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Abstract

A recursive least squares algorithm is presented for short baseline GPS positioning using both
carrier phase and code measurements. We take advantage of the structure of the problem to make the
algorithm computationally efficient and use orthogonal transformations to ensure that the algorithm
is numerically reliable. Details are given for computing position estimates and error covariance
matrices with possible satellite rising and setting. Real data test results suggest our algorithm is
effective.

1 Introduction

This paper is concerned with kinematic relative GPS positioning using both carrier phase and code
measurements. Using these two types of measurement for positioning is not new, and much research has
been conducted in this area. For example, Hatch [6], Ashjaee [1] and Goad [4] studied how to generate
the so-called carrier-smoothed code measurements by using carrier phase and code measurements.
Kleusberg [10], Hwang and Brown [8], Teunissen [13], Jin [9] and Tiberius [15] investigated how to
use carrier phase and code measurements in GPS kinematic positioning. In [15] different combinations
of these two types of measurement with different frequencies were considered. Most methods assume
that a dynamic model for the roving receiver is available, and then use the Kalman filter. The main
differences among these methods are that different information is assumed to be sent from the stationary
receiver to the roving receiver, and different dynamic models are used.

Many methods given in the GPS literature do not address the computer implementation issue,
which is crucial for software design. Although some do consider it, they usually consider only some of
its aspects. Basically it has three aspects: numerical reliability, computational efficiency, and storage
efficiency. In [3] we presented a recursive least squares (LS) approach for carrier phase based positioning.
The approach is computationally efficient because it makes full use of the structure of the mathematical
model and is numerically reliable because orthogonal transformations are used. Storage efficiency is
also taken into account in this approach. The goal of this paper is to extend this approach to the
combined case where both carrier phase and code measurements are used and refined models for the
measurement equations are adopted. In this paper we assume the carrier phase and code measurements
of the stationary receiver are available at the roving receiver. We do not use Kalman filtering, because
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for many practical applications it is hard to model the dynamic behavior of the roving receiver. We
believe that artificially including a dynamic model may degrade the estimation performance, while the
additional computation in each epoch is unnecessarily expensive. However when a sufficiently accurate
dynamic model is known, the approach given here can be extended to handle it. We consider only the
L1 carrier since many receivers can only receive the L1 signal. But it is easy to extend our approach
to the dual frequency case.

This paper is organized as follows. In Section 2 we give the mathematical model we use for position
estimation. In Section 3 we show how to effectively use orthogonal transformations to make full use
of the structure of the model to recursively compute the LS estimates of the positions and the corre-
sponding error covariance matrices, and how to handle satellites rising and setting. In Section 4 we
give the results of tests with real data. Finally a summary is given in Section 5.

Throughout this paper we use bold lower case letters for vectors and bold upper case letters for
matrices. The unit matrix will be denoted by I and its i-th column by ei, while e ≡ (1, 1, . . . , 1)T (we
use ≡ to mean ‘is defined to be’). In will denote the n×n unit matrix. We use the 2-norm ‖x‖ =

√
xT x

for vectors. E{·} will denote the expected value and cov{·} will denote the covariance matrix, that is
cov{x} = E{(x − E{x})(x − E{x})T }. v ∼ N (v̄,V ) will indicate that v is a normally distributed
random vector with expected value v̄ and covariance V .

2 The mathematical model

Here we give the mathematical model for position estimation. Suppose there are two receivers s and
r. The receiver s is stationary and its position is known, while the receiver r is roving and its position
is to be determined. We want to find the baseline vector x, i.e., the vector pointing from receiver s to
receiver r. If the baseline is known, the position of the roving receiver will be known. In this paper, we
assume the baseline is short (say, shorter than 10 kilometers).
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Figure 1: Geometry for two Receivers and one Satellite.

