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A USEFUL FORM OF UNITARY MATRIX OBTAINED FROM ANY
SEQUENCE OF UNIT 2-NORM n-VECTORS∗

CHRISTOPHER C. PAIGE†

This is dedicated in memory of Charles Sheffield. I did not meet him, but one insight he
made has contributed greatly to the interests of our community, as this paper will reveal.

His friend Gene Golub encouraged this dedication shortly before Gene died.

Abstract. Charles Sheffield pointed out that the modified Gram–Schmidt (MGS) orthogonal-
ization algorithm for the QR factorization of B ∈ R

n×k is mathematically equivalent to the QR
factorization applied to the matrix B augmented with a k × k matrix of zero elements on top. This
is true in theory for any method of QR factorization, but for Householder’s method it is true in
the presence of rounding errors as well. This knowledge has been the basis for several successful
but difficult rounding error analyses of algorithms which in theory produce orthogonal vectors but
significantly fail to do so because of rounding errors. Here we show that the same results can be
found more directly and easily without recourse to the MGS connection. It is shown that for any
sequence of k unit 2-norm n-vectors there is a special (n+k)-square unitary matrix which we call
a unitary augmentation of these vectors and that this matrix can be used in the analyses without
appealing to the MGS connection. We describe the connection of this unitary matrix to Householder
matrices. The new approach is applied to an earlier analysis to illustrate both the improvement in
simplicity and advantages for future analyses. Some properties of this unitary matrix are derived.
The main theorem on orthogonalization is then extended to cover the case of biorthogonalization.
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1. Introduction. We are interested in any matrix or vector algorithm that in
theory produces a sequence of orthonormal n-vectors from a given sequence of n-
vectors by first orthogonalizing each successive given vector against some of the al-
ready computed orthonormal vectors and then normalizing the resulting orthogonal
vector. An example is modified Gram–Schmidt (MGS); see, for example, [10, section
5.2.8] and [5]. With finite precision computation these algorithms produce a sequence
of n-vectors which can have a severe loss of orthogonality but where each vector has
a 2-norm that is almost 1. Let the columns of Vk ≡ [v1, . . . , vk] ∈ Cn×k be such a
sequence, where each vector has been normalized to have unit length (i.e., 2-norm of
1). Our ultimate aim is to obtain relatively clear and short rounding error analyses of
such algorithms, but this paper is devoted to presenting a theoretical tool (a unitary
matrix Q(k) related to Vk) which will facilitate such analyses, and to illustrate this
with an analysis. We also extend this tool to two biorthogonal sets of vectors.

In Theorem 2.1 we describe how a particular (n+k)×(n+k) unitary matrix Q(k)

can be derived from such a Vk. We show that this Q(k) is a product of Householder
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matrices dependent on the vj alone. We describe the evolution of this idea and why
it is so useful for rounding error analyses of algorithms of this type. In section 3
we quickly summarize a recent bidiagonalization algorithm by Barlow, Bosner, and
Drmač [2] and show how the Q(k), Vk relationship can be used to give a simpler and
shorter rounding error analysis of their algorithm. This indicates both the improve-
ment in clarity and simplicity that the present approach provides as well as how it
might be applied to other algorithms. In section 4 we provide a theorem that can be
used for transforming augmented results—such as those of dimension (n+k) × k—
into more standard results, such as those involving the dimensions n × k of Vk. In
section 5 we provide some properties of Q(k) for possible future use, and in section 6
we discuss the idea of optimality, and how such a Q(k) might be used. Finally, in
section 7 we give a theorem (a biorthogonal version of Theorem 2.1) suggesting that
some of the ideas here might be extended to analyze some algorithms producing two
sets of biorthogonal vectors.

We will say complex nonsquare n × k Q1 has orthonormal columns if QH
1 Q1 = I

and write Q1 ∈ Un×k, while Q1 and Q2 are orthogonal to each other if QH
1 Q2 = 0. For

floating point arithmetic the unit roundoff (a measure of relative precision; see, e.g.,
[12]) will be denoted by ε. In denotes the n × n unit matrix (but we will sometimes
use I), ej will be the jth column of a unit matrix I, so Bej is the jth column of B,
while e will be a vector of ones of the required dimension. We will denote the absolute
value of a matrix B by |B|, the Frobenius norm by ‖B‖F ≡ √

trace(BHB), the vector
2-norm by ‖v‖2 ≡

√
vHv, and its subordinate matrix norm by ‖ · ‖2, while σ(·) will

denote a singular value, and κ2(B) ≡ σmax(B)/σmin(B).
We will usually index matrices by subscripts as in Vk when the (k + 1)st matrix

can be obtained from the kth by appending a column, or a column and a row. We will
use, e.g., Q(k) otherwise, and Q(k) = [Q(k)

1 , Q
(k)
2 ]. Note that Mj in section 2.1 should

really be M (j), but space prevented this in (2.9). P k indicates “P to the power k.”

2. Obtaining a unitary matrix from unit 2-norm n-vectors. The main
theoretical results of this paper are contained in the following theorem and its corol-
laries. We use SUT to mean “strictly upper triangular,” while “sut(·)” gives the SUT
part of the matrix in parentheses. Similarly, SLT means “strictly lower triangular.”

Theorem 2.1. For any integers n ≥ 1 and k ≥ 1, and Vk ≡ [v1, . . . , vk] ∈ Cn×k

with ‖vj‖2 = 1, j = 1, . . . , k, define the SUT matrix Sk as follows:

(2.1) Sk ≡ (Ik + Uk)−1Uk ≡ Uk(Ik + Uk)−1 ∈ C
k×k, Uk ≡ sut(V H

k Vk)

(where clearly Ik ± Sk and Ik ± Uk are always nonsingular). Then

UkSk = SkUk, Uk =(Ik−Sk)−1Sk≡Sk(Ik−Sk)−1, (Ik−Sk)−1 = Ik+Uk,(2.2)
(Ik−Sk)HV H

k Vk(Ik−Sk) = Ik−SH
k Sk,(2.3)

(Ik−Sk)V H
k Vk(Ik−Sk)H = Ik−SkSH

k ,(2.4)
‖Sk‖2 ≤ 1; V H

k Vk = I ⇔ ‖Sk‖2 = 0; V H
k Vk singular ⇔ ‖Sk‖2 = 1.(2.5)

Most importantly, Sk is the unique SUT k × k matrix such that

(2.6) Q(k) ≡
[
Q

(k)
1 Q

(k)
2

]
≡

[
Sk (Ik−Sk)V H

k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
∈ U (n+k)×(n+k).
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If we write Sk+1 ≡ [ Ŝk sk+1
0 0

], we also have Ŝk = Sk and

(2.7) sk+1 = (Ik−Sk)V H
k vk+1,

[
Sk+1

Vk+1(Ik+1−Sk+1)

]
=

⎡⎣ Sk sk+1

0 0
Vk(Ik−Sk) vk+1−Vksk+1

⎤⎦.

Proof. We start with (2.6). For any k × k SUT matrix S, define M ≡ QH
1 Q1−I

for Q1 ≡ [ S
Vk(I−S) ]; see (2.6). Since by definition V H

k Vk = I + Uk + UH
k , we have

I + M = QH
1 Q1 = SHS + (I−S)H(I−S) + (I−S)H(Uk + UH

k )(I−S),

M = −(I − S)HS − SH(I − S) + (I − S)H(Uk + UH
k )(I − S),

(I − S)−HM(I − S)−1 = −S(I − S)−1 − (I − S)−HSH + (Uk + UH
k ).

But Uk−S(I−S)−1 is SUT, and the rest of the right-hand side is SLT, so M = 0 if and
only if Uk = S(I−S)−1. But then S = Uk(I −S) = Uk −UkS and so (I +Uk)S = Uk,
proving that Sk in (2.1) is the unique k × k SUT matrix that gives Q

(k)H
1 Q

(k)
1 = I.

