now, eliminate hypotheses by comparing visibility
data sensed by the robot at r′ with the visibility data
computed at all the equivalent random points corre-
sponding to all the active hypotheses. Visibility data
must be computed taking into account the visibility
range d as described above.

11) Call the set of eliminated hypotheses E, and compute
the overlay arrangement with the reduced set of
hypotheses H −E. Repeat Steps 3-10 until only one
hypothesis, corresponding to the true initial location
of the robot, is left in H − E.

D. Useful Region Localization Algorithm

The UAL algorithm differs from the COL algorithm with
respect to the region where random points are chosen. We
determine precisely the portions of OI where any random
point chosen is guaranteed to provide new information.

An internal edge of an overlay intersection area OI is
defined as an edge (one of many) that separates the inside
of OI from other parts of the overlay arrangement, as
opposed to those edges of OI that pertain to the outer
silhouette of the overlay arrangement which separates the
inside of OI from the rest of the 2D plane (see Figure 5).
Given a polygon P the weak visibility polygon W (e) of an
edge e ∈ P is defined as the set of all points y ∈ P that
are visible from some point on e (see Figure 6). Once we
have determined the set of internal edges of OI , the useful
portions U of OI can be computed by taking the union of

3In our implementation, we terminate the algorithm if no useful points
are obtained after this predetermined number of trials. Hence we proceed
to the next step only if useful points exist.
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Fig. 5. e1 and e2 are internal edges.

e

Fig. 6. Shaded region represents the weak visibility polygon of edge e.

all the weak visibility polygons of all the internal edges of
OI .

Figure 7 depicts the useful region of polygon P . Steps
1-5 of the UAL algorithm remain the same as in the
COL algorithm. Following these steps, the UAL algorithm
incorporating the constraint of limited sensor visibility is
as follows.

6) Compute the useful region U of OI . The weak
visibility polygons comprising U must be clipped
by a factor d. This is accomplished by aligning an
infinitely long rectangle along each internal edge,
where the width of the rectangle (the axis aligned
to the width is perpendicular to the internal edge) is
equivalent to the distance limit d. The intersection
of the rectangle with the original weak visibility
polygon produces the clipped polygon.

7) Randomly choose a predetermined number of loca-
tions or points within U (see Figure 7).

8) For each random point picked, r, compute the value
function V alue(r) = info/distanceOI . When com-
puting info for a random point the visibility range
d is taken into account. Only points that can see
landmarks within a radius d are assigned non-zero
info.

9) Move the robot to the random point r′ in the overlay
with the highest non-zero value of V alue(r′). Note
that we are guaranteed that all the random points
chosen provide non-zero information for hypothesis
elimination. As a result, we do not need to choose
more random points repeatedly as is done in the COL
algorithm.

Finally, steps 10 and 11 of the UAL algorithm also
remain the same as those in the COL algorithm.
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Fig. 7. Shaded area represents the useful region for the case of unlimited
visibility. Random points are chosen within this region.

V. RESULTS

A. Performance of Common Overlay Localization Algo-
rithm

We performed the following set of experiments to mea-
sure the effect of limited sensor visibility on the localization
path length for two weighted decision strategies. The first
decision strategy is the strategy that we have described in
the previous section. Here, the information gain of each
random point is weighted by its distance from the robot’s
initial location. As before, we will continue to refer to
this strategy as the weighted strategy, or the standard
weighted strategy. The second decision strategy, which we
will refer to as the hybrid strategy, operates by weighting
the information gain at each random point by its distance
from the robot’s current location.

Twenty simulated office environments of average number
of vertices approximately 400 were generated for this
purpose. For each of the 20 environments, three initial robot
locations were randomly selected. Each quantity of random
points was repeated twice to balance out any abnormal
distributions. The total number of experimental trials was,
therefore, 20 × 3 × 2 = 120 trials 4. Note that the size of
each grid cell in the simulated office environments we used
is 100 pixel units.

Figure 8 depicts the average path length obtained for
both the standard weighted strategy as well as the hybrid
strategy with unlimited visibility. While both strategies
exhibit an improvement in performance as the number of
random points is increased, the hybrid strategy produces
significantly shorter path lengths.

Figures 9, 10, and 11 show the path lengths obtained
for both strategies with visibility ranges 500, 200, and 90
pixel units, respectively. For the limited sensor visibility
value of 500, the path length for the standard weighted
strategy gets shorter as the number of points is increased.
Somewhat curious, however, is the fact that for visibility
values 200 and below the path length for the standard
weighted strategy appears to be more or less the same,
even as the number of random points are increased. We
will explain this behavior presently.

Figures 12 and 13 plot the average path length produced
by the two strategies with decreasing visibility range and

4This set of trials will be used repeatedly for the experiments described
in the remainder of this paper.
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Fig. 8. Weighted versus hybrid strategies for COL with unlimited
visibility. 120 trials were performed.
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Fig. 9. Weighted versus hybrid strategies for COL with visibility range
500. 120 trials were performed.

number of random points 40 and 250, respectively. As
expected, the results indicate that as the visibility gets
poorer the path lengths for effective localization get longer.
The poorer the robot’s vision, the closer it has to get to a
distinguishing feature in order to eliminate hypotheses. As
a result, it ends up traveling longer trajectories.