We need the following quantities to describe the geometry, that is, the relative positions of satellites
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and receivers (see Figure 1):

hi
s the vector from receiver s to satellite i,

ei the unit vector from the midpoint of the baseline to satellite i,

ρi
s the range in wavelengths from receiver s to satellite i,

λ the wavelength (for the L1 carrier signal used here, λ ≈ 19cm).

Note that superscripts indicate satellites, subscripts receivers. Since

x = hi
s − hi

r, ei =
hi

s − x/2
‖hi

s − x/2‖
=

hi
s + hi

r

‖2hi
s − x‖

,

we have

(‖2hi
s − x‖ei)T x = ‖hi

s‖2 − ‖hi
r‖2 = (‖hi

s‖ − ‖hi
r‖)(‖hi

s‖+ ‖hi
r‖) = λ(ρi

s − ρi
r)(‖hi

s‖+ ‖hi
s − x‖),

giving

(ωiei)T x = λ(ρi
s − ρi

r), (1)

ωi ≡ ‖2hi
s − x‖

‖hi
s‖+ ‖hi

s − x‖
, ωiei =

2hi
s − x

‖hi
s‖+ ‖hi

s − x‖
. (2)

Notice that ωi is close to 1, and we could replace it by 1 for many applications. But for some high
precision GPS applications we may still want to keep ωi. Furthermore, the cost of computing ωi is
negligible. The true baseline vector x will not be known, but we will see that at each step we will have
an estimate of it, and this will be used to evaluate ωiei above.

Suppose the signal from satellite i arrives at receiver s at time tk and its travel time is τ i
s. At tk the

carrier phase measurement φi
s(tk) (in wavelengths) and the code measurement ρ̃i

s(tk) (in wavelengths)
at receiver s for satellite i are (cf. [14, Sec. 5.2.2] or [15, Sec. 3.4])

φi
s(tk) = ρi

s(tk)− Ii
s(tk) + T i

s(tk) + N i
s + f [δts(tk)− δti(tk − τ i

s)] + Ds(tk)−Di(tk − τ i
s)

+ φs(t0)− φi(t0) + µi
s(tk), (3)

ρ̃i
s(tk) = ρi

s(tk) + Ii
s(tk) + T i

s(tk) + f [δts(tk)− δti(tk − τ i
s)] + ds(tk)− di(tk − τ i

s) + νi
s(tk), (4)

where the “units” of each of the terms in the above equations is “number of wavelengths”,

• φi
s(tk): the carrier phase measurement at time tk.

• ρ̃i
s(tk): the code measurement at time tk.

• ρi
s(tk): the range between receiver s at time tk and satellite i at time tk − τ i

s.

• Ii
s(tk): the ionospheric range error at time tk.

• T i
s(tk): the tropospheric range error at time tk.

• N i
s: the integer ambiguity.

• f : the frequency of the L1 carrier.

• δts(tk): the receiver clock error at time tk.

• δti(tk − τ i
s): the satellite clock error at time tk − τ i

s.
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• Ds(tk): the receiver hardware delay for the carrier phase measurement at time tk.

• Di(tk − τ i
s): the satellite hardware delay for the carrier phase measurement at time tk − τ i

s.

• ds(tk): the receiver hardware delay for the code measurement at time tk.

• di(tk − τ i
s): the satellite hardware delay for the code measurement at time tk − τ i

s.

• φs(t0): the initial phase of the receiver generated carrier signal at the initial time t0.

• φi(t0): the initial phase of the satellite generated carrier signal at the initial time t0.

• µi
s(tk): the carrier phase measurement noise, including multipath error, at time tk.

• νi
s(tk): the code measurement noise, including multipath error, at time tk.

The ionospheric range error Ii
s, the tropospheric range error T i

s and the satellite clock error δti can be
modeled, see e.g. [11, Secs 4.4 & 5.3]. If they have been, we simply assume that (3)–(4) is the model
after the corrections have been applied, and that the error terms in (3)–(4) are now the corresponding
modeling errors. For simplified carrier phase and code measurement equations which do not consider
the initial phases and hardware delays, see e.g. [11, Sec. 4.1].