From (2.1) Uk = Sk +UkSk, so Uk(I−Sk) = Sk, Uk = Sk(I−Sk)−1 = (I−Sk)−1Sk.
Also Uk(I−Sk)+(I−Sk) = I, so Uk + I = (I−Sk)−1, and then UkSk = SkUk, proving
(2.2). Note that (2.3) follows from Q

(k)H
1 Q

(k)
1 = I, and using it gives for (2.6)

Q
(k)H
2 Q

(k)
2 = Vk(Ik−Sk)H(Ik−Sk)V H

k +In−Vk(Ik−Sk)HV H
k −Vk(Ik−Sk)V H

k

+Vk(Ik−SH
k Sk)V H

k = In,

Q
(k)H
1 Q

(k)
2 = SH

k (Ik−Sk)V H
k +(Ik−Sk)HV H

k −(Ik−SH
k Sk)V H

k = 0,

so that (2.6) holds. Then (2.4) follows from the leading principal k × k submatrix of
Q(k)Q(k)H . Next, in (2.6), Sk is a submatrix of a unitary matrix so that ‖Sk‖2 ≤ 1,
while from (2.3) V H

k Vk is singular if and only if Ik − SH
k Sk is, so (2.5) follows.

To prove (2.7) note that Vk+1 ≡ [Vk, vk+1] and write uk+1 ≡ V H
k vk+1 so that

Uk+1ek+1 = [ uk+1
0 ]. Now from (2.2) Sk+1 = (Ik+1−Sk+1)Uk+1. The proof follows by

using this and the fact that Uk+1 and Sk+1 are SUT and noting that if Ŝk = (I−Ŝk)Uk,
then Ŝk(I + Uk) = Uk, so that Ŝk = Uk(I + Uk)−1 = Sk from (2.1):[

Ŝk

0

]
= Sk+1

[
Ik

0

]
= (Ik+1−Sk+1)

[
Uk

0

]
=

[
(Ik−Ŝk)Uk

0

]
=

[
Sk

0

]
,[

sk+1

0

]
= Sk+1ek+1 = (Ik+1−Sk+1)

[
uk+1

0

]
=

[
(Ik−Sk)uk+1

0

]
.

We can call the construction in Theorem 2.1 a unitary or orthonormal augmen-
tation of an array or sequence of unit length vectors (the “augmentation” from Vk to
Q(k) in (2.6)). It can also be thought of as a kind of reorthogonalization from Vk to
Q

(k)
1 , but moving to a higher dimension with the inclusion of each additional vector

vk+1. Note from (2.1) that V H
k Vk = I ⇔ Uk = 0 ⇔ Sk = 0, and V H

k Vk = I
corresponds to no “reorthogonalization.” Also forming Vk(I−Sk) = Vk−VkSk sub-
tracts multiples of previous columns from each column, and so this looks a bit like
Gram–Schmidt orthogonalization. In fact, if Sk =0, then for any vk+1 the next step
vk+1−Vksk+1 in (2.7) gives

V H
k (vk+1 − Vksk+1) = V H

k (vk+1 − VkV H
k vk+1) = 0,

which is ordinary (re)orthogonalization of vk+1.
Note that 0 ≤ ‖Sk‖2 ≤ 1 is a beautiful measure of the loss of orthogonality in Vk.
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2.1. The relationship to Householder transformations. It is not obvious
from Theorem 2.1, but the unitary matrix Q(k) in (2.6) is the product of k Householder
matrices (unitary elementary Hermitian matrices) P (1), . . . , P (k), where each P (j)

depends on vj alone. To prove this we first restate a theorem from [5, Theorem 4.1].
Theorem 2.2. Let Vk = [v1, . . . , vk] ∈ C

n×k, and for j = 1, . . . , k, define

(2.8) Mj = In − vjv
H
j , pj =

[−ej

vj

]
∈ C

n+k, P (j) = In+k − pjp
H
j .

Then with the partitioning we use throughout this theorem

P ≡ P (1)P (2) . . . P (k) ≡ k

n

[
k

P11

n

P12

P21 P22

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 vH
1 v2 vH

1 M2v3 · · · vH
1 M2M3 · · ·Mk−1vk vH

1 M2M3 · · ·Mk

0 0 vH
2 v3 · · · vH

2 M3M4 · · ·Mk−1vk vH
2 M3M4 · · ·Mk

...
...

... · · · ...
...

0 0 0 · · · vH
k−1vk vH

k−1Mk

0 0 0 · · · 0 vH
k

v1 M1v2 M1M2v3 · · · M1M2 · · ·Mk−1vk M1M2 · · ·Mk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.9)

=
[

P11 (Ik − P11)V H
k

Vk(Ik − P11) In − Vk(Ik − P11)V H
k

]
.(2.10)

P is a unitary matrix if and only if ‖vj‖2 = 1 for j = 1, . . . , k; and P11 = 0 if and
only if V H

k Vk is diagonal.
In Theorem 2.1 we assumed that ‖vj‖2 = 1 for j = 1, . . . , k. In that case P

here is unitary, just as Q(k) is. Also Q(k) in (2.6) and P in (2.10) have the same
partitioning and form and are identical if Sk = P11. But P11 is seen to be SUT from
(2.9), and from Theorem 2.1 SUT Sk is unique, and therefore Sk = P11, proving that
in Theorems 2.1 and 2.2 with ‖vj‖2 = 1 for j = 1, . . . , k

(2.11) unitary Q(k) = P ≡ P (1)P (2) · · ·P (k).

It can be seen that using the Householder matrices P (j) is another way of pro-
ducing this “unitary augmentation” of these unit length columns of Vk. Theorem 2.1
also gives the important relationship of Sk to Uk = sut(V H

k Vk) (see (2.1) and (2.2))
as well as other useful properties of Sk, while Theorem 2.2 gives the interesting (2.9).
It is difficult to remember, but it appears that we were not aware of the Sk, Uk re-
lationship in [5]. This relationship was given by Giraud, Gratton, and Langou in [7,
(3.1)], where it was a key idea in their method, enabling a saving of computations.
The relationship of Sk to Uk was also spelled out in [18, (5.5)].

Note from (2.9) that when a new unit length vector vk+1 is added, the last column
of Q

(k+1)
1 in (2.6) is Q

(k)
2 vk+1 with a zero inserted immediately after the kth element.

This can also be derived from (2.7). And Q
(k+1)
2 is Q

(k)
2 Mk+1 with vH

k+1 inserted
immediately after the kth row. Of course, for unit length vj the Mj are orthogonal
projection matrices, so multiplication by each cannot increase the 2-norm.

Theorem 2.2 allows P in (2.9) with ‖vj‖2 	= 1, but the subset of those matrices P
with all unit length vj can be described and used more easily via Theorem 2.1. This
is an important advantage since we can always phrase our analyses in terms of all unit
length vj . Just to emphasize that the P (j) in (2.8) need not appear in any analysis
that makes use of Q(k) in (2.6), we restate the following obvious part of Theorem 2.1.
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Corollary 2.3. Given any n × k matrix Vk with unit length columns, if Uk ≡
sut(V H

k Vk) and Sk ≡ (I + Uk)−1Uk, then Q(k) defined in (2.6) is a unitary matrix.

2.2. The evolution of this idea. Charles Sheffield [24] pointed out that the
modified Gram–Schmidt (MGS) orthogonalization algorithm for the QR factorization
of B∈Rn×k is mathematically equivalent to the QR factorization applied to the ma-
trix B augmented with a k × k matrix of zero elements on top. This is true in theory
for any method of QR factorization, but for Householder’s method it is true in the
presence of rounding errors as well. That is, the Householder QR factorization of
the matrix [ 0

B ] ∈ R(n+k)×k leads to the identical computed upper triangular matrix
R̃ in MGS as well as all intermediate vectors produced by MGS; see [5, section 2].
However, Langou [15, pp. 88–89] argues that a very minor change has to be made
to either MGS or the Householder method so that the two algorithms perform ex-
actly the same operations. Such a minor change would not affect any rounding error
bounds.

Björck and Paige [5, 6] applied Sheffield’s observation in their stability analyses
of MGS and some applications in order to prove some new results that are additional
to those derived by Björck in [3]. Following some ideas in [5], Barlow, Bosner, and
Drmač [2] used Sheffield’s insight to prove numerical stability properties of their recent
bidiagonalization algorithm in [2]. Together with the insight of Giraud and Langou
[8] that under very mild conditions MGS produces a well-conditioned set of vectors
(see Corollary 5.2 here), Sheffield’s insight allowed Paige, Rozložńık, and Strakoš [18]
to prove the backward stability of the MGS-GMRES algorithm of Saad and Schultz
[23] under very mild conditions. Sheffield’s insight has thus been of great value in the
understanding of some widely used numerical algorithms.