In terms of minimizing path length, the hybrid strategy
soundly outperforms the standard weighted strategy for all
the values of visibility and the different numbers of random
points. In fact, the difference in path length between the
two decision strategies seems to get larger as the visibility
gets poorer. Since the overlay intersection gets increasingly
larger as hypotheses are ruled out, it follows that the robot
moves progressively further away from its initial location
each time it makes a decision to eliminate hypotheses.
If the distance of a potential destination point is always
measured from the robot’s initial location, then it is possible
that this could lead to extreme “zigzagging” of the robot’s
trajectory, depending on the shape of the environment and
the placement of the initial location within the environment
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Fig. 10. Weighted versus hybrid strategies for COL with visibility range
200. 120 trials were performed.
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Fig. 11. Weighted versus hybrid strategies for COL with visibility range
90. 120 trials were performed.

(this is depicted in Figure 17). In addition, the distance
traveled by the robot to observe a disambiguating feature
gets larger as visibility decreases.

On the other hand, a weighted strategy that directs the
robot to move to the most informative point nearest to its
current location might avoid such a zigzagging effect on the
robot’s trajectory. Hence, as the visibility gets poorer the
hybrid strategy produces path lengths that are shorter than
those of the standard weighted strategy by a wider margin.
Unlike traditional heuristics which have been demonstrated
to yield potentially exponential path lengths [2], we see no
compelling rationalization for a similar theoretical worst-
case bound for the hybrid strategy.

B. Performance of Useful Region Localization Algorithm

Experiments were carried out to evaluate the perfor-
mance of the UAL algorithm using weighted strategy with
respect to different numbers of useful random points as well
as various values of limited sensor visibility. We performed
120 trials with simulated office environments as in the case
of the COL algorithm.

Figure 14 plots the variation of average path length
with increasing numbers of useful random points, for
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Fig. 12. Performance of weighted versus hybrid strategies for COL as
visibility decreases, with 40 random points. The results are based on 120
trials.
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Fig. 13. Performance of weighted versus hybrid strategies for COL as
visibility decreases, with 250 random points. The results are based on 120
trials.

different visibility ranges. Poorer visibility produces longer
path lengths. And unlike the COL algorithm, with any
visibility range, increasing the number of random points
leads to shorter path lengths. Figure 15 shows the effect
of deteriorating visibility on the average path length for
500 useful points as well as for 1 useful point. Figure 16
compares the performance of the COL and UAL algorithms
with decreasing visibility range, for 250 random points.

When we examine the results for limited sensor visibil-
ity, we find that upwards of 80 random points, the UAL
algorithm produces path lengths that are at least equal to
those produced by the COL algorithm, and at times much
shorter. For example, in Figure 16 the average path length
obtained for the UAL algorithm starts out to be longer
than that of the COL algorithm but very quickly becomes
much shorter than that of the COL algorithm for lower
visibility range values. As visibility gets poorer, the size of
the useful region gets smaller since the robot must approach
the disambiguating landmarks at very close proximity in
order to see them. In such circumstances, choosing points
from the entire overlay intersection region might result in
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Fig. 14. Performance of the UAL algorithm using weighted strategy
with different visibility ranges. The results are based on 120 trials.
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Fig. 15. Performance of the UAL algorithm using weighted strategy
with only 1 useful random point versus 500 useful random points. The
results are based on 120 trials.

very few of them actually coming from the useful region.
The path lengths generated by the COL algorithm for the

entire range of random point quantities for limited visibility
values 200 and below appear to be more or less the
same. The COL algorithm functions by selecting increasing
numbers of points in iterations until some are useful.
Since the useful region itself gets smaller as visibility is
reduced, the number of useful points uncovered by the
COL algorithm remains approximately the same regardless
of whether it starts off with a relatively small number of
points which are augmented in iterations in order to yield
useful ones, or it starts off with a relatively large number
of points which might not require much reinforcement in
order to uncover some that are useful. Incrementing the
total number of points chosen in the overlay intersection
will tend to increase the number that prove useful, but the
relative increase is not sufficient to really make a difference
to the path length.

It follows that the more limited the visibility of the
robot’s sensor, the more the number of hypothetical lo-
cations that are likely to be generated. As well, the length
of the localization trajectory is likely to be longer. The
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Fig. 16. Performance of the UAL versus COL algorithms using weighted
strategy as visibility decreases, with 250 random points. The results are
based on 120 trials.

increased length of the localization trajectory can be at-
tributed to the robot’s “short-sightedness” which requires
it to move much closer to distinguishing features in order to
be able to see them than otherwise. Simply having a larger
number of hypotheses to eliminate does not necessarily
imply longer path lengths.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented two algorithms, COL
and UAL, for minimum distance localization incorporating
limited sensor visibility. The algorithms produce localizing
paths for a robot that are more feasible, both computa-
tionally and practically, than those that would be obtained
from earlier theoretical analyses. In contrast to prior work,
these algorithms and performance analyses are based on
expected-time behavior rather than worst-case theoretical
bounds.

Inevitably, the use of a sensor with bounded range
makes the minimum distance localization problem more
difficult than it would be with an infinite-range sensor.
This arises due to the fact that less of the environment
may be visible from many vantage points, and hence more
travel may be necessary to resolve ambiguity. In this work
we do not model the additional complications that would
arise due to sensor noise, imperfections in the robot’s
map, or odometry error. While the effects of noise can
be readily accommodated, finding a model that would
take into account odometry errors remains an interesting
open problem. In order to model explicitly the process
under odometry error entails not only a suitable model of
localization accuracy, but also a choice regarding how to
weight large-scale ambiguity versus local pose estimation
errors.
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