Subtracting the carrier phase measurement equation corresponding to receiver r from (3) and notic-
ing that

−[Ii
s(tk)−Ii

r(tk)]+[T i
s(tk)−T i

r(tk)]−f [δti(tk−τ i
s)−δti(tk−τ i

r)]−[Di(tk−τ i
s)−Di(tk−τ i

r)]−[φi(t0)−φi(t0)]

will be negligible since the baseline is short, we obtain the single differenced carrier phase measurement
equation

φi
s(tk)− φi

r(tk) = ρi
s(tk)− ρi

r(tk) + N i
s −N i

r + fδts(tk)− fδtr(tk) + Ds(tk)−Dr(tk)

+ φs(t0)− φr(t0) + µi
s(tk)− µi

r(tk).
(5)

In order to eliminate the number of dependent unknowns, we can simply combine the receiver clock
errors, the receiver hardware delays, and the initial phases of the receiver generated carrier signals
together. Notice that receivers s and r occur in every equation, so we can drop these indices and then
indicate the time epoch k by subscript k. Thus by defining

φi
k ≡ φi

s(tk)− φi
r(tk), N i ≡ N i

s −N i
r, µi

k ≡ µi
s(tk)− µi

r(tk),

βφ
k ≡ fδts(tk)− fδtr(tk) + Ds(tk)−Dr(tk) + φs(t0)− φr(t0),

we have from (5) and (1) that

φi
k = λ−1(ωi

ke
i
k)

T xk + N i + βφ
k + µi

k. (6)

Similarly by defining

ρ̃i
k ≡ ρ̃i

s(tk)− ρ̃i
r(tk), βρ

k ≡ fδts(tk)− fδtr(tk) + ds(tk)− dr(tk), νi
k ≡ νi

s(tk)− νi
r(tk),

we obtain from (4) the single differenced code measurement equation

ρ̃i
k = λ−1(ωi

ke
i
k)

T xk + βρ
k + νi

k. (7)

Following the literature (see e.g. [15, Sec. 3.4]), we assume that all µi
k in the carrier phase measurement

equations (and all νj
l in the code measurement equations) for different satellites and different epochs
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are unbiased independently distributed noises with the same normal distribution, and assume that µi
k

and νj
l are independent. Suppose there are m visible satellites at epoch k. Writing

yφ
k ≡

φ1
k

·
φm

k

 , yρ
k ≡

 ρ̃1
k

·
ρ̃m

k

 , Ek ≡ λ−1

 (ω1
ke

1
k)

T

·
(ωm

k em
k )T

 , a ≡

N1

·
Nm

 , vφ
k ≡

µ1
k

·
µm

k

 , vρ
k ≡

 ν1
k

·
νm

k

 ,

(8)
we have from (6) and (7) that (remembering that e ≡ (1, 1, . . . , 1)T )

yφ
k = Ekxk + a + eβφ

k + vφ
k , vφ

k ∼ N (0, σ2
φIm), (9)

yρ
k = Ekxk + eβρ

k + vρ
k, vρ

k ∼ N (0, σ2
ρIm), (10)

where we assume the standard deviations σφ and σρ are known. These are the desired single differenced
measurement equations at epoch k.

Notice that in Ek, ωi
ke

i
k depends on the baseline xk, see (8) and (2). So we may write

Ek ≡ E(xk).

This Ek is known once xk is known. Given an approximation to xk (because E(x) is not very sensitive
to changes in x, our estimate of xk−1 is usually sufficient), we can compute our approximation to Ek.
Then given the measurements yφ

k and yρ
k, we can obtain a better estimate of xk, and of Ek if necessary.