For MGS it was shown that the resulting Sk = P11 in (2.6) and (2.10) satisfied

(2.12) Sk = P11 = E1R̃
−1, ‖E1‖2 ≤ O(ε)‖B‖2,

where R̃ was the computed version of R from the MGS QR factorization of B; see [5,
section 3]. It was realized there that not only could this insight be used to analyze
the numerical stability of algorithms as in [5, 6, 18], but also these ideas could be
extended to derive new algorithms; see, for example, [5, section 5]. This insight
was also used to derive a new algorithm in [7]. In [5, 6, 18] it appeared that the
structure of P in Theorem 2.2 was relevant only to the MGS algorithm. But Barlow,
Bosner, and Drmač [2] showed that this approach has wider applications, and this
understanding has been transformed here into the simple and generally applicable
Theorem 2.1. This theorem now appears to be useful for analyzing any algorithm
which in theory produces orthonormal vectors but in practice, because of rounding
errors, can fail to do so to a significant extent. For any analysis of an algorithm that
computes a matrix Vk of supposedly orthonormal columns, the important ancilliary
result will be an expression that can be used to take account of Sk in (2.6) (or Uk;
see (2.2))—for example, to bound it as in (2.12), or to use it in some different form,
such as ‖SkJ̃‖F ≤ O(ε)‖X‖F ; see (3.17) here for such a use.

The development of the theory in Theorem 2.1 and its use in section 3.1 make no
reference to or use of the MGS connection. In fact, since the ideas can be applied to
any sequence of unit length n-vectors, MGS is just a particular, but remarkable, case
(remarkable because of the numerical equivalence with the Householder QR factoriza-
tion of [ 0

B ]). But the connection with the special Householder matrices in section 2.1
is always present, and Theorems 2.1 and 2.2 can be thought of as two ways of pro-
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ducing the same object Q(k) from the unit length vectors v1, . . . , vk. Theorem 2.1
appears more simple and useful.

Theorem 2.1 can also simplify some previously daunting analyses. For example,
the 50-page paper of Barlow, Bosner, and Drmač [2] is filled largely with a formidable
rounding error analysis of their recent bidiagonalization algorithm. They essentially
used Sheffield’s idea via [5] at the core of their analysis; see [2, section 3.3]. But the
new Theorem 2.1 allows us to analyze their algorithm more quickly and clearly; see
section 3 here. The analysis here will serve two purposes—to illustrate the power of
this approach and to indicate how this approach might be applied in general. Theo-
rem 2.1 also offers hope for the successful analyses of other important algorithms based
on orthogonalization, such as the eigenvalue algorithms of Arnoldi [1] and Lanczos
[13], the method of conjugate gradients [11], and similar algorithms that are partic-
ularly suitable for large sparse matrix problems; see, for example, [14, 19, 20, 22].
Theorem 7.1 should have similar advantages for biorthogonalization algorithms.

3. Application to bidiagonalization. Barlow, Bosner, and Drmač [2] sug-
gested a new method for orthogonally transforming X ∈ R

n×m, n ≥ m, to give the
n × m upper bidiagonal form (in order to compute the singular value decomposition
(SVD)):

(3.1) V T XW =
[
J
0

]
, J ≡

⎡⎢⎢⎣
γ1 φ2

γ2 φ3

· ·
γm

⎤⎥⎥⎦ ≥ 0, V −1 = V T , W−1 = WT .

The equivalent notation in [2] was UT XV = B. We use the present notation in order
that the analysis here will match the notation in sections 2 and 5. This bidiagonal-
ization is not unique but can be made so by choosing w1 ≡ We1.

Some insight can be gained by presenting the method in [2] as intermediate be-
tween the two bidiagonalization algorithms proposed by Golub and Kahan [9]—the
one based on Householder transformations (which we refer to as the “direct” algo-
rithm) and the one which follows from the Lanczos process [13] applied to [ 0 XT

X 0
]

with initial vector [ w1
0 ] (which we refer to as the “iterative” algorithm). The direct

one stops in m steps and is backward stable. It is ideal for problems of small to mod-
erately large dimensions. The iterative one tends to lose orthogonality and because
of this usually will not stop. Thus it can take many more than m steps to obtain,
for example, full information on all the singular value-vector triplets. It is useful for
problems with sparse X of very large dimensions.

The method in [2] uses Householder transformations (W (j) in our notation) to
produce the effect of the orthogonal matrix W of smaller dimensions in (3.1), and this
forces m-step termination. But it uses the “iterative” process to find the columns of
V in (3.1). This leads to a saving in floating point operations (flops), often at the cost
of significant loss of orthogonality in the columns of V . It is useful for moderately
large problems where we do not require orthogonality in all the “left” singular vectors
of X (in particular, those found from V corresponding to the smaller singular values).
This last conclusion follows from the rounding error analysis of the algorithm.

The direct approach in [9] applied W (1), V (1), W (2), V (2), . . . , in order to give

V ≡ V (1) · · ·V (n) ≡ [Vm, vm+1, . . . , vn], Vm ≡ [v1, . . . , vm], W ≡ W (1) · · ·W (m),

W (j) ≡
[
Ij−1 0

0 W
(j)
H

]
}m−j+1

, V (j) ≡
[
Ij−1 0

0 V
(j)
H

]
}n−j+1

,(3.2)
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where the W
(j)
H and V

(j)
H are symmetric Householder transformations. W (m) just

makes φm ≥ 0. W (1) is arbitrary, but W (1) = I was chosen in [2]. We now roughly
sketch the approach in [2]. It does not use the Householder transformations V (j),
but these are needed in our description. Note that for j = k+1, . . . , m, V (j)ek = ek,
W (j)ek = ek, so from (3.2),

(3.3) vk ≡ V ek = V (1) · · ·V (k)ek, wk ≡ Wek = W (1) · · ·W (k)ek, k = 1, . . . , m.

In [2] W (k+1) is designed to produce the last m−k elements in the kth row of (3.1),
i.e., φk+1, 0, . . . , 0,

eT
k V (k) · · ·V (1)XW (1) · · ·W (k+1) = (vT

k XW (1) · · ·W (k))W (k+1)(3.4)

=
[⊗ . . . ⊗ γk φk+1 0 . . . 0

]
= vT

k XW (1) · · ·W (m) = vT
k XW

(see (3.2)), just as in the direct method in [9] (where the ⊗ denote zero elements,
but for [2] these are unknowns to be proven zero). But then vk+1 in [2] was obtained
from an iterative version in [9]. From the (k+1)st column of XW =V [ J

0 ] = VmJ they
effectively compute

(3.5) vk+1, γk+1, where vk+1γk+1 =Xwk+1− vkφk+1, ‖vk+1‖2 = 1, (φ1 ≡ 0).

They do not compute W but overwrite X in order by XW (1), XW (1)W (2), etc., and
in the kth step use this to compute vT

k (XW (1) · · ·W (k)) and design W (k+1) on the
resulting vector. A rough summary (of our very simplified version of [2]) is then

t := Xe1, γ1 := ‖t‖2, v1 := t/γ1; see (3.5) with W (1) ≡ I; XW (1) = X.(3.6)
For k = 1, . . . , m−1,

form vT
k (XW (1) · · ·W (k)) =

[ ⊗ . . . ⊗ γk × × . . . × ]
;(3.7)

design φk+1 and the Householder matrix W (k+1) as in (3.4);

overwrite (XW (1) · · ·W (k)) by (XW (1) · · ·W (k))W (k+1);

take t := (XW (1) · · ·W (k+1))ek+1 = Xwk+1; see (3.3);(3.8)
t := t − vkφk+1, γk+1 := ‖t‖2, vk+1 := t/γk+1, giving (3.5).(3.9)

For simplicity we have assumed that γ1, γ2, . . . are all nonzero. The proof that the
elements marked ⊗ are actually zero, and that the bidiagonalization (3.1) is obtained,
follows from [2] or [9], but for completeness we give a short proof here.

We see from (3.5) that XW = VmJ , where W = [w1, . . . , wm], Vm = [v1, . . . , vm],
with J as in (3.1). W = W (1) · · ·W (m) is orthogonal since the W (j) are House-
holder transformations. We first seek to prove by induction that Vm has orthonormal
columns. All ‖vj‖2 = 1 from (3.6) and (3.9), so now

(3.10) assume [v1, . . . , vk] ∈ Rn×k has orthonormal columns for some 1 ≤ k < m

(which is true for k = 1). Then from (3.5), and (3.4) with (3.3),

vT
k vk+1γk+1 = vT

k Xwk+1 − φk+1 = φk+1 − φk+1 = 0.

For j < k, (3.5), (3.10), and then (3.3) show that vT
j vk+1γk+1 = vT

j Xwk+1 =
vT

j XWek+1. But from (3.4) we see that vT
j XW (1) · · ·W (j+1) = vT

j XW , and since for
j < k, vT

j XW (1) · · ·W (j+1)ek+1 = 0, we have for j = 1, . . . , k−1

vT
j vk+1γk+1 = vT

j Xwk+1 = vT
j XWek+1 = vT

j XW (1) · · ·W (j+1)ek+1 = 0,
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so that [v1, . . . , vk+1] has orthonormal columns, and so does Vm by induction. Then
V T

m XW = V T
m VmJ = J , and each element marked ⊗ above is actually zero.

It might be thought that there is another useful algorithm for upper bidiagonal-
ization—one which derives the wk from the iterative algorithm in [9] and the vk from
the direct algorithm, also in [9]. But this would essentially be applying the algorithm
in [2] to XT and so is not new. What is more, it would be applying Householder
transformations to the side of X with higher dimension and would be costly.

3.1. Rounding error analysis. We now give a relatively quick rounding error
analysis of our version, (3.6)–(3.9), of the algorithm in [2] using a computer with unit
roundoff ε. We will use fl(·) to denote the result of a floating point computation. We
will sometimes use a tilde above a symbol to denote a computed quantity, so if Vk is an
ideal mathematical quantity, Ṽk will denote its actual computed value or something
very close. Matrices E and F , and matrices and vectors whose first symbol is Δ, such
as ΔVk, will denote rounding error terms. To save space we will simply state some of
the more obvious results, and to make life easy for the reader we will just write O(ε)
and hide the dependence on the dimensions or step number. For those interested, the
full detailed results can be found in [2, section 3] or derived via [12].

Let J̃ , γ̃k, φ̃k, vk, and X̃(k) be the computed values of the ideal J , γk, φk, vk,
and X(k) ≡ XW (1) · · ·W (k), and, special to this approach, let ṽk be vk normalized to
unity so that with Ṽm ≡ [ṽ1, . . . , ṽm] and V m ≡ [v1, . . . , vm] we have ‖Ṽm − V m‖2 ≤
O(ε). Let Ŵ (k+1) be the exact Householder transformation required in step k of the
computed process (see (3.4)), so that Ŵ ≡ Ŵ (1) · · · Ŵ (m) is an orthogonal matrix,
even though it might differ significantly from the ideal W ≡ W (1) · · ·W (m).

We first derive the key expressions involving the computed values. It follows from
Higham [12, Lemma 19.3] (see [2, (3.24), (3.25)]) that for k = 1, . . . , m

X̃(k) = (X + ΔX(k))Ŵ (1) · · · Ŵ (k),(3.11)

‖ΔX(k)‖F ≤ O(ε)‖X‖F , ‖X̃(k)‖2,F =‖X‖2,F [1+O(ε)]; k = 1, . . . , m.

If W̃ ≡ fl(fl(· · · fl(Ŵ (1)Ŵ (2)) · · · )Ŵ (m)) was computed, it would be almost orthogonal:
(3.12)

W̃ = Ŵ + E0, ŴT = Ŵ−1, ‖E0‖F ≤ O(ε) (see, for example, [2, (3.23)]),

since Ŵ is a product of Householder transformations. Such results follow from the
work of Wilkinson [25] on backward stable algorithms, but the analysis of an algorithm
like this which is not stable in that beautiful sense is more demanding. For example,
Ṽm here can be far from orthonormal because of cancellation followed by magnification
of rounding errors in (3.9), and this has to be quantified. As a first step toward this,
it is straightforward to show from (3.11), (3.6), (3.8), and (3.9) (see (3.5)) that

(3.13) XŴ = X̃(m) + F ′
1 = ṼmJ̃ + F1; ‖F1‖F , ‖F ′

1‖F ≤ O(ε)‖X‖F ;

see also [2, (3.24)–(3.27)]. Then X = ṼmJ̃ŴT + F1Ŵ
T (see [2, (3.28)–(3.29)]), and

these two results closely mimic the corresponding ideal behavior obtained from (3.1).
At this point we diverge from the analysis in [2] and model the first expression in

(3.1). Since γ̃k, φ̃k+1, and the last m−k−1 zeros of (3.4) are not altered by the later
application of Ŵ (k+2) · · · Ŵ (m), it will be shown from the development of (3.7) (see
(3.4)) that for some F2 and SLT L (possibly large)

(3.14) Ṽ T
m XŴ = L + J̃ + F2, ‖F2‖F ≤ O(ε)‖X‖F ,
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where we now prove this rigorously. With (3.11) the computation in (3.7) will give
(see, for example, [12, section 3.5])

g̃T
k ≡ fl(ṽT

k X̃(k)) = ṽT
k (X̃(k) + ΔX(k)′), ‖ΔX(k)′‖F ≤ O(ε)‖X‖F ,

‖g̃k‖2 ≤ ‖X‖2[1 + O(ε)].

For the computed γk and φk+1 in (3.7) and (3.4) (see [12, Theorem 19.4] with (3.11)),
we have for some λk,1, . . . , λk,k−1 and Δg̃k with ‖Δg̃k‖2 ≤ O(ε)‖g̃k‖2

(λk,1, . . . , λk,k−1, γ̃k, φ̃k+1, 0, . . . , 0) = fl(g̃T
k Ŵ (k+1)) = (g̃k+Δg̃k)T Ŵ (k+1)

= (g̃k+Δg̃k)T Ŵ (k+1)Ŵ (k+2) · · · Ŵ (m)

= [ṽT
k (X̃(k) + ΔX(k)′) + Δg̃T

k ]Ŵ (k+1) · · · Ŵ (m) = ṽT
k XŴ + ΔgT

k ,

ΔgT
k ≡ ṽT

k (ΔX(k)Ŵ + ΔX(k)′Ŵ (k+1) · · · Ŵ (m)) + Δg̃T
k Ŵ (k+1) · · · Ŵ (m),

so that ‖Δgk‖2 ≤ ‖ΔX(k)‖2 + ‖ΔX(k)′‖2 + ‖Δg̃k‖2 ≤ O(ε)‖X‖F , proving (3.14).
We are now in a position to make use of Theorem 2.1. Note that (3.13) and

(3.14) implicitly give information on Ṽ T
m Ṽm. Define U ≡ sut(Ṽ T

m Ṽm) so that Ṽ T
m Ṽm =

UT +Im+U , and SUT S ≡ (I + U)−1U so that U = (I−S)−1S; see Corollary 2.3 and
(2.2). We will obtain an expression for U , use this to obtain an expression for S, and
use S to produce Q1 such that QT

1 Q1 = Im. Combining (3.13) and (3.14)

(3.15) Ṽ T
m XŴ = L + J̃ + F2 = Ṽ T

m (ṼmJ̃ + F1) = UT J̃ + J̃ + UJ̃ + Ṽ T
m F1.

Canceling the lone J̃ on each side and equating the SUT parts

(3.16) UJ̃ = F3 ≡ sut(F2 − Ṽ T
m F1), ‖F3‖F ≤ O(ε)‖X‖F .

This is the desired expression for U . Now, for S, since ‖S‖2 ≤ 1 from (2.5),

(3.17) F3 = UJ̃ = (I−S)−1SJ̃, SJ̃ = (I−S)F3, ‖(I−S)F3‖F ≤ O(ε)‖X‖F .

But from (3.13) Ṽm(I − S)J̃ = XŴ − F1 − ṼmSJ̃ = XŴ − F1 − Ṽm(I − S)F3, so

(3.18) Q1J̃ ≡
[

S

Ṽm(I−S)

]
J̃ =

[
(I−S)F3Ŵ

T

X−[F1+Ṽm(I−S)F3]ŴT

]
Ŵ ≡

[
E1

X + E2

]
Ŵ ,

where ‖E1‖F , ‖E2‖F ≤ O(ε)‖X‖F ; Ŵ−T = Ŵ ; and QT
1 Q1 = Im; see Theorem 2.1.