3 An efficient and numerically reliable approach

For solving a general linear LS problem, there are two typical methods: the normal equations method
and the QR factorization method (which uses orthogonal transformations). If the coefficient matrix
is ill-conditioned (this can happen in GPS due to poor geometry), the former may unnecessarily lose
accuracy, while the latter does not, because it is numerically stable, see e.g. [5, Sec. 5.3]. Following [3],
we will present a recursive least squares algorithm by orthogonal transformations to estimate positions
based on the single differenced carrier phase and code measurement equations (9) and (10). We will
make full use of the structure of the problem (for example using the fact that the integer ambiguity
vector is identical in each step when there are no cycle slips or satellites setting and rising) to make the
algorithm efficient. Note that Tiberius [15] also used a recursive algorithm. But he used the standard
square root information filter (SRIF) approach based on double differenced carrier phase and/or code
measurement equations. It is hard to see how this approach could take full advantage of this particular
structure.

3.1 Position estimation

For the time being we assume that the Ek in (9) and (10) are known, and that the number of visible
satellites does not change during the observation period.

First we eliminate βφ
k from the carrier phase measurement equation (9). Let P ∈ Rm×m be a

Householder transformation (see e.g. [5, p. 209]) such that

Pe =
√

m e1, P ≡ I − 2uuT

uT u
, u ≡ e1 −

1√
m

e. (11)
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Note that P is symmetric and orthogonal. Partition P as P ≡
[
pT

P̄

]
, then

P̄ =
[

e√
m

, Im−1− eeT

m−
√

m

]
. (12)

Multiplying (9) by P from the left, we obtain[
pT yφ

k

P̄ yφ
k

]
=

[
pT Ek

P̄Ek

]
xk +

[
pT

P̄

]
a +

[
1
0

]√
mβφ

k +

[
pT vφ

k

P̄ vφ
k

]
,

[
pT vφ

k

P̄ vφ
k

]
∼ N (0, σ2

φIm). (13)

Since only the first equation in (13) involves the unknown (and here unwanted) term βφ
k , it can be

dropped for position estimation. So we have

P̄ yφ
k = P̄Ekxk + P̄ a + P̄ vφ

k , P̄ vφ
k ∼ N (0, σ2

φIm−1). (14)

Notice that we have used the simple Householder transformation instead of the often used double
differencing technique to eliminate the unknown variable βφ

k . Its main advantage is that the transformed
measurements are still uncorrelated. The Gram-Schmidt orthonormalization technique (see [12, pp. 124-
132])), which can also eliminate βφ

k and make the transformed measurements uncorrelated, is not as
straightforward as the Householder transformation technique.

Since P̄ is (m− 1)×m, it does not have full column rank and we will not be able to get a unique
estimate of a. If we set P̄ a as a new vector, we would lose the integer nature of a. So we introduce
the double difference integer ambiguity (DDIA) vector z:

z ≡ [N2 −N1, N3 −N1, . . . , Nm −N1]T , (15)

where without loss of generality we have chosen satellite 1 as the “reference” satellite. Notice z is still
a vector of integers. Define

F ≡ Im−1 −
eeT

m−
√

m
, J ≡ [−e, Im−1], (16)

where F is nonsingular and z = Ja. It is easy to verify from (12) that

P̄ = FJ , P̄ a = FJa = Fz. (17)

Thus (14) can be rewritten as

P̄ yφ
k = P̄Ekxk + Fz + P̄ vφ

k , P̄ vφ
k ∼ N (0, σ2

φIm−1). (18)

Similarly we can eliminate βρ
k from the code measurement equation (10) and obtain

P̄ yρ
k = P̄Ekxk + P̄ vρ

k, P̄ vρ
k ∼ N (0, σ2

ρIm−1). (19)

In order to make P̄ vρ
k have the same covariance matrix as P̄ vφ

k , we define σ ≡ σφ/σρ and multiply (19)
by σ, then write the resulting equation and (18) together[