This shows that the computation for J̃ is essentially backward stable—J̃ is the ex-
act bidiagonal matrix produced by orthogonally transforming the “nearby” data ma-
trix [ E1

X+E2
]. This with (3.12) shows that the computation of W̃ is also essentially

backward stable. However, the computation of Ṽm is not. From (3.16) we see that
‖U‖2 = ‖sut(Ṽ T

m Ṽm)‖2, one measure of the loss of orthogonality in Ṽm, can be large
if J̃ is ill conditioned. But here Ṽm is part of the orthonormal Q1 in (3.18).

With the true SVD of J̃ we have for Σ ≡ diag(σ1, . . . , σm) ≥ 0 (see (3.18))

J̃ = PΣZT ;
[

E1

X + E2

]
(ŴZ) = (Q1P )Σ; (Q1P )T

[
E1

X + E2

]
= Σ(ŴZ)T ;(3.19)

(ŴZ)T = (ŴZ)−1; (Q1P )T (Q1P ) = I; ‖E1‖F , ‖E2‖F ≤ O(ε)‖X‖F .
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If P̃ , Σ̃, and Z̃ are the computed values of P , Σ, and Z by a numerically stable
algorithm, the computed value of W̃ Z̃ = (Ŵ + E0)Z̃ (see (3.12)) will be within O(ε)
of the exact matrix of right-hand singular vectors for a matrix very close to [ 0

X ],
while Σ̃ gives the singular values of such a matrix, too, and we clearly have backward
stability for computing these two objects. It follows that the ordered singular values
of J̃ will be within O(ε)‖X‖F of those of X , so as long as σmin(X) � ε, from (3.16)
(see [2, (3.85)])

(3.20) ‖U‖F = ‖sut(Ṽ T
m Ṽm)‖F ≤ O(ε).‖X‖F /σmin(X).

Large ‖U‖F makes the analysis for ṼmP more challenging. Consider the partitioning

Σ = diag(Σ1, Σ2), Σ1 ≡ diag(σ1, . . . , σk), σ1 ≥ · · · ≥ σm,

P = [P1, P2], Z = [Z1, Z2]; P1, Z1 ∈ R
m×k.

Substituting J̃ = PΣZT into (3.13) gives

(3.21) X(W̃Z) = (ṼmP )Σ + F1Z, X(W̃Z1) = (ṼmP1)Σ1 + F1Z1,

while (3.17) with σk > 0 leads to

SPΣ = (I − S)F3Z, SP1Σ1 = (I − S)F3Z1, SP1 = (I − S)F3Z1Σ−1
1 .

If k in the partitioning is chosen so that ‖X‖F /σk is not too large compared to 1,
then from (3.17) we can say in this same sense that ‖SP1‖F ≤ O(ε). But from (3.18)
the first k columns of Q1 are orthonormal, and therefore so are those of

Q1P1 =
[

SP1

Ṽm(I − S)P1

]
=

[
0

ṼmP1

]
+

[
I

−Ṽm

]
SP1 =

[
0

ṼmP1

]
+ O(ε),

so ṼmP1 has almost orthonormal columns. This along with (3.19) and (3.12) gives

‖X(W̃Z1)−(ṼmP1)Σ1‖F ≤ O(ε)‖X‖F , ‖(ṼmP1)T X−Σ1(W̃Z1)T ‖F ≤ O(ε)‖X‖F ,

‖(W̃Z1)T (W̃Z1)−Ik‖F ≤ O(ε), ‖(ṼmP1)T (ṼmP1)−Ik‖F ≤ O(ε),

proving that the columns of ṼmP1 and W̃Z1 are excellent near-orthonormal left and
right singular vectors of X . This is an alternative proof of the result obtained in [2, p.
35]: “The application of any backward stable singular value decomposition procedure
to B” (J̃ here) “recovers the left singular vectors associated with the leading (largest)
singular values of X to near orthogonality.”

Of course there is far more of interest and use in [2] than is mentioned in this
quick sketch designed to exhibit the usefulness of Theorem 2.1, and those interested
in this bidiagonalization algorithm must refer to the far more precise [2]. A second
working of a result can often be shorter and clearer than the original it is based on,
but the extent of the simplicity induced by the present full use of Theorem 2.1 ([2] did
make use of Sheffield’s original observation) still seems impressive, so we suspect it
will bring clarity and simplicity to our understanding of other important algorithms,
including those in [5, 6, 18].

Also, since the form of the orthonormal Q1 in (3.18) is known in terms of Ṽm

(see Theorem 2.1), it might be possible to use this knowledge to produce or apply
all the left singular vectors of X in a backward stable manner from (3.18), perhaps
paralleling what was done in [5, Algorithm 6.1] for solutions of least squares problems.
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4. Transforming augmented into standard results. The use of Theorem 2.1
leads to expressions involving Q

(k)
1 ∈ U (n+k)×k (see, for example, (3.18)), where the

finite precision computation produced a matrix within O(ε) of Vk 	∈ Un×k. There are
several instances where we need to prove the existence of a closely related V̂k ∈ Un×k;
see, for example, [5]. The following general theorem is useful in this regard. It is more
flexible than [5, Lemma 3.1] and provides a new bound.

Theorem 4.1. For any matrices n×p X and E′′, m×p E′, m×s Q11, n×s Q21,
and s×p R satisfying

(4.1)
[

0
X

]
+ E ≡ m{

n{
[

E′

X + E′′

]
=

[
Q11

Q21

]
R, QH

11Q11 + QH
21Q21 = I,

and any dimensions m, n, s, p with s ≤ n (if originally s > n, the matrices X, E′′,
and Q21 can each be padded with s− n rows of zeros to give a new n′=s), there exist
n×s V̂s and F , and n×p Ê, such that

X + Ê = V̂sR, V̂ H
s V̂s = Is, Ê = FQH

11E
′ + E′′, ‖Ê‖2 ≤

√
2‖E‖2,(4.2)

V̂s − Q21 = FQH
11Q11, (V̂s − Q21)R = FQH

11E
′, 0.5 ≤ ‖F‖2 ≤ 1.

Proof. Suppose Q21 has the SVD Q21 = W1ΣZH , where W ≡ [W1, W2] and Z
are square unitary matrices, and Σ is s × s diagonal, 0 ≤ Σ ≤ I. If Σ is singular, or
even zero, W1 and Z are somewhat arbitrary. Then (4.1) gives

ZHQH
11Q11Z = I − Σ2 = (I + Σ)(I − Σ), with 0.5I ≤ (I + Σ)−1 ≤ I.

Define V̂s ≡ W1Z
H so that V̂ H

s V̂s = I. Here V̂s is the closest matrix with orthonormal
columns to Q21 = W1ΣZH in any unitarily invariant norm. Then

V̂s − Q21 = W1(I − Σ)ZH = W1(I + Σ)−1ZHQH
11Q11,

(V̂s − Q21)R = W1(I + Σ)−1ZHQH
11E

′.

Setting F ≡ W1(I + Σ)−1ZH gives the second line of (4.2). With N ≡ [FQH
11, I],

Ê = V̂sR − X = (V̂s − Q21)R + E′′ = FQH
11E

′ + E′′ = NE.

But NNH = I + FQH
11Q11F

H = I + W1(I + Σ)−1(I − Σ2)(I + Σ)−1WH
1 , showing

that ‖NNH‖2 ≤ 2 and completing the proof.
We can see by taking s = p = m and R = J̃ŴT that (4.1) includes (3.18), and

Theorem 4.1 could have been used there.

5. Some properties of Vk, Sk, and Q(k) in Theorem 2.1. Since Theorem 2.1
appears to be a generally useful result, for later reference we will give some corollaries
to Theorem 2.1 that describe properties of Vk, Sk, and Q(k).
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Corollary 5.1. In Theorem 2.1, Sk and Uk are SUT, so Sk
k = Uk

k = 0. Also
I+Uk =(I−Sk)−1, Sk =Uk−SkUk, ‖Sk‖2 ≤ 1, so ‖Sk‖2 ≤ 2‖Uk‖2 and

(I − Sk)−1 = I + Sk + · · · + Sk−1
k , ‖(I − Sk)−1‖2 ≤ k;

Uk = Sk(I−Sk)−1 = (I−Sk)−1Sk = Sk+ · · · +Sk−1
k , ‖Uk‖2 ≤ (k−1)‖Sk‖2 ≤ k−1;

Sk = (I + Uk)−1Uk = Uk(I + Uk)−1 = Uk − U2
k + · · · (−1)kUk−1

k ;

‖(I − Sk)−1‖2 ≤
{

1/(1 − ‖Sk‖2), which is best when ‖Sk‖2 ≤ 1 − k−1;
k, which is best when ‖Sk‖2 > 1 − k−1;

‖Sk‖2/2 ≤ ‖Sk‖2/(1+‖Sk‖2) ≤ ‖Uk‖2 ≤
{

‖Sk‖2/(1−‖Sk‖2) always;
(k−1)‖Sk‖2, best when ‖Sk‖2 > (k−2)

(k−1) ;

‖Uk‖2/k ≤ ‖Uk‖2/(1+‖Uk‖2) ≤ ‖Sk‖2 ≤
{ ‖Uk‖2/(1−‖Uk‖2) if ‖Uk‖2 ≤ 1;

2‖Uk‖2, best when ‖Uk‖2 > 0.5.

Proof. These results follow from simple matrix and norm manipulation; remember
that (1+‖X‖2)−1 ≤ ‖(I ±X)−1‖2, while ‖X‖2 < 1 ⇔ ‖(I ±X)−1‖2 ≤ (1−‖X‖2)−1.
Here since (I − X)−1 always exists, we allow ‖X‖2 ≤ 1.

Corollary 5.2 (see [18, Lemma 5.1]). For Vk, Uk, and Sk in Theorem 2.1,

1 − 2‖Uk‖2 ≤ 1 − ‖Sk‖2

1 + ‖Sk‖2
≤ σ2

i (Vk) ≤ 1 + 2‖Uk‖2 ≤ 1 + ‖Sk‖2

1 − ‖Sk‖2
,(5.1)

σmin(Vk) ≤ 1 ≤ σmax(Vk), κ2(Vk) ≤ 1 + ‖Sk‖2

1 − ‖Sk‖2
.(5.2)

Proof. The first and fourth inequalities in (5.1) follow from Corollary 5.1. The
third and second are proven as follows. From (2.3) (I−Sk)HV H

k Vk(I−Sk) = I−SH
k Sk,

so for any y ∈ Ck such that ‖y‖2 = 1, define z ≡ (I − Sk)y so ‖z‖2 ≤ 1 + ‖Sk‖2 to
give

1 + 2‖Uk‖2 ≥ 1 +
zH(Uk+UH

k )z
zHz

=
zHV H

k Vkz

zHz
=

1−yHSH
k Sky

zHz
≥ 1−‖Sk‖2

2

(1+‖Sk‖2)2
,

and then cancel 1+‖Sk‖2. For (5.2) taking y = e1 in σ2
min(Vk) ≤ ‖Vky‖2

2 ≤ σ2
max(Vk),

‖y‖2 = 1, proves the first part, while the bound on κ2(Vk) follows from (5.1).
Corollary 5.2 can be very useful; see, for example, [18, (5.7) and section 6]. Gi-

raud and Langou [8] proved under mild conditions that for MGS applied to n × k
B, the matrix Vk of computed supposedly orthonormal vectors is well conditioned.
Theorem 2.1 generalizes their work, leading to the more general result (5.2), where
for any algorithm, bounding ‖Sk‖2 < 1 bounds κ2(Vk); see, for example, the bound
for MGS in (2.12). We see that Vk can be very well conditioned even when significant
orthogonality is lost. For example if ‖Sk‖2 = .9, corresponding to a severe loss of or-
thogonality in Vk, (5.2) shows that κ2(Vk) ≤ 19, which is surprisingly and pleasingly
small.

Corollary 5.3. For Vk and k × k SUT Sk in Theorem 2.1,

for the Frobenius norm, ‖(Ik−Sk)−1‖2
F ≤ k(k + 1)/2, which is tight,(5.3)

‖Sk‖2
F + ‖Vk(Ik − Sk)‖2

F = k = ‖Sk‖2
F + ‖Vk(Ik − Sk)H‖2

F ,(5.4)
‖Sk‖2

F ≤ k − 1, so ‖Vk(Ik − Sk)‖2
F = ‖Vk(Ik − Sk)H‖2

F = k − ‖Sk‖2
F ≥ 1,(5.5)

‖In − Vk(Ik − Sk)V H
k ‖2

F = n − ‖Vk(Ik − Sk)‖2
F = n − k + ‖Sk‖2

F ≤ n − 1.(5.6)
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Proof. For (5.3), write Gk ≡ (I−Sk)−1. Then for k = 1, ‖Gk‖2
F = 1 = k(k+1)/2.

Suppose we have proven (5.3) for some k ≥ 1; then from (2.7)

Gk+1 =
[
(I−Sk)−1 (I−Sk)−1sk+1

0 1

]
=

[
Gk V H

k vk+1

0 1

]
,

‖Gk+1‖2
F = ‖Gk‖2

F +‖V H
k vk+1‖2

2+1 ≤ ‖Gk‖2
F +k+1 ≤ (k+1)(k+2)/2,

proving the bound in (5.3). Now consider Vk = veH , vHv = 1, e ≡ (1, 1, . . . , 1)H. Here
V H

j vj+1 = e, so ‖Gk‖2
F = 1 + 2 + · · · + k = k(k+1)/2, proving it is tight. The others

hold because Q(k) is a unitary matrix in (2.6).
If we add vk+1 to Vk, then from (2.7)

(5.7)
[

[Sk, sk+1]
Vk+1(I−Sk+1)

]
=

[
Sk sk+1

Vk(I−Sk) vk+1−Vksk+1

]
≡ [Q(k)

1 , q(k)], say,

has orthonormal columns (it is just Q
(k+1)
1 with row (k + 1), which is a zero row,

removed). We now relate Q
(k)
2 in (2.6) to q(k) in (5.7). From (2.7)

q(k) =
[

sk+1

vk+1−Vksk+1

]
=

[
(I−Sk)V H

k vk+1

vk+1−Vk(I−Sk)V H
k vk+1

]
= Q

(k)
2 vk+1,(5.8)

again showing that Q
(k)T
1 q(k) = 0. Since this develops Q

(k+1)
1 from Q

(k)
2 and vk+1, this

is a more thorough development than that of Sk in (2.7). Note that if V H
k vk+1 = 0,

then sk+1 = 0 in (5.7), and the last column of Q
(k+1)
1 is [ 0

vk+1 ].

5.1. Some bounds involving ‖Vk‖2. Here are some general results for Vk ≡
[v1, . . . , vk] ∈ Cn×k with ‖vj‖2 = 1, j = 1, . . . , k. First we will show that

‖[Vk, In]‖2
F = n + k; ‖[Vk, In]‖2

2 ≤ k + 1, which is tight,(5.9)
‖[−Ik, V H

k ]‖2
F = 2k; ‖[−Ik, V H

k ]‖2
2 ≤ k + 1, which is tight.(5.10)

In (5.9) the F-norm result is obvious, while the 2-norm result follows from

‖[Vk, In]‖2
2 = ‖In + VkV H

k ‖2 = 1 + ‖VkV H
k ‖2 = 1 + ‖Vk‖2

2 ≤ 1 + ‖Vk‖2
F = 1 + k,

with the example Vk = veT , ‖v‖2 = 1. A similar argument proves (5.10).
Lemma 5.4. Let Vk ≡ [v1, . . . , vk] ∈ C

n×k, ‖vj‖2 = 1, j = 1, . . . , n + 1. Then

‖V H
k vk+1‖2

2 ≥ k

n(n + 1)
for at least one k ∈ {1, . . . , n}.

Proof. Let V H
k Vk ≡ Ik + Uk + UH

k , Uk SUT. Since Vn+1 has linearly dependent
columns, there exists y, ‖y‖2 = 1, such that Vn+1y = 0, and then (Un+1 + UH

n+1)y =
−y, and Un+1 + UH

n+1 has a singular value of one. It follows that

1 ≤ ‖Un+1 + UH
n+1‖2

F = 2‖Un+1‖2
F = 2

n∑
k=1

‖V H
k vk+1‖2

2.

Suppose the lemma is false; then
n∑

k=1

‖V H
k vk+1‖2

2 <
1

n(n + 1)

n∑
k=1

k =
1
2
,

which is a contradiction, so the lemma is true.
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Among other things, Corollary 5.2 gave a lower bound on the minimum singular
value of Vk in terms of ‖Sk‖2 or ‖Uk‖2. If we give particular bounds on the columns
of Uk, we can obtain more precise results, as we now show.