P̄ yφ
k

σP̄ yρ
k

]
=

[
P̄Ek

σP̄Ek

]
xk +

[
F
0

]
z +

[
P̄ vφ

k

σP̄ vρ
k

]
,

[
P̄ vφ

k

σP̄ vρ
k

]
∼ N (0, σ2

φI2(m−1)). (20)
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For estimating xk later, we would like to transform the coefficient matrix of xk to upper triangular
form. In order to do that, we first define the orthogonal matrix G:

G ≡
[

cIm−1 sIm−1

−sIm−1 cIm−1

]
, where γ ≡

√
1 + σ2, c ≡ 1/γ, s ≡ σ/γ, so G

[
Im−1

σIm−1

]
=

[
γIm−1

0

]
.

Applying G to (20), we obtain[
cP̄ yφ

k + sσP̄ yρ
k

−sP̄ yφ
k + cσP̄ yρ

k

]
=

[
γP̄Ek

0

]
xk +

[
cF
−sF

]
z +

[
cP̄ vφ

k + sσP̄ vρ
k

−sP̄ vφ
k + cσP̄ vρ

k

]
. (21)

We assume that in each epoch we have at least four visible satellites, i.e., m ≥ 4. So P̄Ek almost
always has full column rank, see e.g. [3, Sec 3.2]. Then we compute the QR factorization of γP̄Ek by
Householder transformations (see e.g. [5, Sec. 5.2.1]):

QT
k (γP̄Ek) =

[
Rk

0

]
, QT

k =
[
Uk

V k

]
, 3× (m− 1) Uk, (m− 4)× (m− 1) V k, (22)

where Qk is an (m − 1) × (m − 1) orthogonal matrix and Rk is a 3 × 3 nonsingular upper triangular
matrix. Multiplying (21) by diag(QT

k , Im−1) from the left givesUkP̄ (cyφ
k + sσyρ

k)
V kP̄ (cyφ

k + sσyρ
k)

P̄ (−syφ
k + cσyρ

k)

 =

Rk

0
0

xk +

cUkF
cV kF
−sF

z +

UkP̄ (cvφ
k + sσvρ

k)
V kP̄ (cvφ

k + sσvρ
k)

P̄ (−svφ
k + cσvρ

k)

 . (23)

Denote

yk ≡ UkP̄ (cyφ
k + sσyρ

k), vk ≡ UkP̄ (cvφ
k + sσvρ

k),

ȳk ≡ V kP̄ (cyφ
k + sσyρ

k), v̄k ≡ V kP̄ (cvφ
k + sσvρ

k),

gk ≡ P̄ (−syφ
k + cσyρ

k), fk ≡ P̄ (−svφ
k + cσvρ

k).

Then (23) can be rewritten as yk

ȳk

gk

 =

Rk

0
0

xk +

cUkF
cV kF
−sF

z +

vk

v̄k

fk

 . (24)

Combining these for k = 1, 2, . . . and reordering gives

y1
...

yk

ȳ1

g1
...

ȳk

gk


=



R1
cU1F

. . .
...

Rk c UkF

cV 1F
−sF

...
cV kF
−sF




x1

x2
...

xk

z

 +



v1
...

vk

v̄1

f1
...

v̄k

fk


. (25)
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Notice that forming U jF and V jF can be done efficiently by using the special form of F (see (16)).
Since orthogonal transformations preserve the normal distribution, the transformed noise vector, the
second term on the right side of (25), follows the distribution N (0, σ2

φI2k(m−1)).
Let zk|k denote the LS estimate of z at epoch k. Then we see that zk|k is the LS estimate for the

sub-model formed by the last k(2m− 5) equations of (25):
ȳ1

g1
...