Corollary 5.5. With the notation in Lemma 5.4,

‖V H
i vi+1‖2

2 <
i

k(k + 1)
for i = 1, . . . , k−1 ⇒ σmin(Vk)2 >

1
k + 1

.

Proof. For any y ∈ Ck with ‖y‖2 = 1, the left-hand side of the implication gives

‖Vky‖2
2 = yHV H

k Vky = 1 + yH(Uk + UH
k )y,

(1 − ‖Vky‖2
2)

2 ≤ ‖Uk + UH
k ‖2

2 ≤ ‖Uk + UH
k ‖2

F = 2‖Uk‖2
F

= 2
k−1∑
i=1

‖V H
i vi+1‖2

2 <
(k − 1)k
k(k + 1)

=
k2 − 1

(k + 1)2
<

k2

(k + 1)2
,

so (1−‖Vky‖2
2)(k+1)< k. The result follows since

1≥σmin(Vk)= min
‖y‖2=1

‖Vky‖2.

5.2. Some properties of the eigensystem of Q(k). Finally, there are some
interesting results on the eigendecomposition of Q(k).

Corollary 5.6. With the notation in Theorem 2.1 we have left and right eigen-
subspaces of Q(k)

(5.11) [Vk, In]Q(k) = [Vk, In], Q(k)

[
V H

k

In

]
=

[
V H

k

In

]
,

so this gives n left eigenvectors and the same n right eigenvectors of (n+k)×(n+k)
Q(k), all with eigenvalue 1. For the remaining k-dimensional left and right eigenspaces

[−Ik, V H
k ]Q(k) = −(Ik−Sk)−H(Ik−Sk)[−Ik, V H

k ],(5.12)

Q(k)

[−Ik

Vk

]
=−

[−Ik

Vk

]
(Ik−Sk)(Ik−Sk)−H .(5.13)

Also
[−Ik V H

k

Vk In

] [−Ik V H
k

Vk In

]
=

[
Ik + V H

k Vk 0
0 In + VkV H

k

]
,(5.14)

so the remaining k eigenvectors will be orthogonal to the n eigenvectors from (5.11).
Since Q(k) is a normal matrix, it necessarily has a complete set of orthonormal eigen-
vectors. The above gives simple representations of two relevant eigenspaces.

Proof. Using (2.6) and expanding each of the left-hand sides of (5.11) shows that
(5.11) is true. For (5.12), from (2.6) with (2.3)

(Ik−Sk)H [−Ik, V H
k ]Q(k) = (Ik−Sk)H [−Ik, V H

k ]
[

Sk (Ik−Sk)V H
k

Vk(Ik−Sk) In−Vk(Ik−Sk)V H
k

]
=[SH

k Sk−Sk+Ik−SH
k Sk| − (Ik−Sk)H(Ik−Sk)V H

k +(Ik−Sk)HV H
k −(Ik−SH

k Sk)V H
k ]

= −(Ik−Sk)
[ −Ik V H

k

]
,
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proving (5.12). Similarly, (5.13) follows from (2.6) with (2.4):

Q(k)

[−Ik

Vk

]
(Ik−Sk)H =−

[
Sk−(Ik−Sk)V H

k Vk

Vk(Ik−Sk)−Vk + Vk(Ik−Sk)V H
k Vk

]
(Ik−Sk)H

=
[−Ik

Vk

]
[Sk−(Ik−Sk)V H

k Vk](Ik−Sk)H

=
[−Ik

Vk

]
[Sk−SkSH

k −(Ik−Sk)V H
k Vk(Ik−Sk)H ] =−

[−Ik

Vk

]
(Ik−Sk).

Equation (5.14) is obvious.
Corollary 5.7. For the matrices in Theorem 2.1, let Wk be such that

WH
k (Sk + SH

k )Wk = diag(δi), δi real, WH
k = W−1

k ; then if(5.15)

Y
(k)
1 ≡

[−Ik

Vk

]
(Ik−Sk)HWk, Y

(k)
2 ≡

[−Ik

Vk

]
(Ik−Sk)Wk,

each of Y
(k)
1 and Y

(k)
2 has orthogonal columns, where

(5.16) ‖Y (k)
1 ei‖2 = ‖Y (k)

2 ei‖2 = 2 − δi, i = 1, . . . , k, and − Q(k)Y
(k)
1 = Y

(k)
2

so that Q(k) rotates the columns of Y
(k)
1 into the columns of Y

(k)
2 (both sets of k

orthogonal vectors lie in the same subspace), and

(5.17) δi < 2, i = 1, . . . , k.

Proof. −Q(k)Y
(k)
1 = Y

(k)
2 follows from (5.13). Then with (2.3) and (5.15)

Y
(k)H
1 Y

(k)
1 = Y

(k)H
2 Y

(k)
2 = WH

k (Ik − Sk)H(Ik + V H
k Vk)(Ik − Sk)Wk

= WH
k [(Ik−Sk)H(Ik−Sk) + Ik−SH

k Sk]Wk = WH
k [2Ik−Sk−SH

k ]Wk = 2Ik−diag(δi),

which is diagonal, proving that Y
(k)
i has orthogonal columns for i = 1, 2 and complet-

ing (5.16). Y
(k)H
1 Y

(k)
1 is also Hermitian positive definite, proving (5.17).

Corollary 5.8. Q(k) in Theorem 2.1 has n eigenvalues of 1, and k eigenvalues
on the unit circle which are not 1.

Proof. The first part follows from (5.11). We prove the second part by contradic-
tion. Suppose in (5.12) that −(Ik−Sk)−H(Ik−Sk) had an eigenvalue of 1; then there
exists y with yHy = 1 such that

(Ik − Sk)y = −(Ik − Sk)Hy, 2y = (Sk + SH
k )y, yH(Sk + SH

k )y = 2,

which is impossible from (5.15) and (5.17).
To summarize, R([ V H

k

In
]) is the eigenspace of unitary Q(k) corresponding to all its

eigenvalues of 1, while R([−Ik

Vk
]) is the remaining eigenspace. If V H

k Vk = Ik so Sk = 0,
then from (5.13) the remaining k eigenvalues are −1.

6. Thoughts on optimality of Q(k) and the use of these ideas. There are
other ways of obtaining unitary matrices like Q(k) from a sequence of unit 2-norm
vectors v1, . . . , vk, and it might seem natural to ask if the form (2.6) in Theorem 2.1
is optimal in some sense, such as Q

(k)
1 being as close as possible in some sense to [ 0

Vk
].

For example, is SUT Sk in (2.1) as small as possible in some sense, subject to Q(k)
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being unitary in (2.6)? This seems unlikely, since Sk+1 is obtained by appending sk+1

and a zero row to Sk (see (2.7)), and such sequential additions do not usually lead to
overall optima.

We saw from (2.1) that V H
k Vk = I ⇔ Sk = 0, so at least Q

(k)
1 exhibits this

characteristic of optimality. Also we saw in Theorem 2.1 that Sk in (2.1) is the
unique SUT k × k matrix satisfying (2.6) for a given sequence v1, . . . , vk of unit 2-
norm vectors. Thus any further optimality analysis would have to consider some
wider range of possibilities. What that range could be is not clear, nor does it seem
important for the uses that Theorem 2.1 was designed for, as we will now argue.

The steps in using Theorem 2.1 for a rounding error analysis of the type considered
here have so far taken the following form. The v1, . . . , vk are the correctly normalized
versions of the supposedly orthonormal vectors computed by the algorithm. Then
Uk ≡ sut(V H

k Vk) and Sk ≡ (Ik + Uk)−1Uk are fully determined, and either can be
used to represent the loss of orthogonality in v1, . . . , vk. Initially Uk might seem more
natural, but the fact that ‖Sk‖2 ≤ 1, with the rest of (2.5), is very useful.

The crucial step for each analysis is to find an expression involving either Uk

or Sk from which it can be rigorously bounded. If Uk is bounded, then Sk can be
bounded using (2.1) or (2.2). In the analysis in section 3.1, the 2-norms of Uk and
Sk were bounded in (3.16) and (3.17). Theorem 2.1 can then be used to produce
an expression involving the computed objects related by a matrix Q

(k)
1 with exactly

orthonormal columns. This is done in (3.18). From this expression conclusions can be
made regarding the numerical stability of the algorithm, and possible improvements
might be suggested. See, for example, the text from (3.18) to the end of section 3.1.

Since Sk is the unique SUT matrix giving the unitary matrix in (2.6), it does
not seem to matter whether Q(k) is optimal or not—it appears to be the most useful
matrix for the analysis.

7. Augmented biorthogonality. Theorem 2.1 was designed for the analysis
of a class of orthogonalization algorithms. At the Householder Symposium 2008 in
Zeuthen, Germany, Ron Morgan [16] suggested that this approach might be applicable
to certain biorthogonalization algorithms as well. Following his suggestion, we now
state a generalization of Theorem 2.1 which might be useful for the rounding error
analyses of some biorthogonalization algorithms. In particular, it might be useful
for analyzing the numerical behavior of Lanczos’s [13, pp. 266 et seq.] process for
tridiagonalizing an unsymmetric square matrix; see also, for example, Wilkinson [25,
pp. 388–394].

Theorem 7.1. For any integers n ≥ 1 and k ≥ 1, with V ≡ [v1, . . . , vk] ∈ Cn×k,
W ≡ [w1, . . . , wk] ∈ Cn×k, where wH

j vj = 1, j = 1, . . . , k, define the SUT matrices U ,
S, and R, and the lower triangular matrix L, as well as the augmented matrices Q
and P , as follows:

U ≡ sut(WHV ), S ≡ (I + U)−1U = I − (I + U)−1,(7.1)

L ≡ slt(WHV ), R ≡ (I + LH)−1LH = I − (I + LH)−1,

Q ≡ [
Q1 Q2

] ≡ [
S (I − S)WH

V (I − S) I − V (I − S)WH

]
,

P ≡ [
P1 P2

] ≡ [
R (I − R)V H

W (I − R) I − W (I − R)V H

]
.
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Then

US = SU, U =(I−S)−1S≡S(I−S)−1, (I−S)−1 = I+U,(7.2)
LHR = RLH , LH =(I−R)−1R≡R(I−R)−1, (I−R)−1 = I+LH ,(7.3)
(I−R)HWHV (I−S) = I−RHS,(7.4)
(I−S)WHV (I−R)H = I−SRH ,(7.5)
WHV = I ⇔ R = S = 0;(7.6)
WHV singular ⇔ RHS has an eigenvalue 1 (and so ‖RHS‖2 ≥ 1).(7.7)

Also R and S are the unique SUT k × k matrices such that

(7.8) PHQ = I (and so QPH = I).

If we add a column to each of V and W so the expanded matrices are V̂ ≡
[V, v], Ŵ ≡ [W, w], Û ≡ [ U u

0 0 ], R̂ ≡ [ R′ r
0 0 ], Ŝ ≡ [ S′ s

0 0 ] (giving P̂HQ̂ = In+k+1), we
also have

R′ = R, S′ = S, and s = (I−S)WHv, r = (I − R)V Hw,(7.9) [
Ŝ

V̂ (I−Ŝ)

]
=

⎡⎣ S s
0 0

V (I−S) v−V s

⎤⎦ ,

[
R̂

Ŵ (I−R̂)

]
=

⎡⎣ R r
0 0

W (I−R) w−Wr

⎤⎦.

Proof. We start with the leading part of (7.8). For any k × k SUT matrices S̃

and R̃, define N ≡ P̃H
1 Q̃1−I for P̃1 ≡ [ R̃

W (I−R̃)
], Q̃1 ≡ [ S̃

V (I−S̃)
]; see (7.1). Since by

definition WHV = L + I + U , we have

I + N = P̃H
1 Q̃1 = R̃H S̃ + (I−R̃)H(I−S̃) + (I−R̃)H(L + U)(I−S̃),

N = −(I − R̃)H S̃ − R̃H(I − S̃) + (I−R̃)H(L + U)(I−S̃),

(I − R̃)−HN(I − S̃)−1 = −S̃(I − S̃)−1 − (I − R̃)−HR̃H + L + U.

But U − S̃(I − S̃)−1 is SUT, while L− (I − R̃)−HR̃H is SLT, so N = 0 if and only if
U = S̃(I − S̃)−1 and L = (I − R̃)−HR̃H . But then S̃ = U −US̃ and so (I +U)S̃ = U ,
while R̃H = L−R̃HL so R̃H(I +L) = L, proving that R and S in (7.1) are the unique
k × k SUT matrices giving PH

1 Q1 = I.
From (7.1) U = S + US, so U(I−S) = S, U = S(I−S)−1 = (I−S)−1S. Also

U(I−S) + (I−S) = I, so U + I = (I−S)−1, and then US = SU, proving (7.2). A
similar argument for LH and R proves (7.3). Note that (7.4) follows from PH

1 Q1 = I,
and using it gives for the rest of (7.8)

PH
1 Q2 = RH(I − S)WH + (I − R)HWH − (I − R)HWHV (I − S)WH = 0,

PH
2 Q1 = V (I − R)HS + V (I − S) − V (I − R)HWHV (I − S) = 0,

PH
2 Q2 = V (I − R)H(I − S)WH + I − V (I − R)HWH − V (I − S)WH

+ V (I − R)HWHV (I − S)WH = I,

so that (7.8) holds. Then (7.5) follows from the leading principal k × k submatrix of
QPH =I. The definitions in (7.1) give (7.6) directly, while (7.7) follows from (7.4).
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To prove (7.9) note that u ≡ WHv so that Ûek+1 = [ u
0 ]. Now from (7.2) Ŝ =

(Ik+1−Ŝ)Û . One proof follows by using this and the fact that Û and Ŝ are SUT:[
S′

0

]
= Ŝ

[
Ik

0

]
= (Ik+1−Ŝ)

[
U
0

]
=

[
(Ik−S′)U

0

]
=

[
S
0

]
,[

s
0

]
= Ŝek+1 = (Ik+1−Ŝ)

[
u
0

]
=

[
(Ik−S)u

0

]
;

see the analogous argument in Theorem 2.1. The proofs for R′ and r are similar.
Thus if V and W are supposedly biorthogonal matrices from some computation

and satisfy wH
j vj = 1, j = 1, . . . , k, then the augmented matrices Q1 and P1 are truly

biorthogonal. Note in this case that for any real nonsingular k × k diagonal matrix
D that D−1PH

1 Q1D = I, and by normalizing the columns of both P1 and Q1 we can
ensure that Q1D, for example, has unit length columns if we wish.

The augmented matrices P1 and Q1 are of primary interest, but analogously to
Theorem 2.1, we have shown that by using V , W , S, and R, and no other matrices,
P1 and Q1 can be extended to square matrices P and Q with biorthogonal columns,
that is, PH = Q−1. Also, if we take W = V, then L = UH , R = S, and P = Q is the
matrix Q(k) in Theorem 2.1, so that is a special case of this theorem. But whereas in
Theorem 2.1 we always have ‖Sk‖2 ≤ 1, here we can have any SUT S and R, for from
(7.2) and (7.3) a chosen SUT S and R give a U and L, and then, for example, taking
W = I and V = L + I + U would result in this S and R. Thus while 0 ≤ ‖Sk‖2 ≤ 1
was a beautiful measure of the loss of orthogonality in Vk, it is not clear that there is
any better measure of loss of biorthogonality here than ‖L + U‖2,F .

8. Future research. This paper could be used to simplify the understanding of
the analyses in [5, 6, 18], as well as that in [2]. More importantly, it has led to the
realization that Lanczos’s tridiagonalization of a symmetric matrix [13] is backward
stable for a remarkably strange augmented system; see [17]. This might facilitate the
analyses of this and many other algorithms for solving such large sparse problems
as the symmetric and unsymmetric matrix eigenproblems [13, 1], symmetric positive
definite linear systems [11], symmetric indefinite linear systems [19], and unsymmetric
linear systems, least squares, total least squares, and scaled total least squares [20,
21, 4, 22], as well as some of the other practical methods which produce supposedly
orthonormal vectors, or two sets of vectors which are supposedly biorthogonal, in the
manner discussed here.
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[22] C.C. Paige and Z. Strakoš, Scaled total least squares fundamentals, Numer. Math., 91 (2002),
pp. 117–146.

[23] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[24] C. Sheffield (June 25, 1935 – November 2, 2002), comment to Gene Golub.
[25] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