ȳk

gk

 =


cV 1F
−sF

...
cV kF
−sF

z +


v̄1

f1
...

v̄k

fk

 . (26)

Once zk|k has been computed, we observe from (25) that x1|k,x2|k, . . . ,xk|k, the LS estimates of
x1,x2, . . . ,xk at epoch k, can be computed by solving the following upper triangular systems by back
substitution:

Rjxj|k = yj − cU jFzk|k, j = 1, . . . , k. (27)

Notice that the x1|k,x2|k, . . . ,xk|k can be computed in any order once zk|k is available. So if zk|k is
updated, we could for example compute xk|k without updating any of the earlier position estimates.
Updating the earlier position estimates is called smoothing. If at a later time we want to smooth the
position estimate at epoch j, then we see from (27) that Rj and U jF have to be stored. In practice,
at any epoch we may just want to do smoothing for a fixed number of previous epochs rather than for
all previous epochs, in order to avoid time and memory costs. For real-time applications, smoothing
may not be necessary.

Now our task is to obtain the estimate zk|k of z from (26). We use a recursive approach. Suppose
at epoch k−1 we have computed the following orthogonal transformations:

T T
k−1


cV 1F
−sF

...
cV k−1F
−sF

 =
[
Sk−1

0

]
, T T

k−1


ȳ1

g1
...

ȳk−1

gk−1

 =

[
bk−1

b̄k−1

]
, (28)

where T k−1 is orthogonal, and Sk−1 is nonsingular upper triangular with the same number of rows

m− 1 as bk−1. Then at epoch k after obtaining
[
cV kF
−sF

]
and

[
ȳk

gk

]
(see the 2nd and 3rd equations in

(24)), we perform the following orthogonal transformations by using Householder transformations:

T̃
T
k

 Sk−1

cV kF
−sF

 =
[
Sk

0

]
, T̃

T
k

bk−1

ȳk

gk

 =
[
bk

b̂k

]
, b̄k ≡

[
b̄k−1

b̂k

]
, (29)

where T̃ k is orthogonal, Sk is nonsingular upper triangular, and Sk and bk each have m− 1 rows. The
Householder transformations can be implemented to take advantage of the upper triangular structure
of Sk−1. But the matrices T̃ k and T k−1 are neither formed nor stored. By using similar notation for
the transformed noise vector, we get the transformed form of (26):[

bk

b̄k

]
=

[
Sk

0

]
z +

[
wk

w̄k

]
,

[
wk

w̄k

]
∼ N (0, σ2

φIk(2m−5)). (30)
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Thus solving the upper triangular system

Skzk|k = bk (31)

by back substitution, we obtain zk|k, the LS estimate of z at epoch k. After this we can solve (27) to
obtain any xj|k, the estimate of xj at epoch k.

Now let us deal with the nonlinearity problem. Since Ek = E(xk) (k = 1, 2, . . . ,), our problem
of estimating the positions is actually nonlinear. We have to use approximations to Ek during the
processing. Suppose we have obtained an estimate xk−1|k−1 of xk−1 at the end of epoch k−1. Then at
epoch k, we use E(xk−1|k−1) as an approximation to E(xk). This approximation is usually acceptable,
since usually xk−1 and xk are not far from each other, and Ek−1 and Ek are very close. If necessary,
after obtaining the estimate xk|k of xk, we can use E(xk|k) to approximate Ek and then re-compute an
estimate of xk. We could even do some further iterations to get an improved estimate of xk. However
neither of these last two produced any significant improvements. In fact E(x) varies so slowly as a
function of x that it can save computations to only update Ek every five or so steps, depending on the
application.

For the first epoch we can handle the nonlinearity of E1 = E(x1) in the following way. In many
GPS applications we may know an approximate location of the roving receiver when we start to track
the GPS signals. Then we can use this to construct an approximation to E1. If we do not have any
information about the position of the roving receiver, we can take x = 0 so that each ei

1 in E1 is the
direction cosine from the stationary receiver to satellite i and ωi

1 = 1, for i = 1, . . . ,m, see (8) and
(2). Then after obtaining an initial estimate of x1 based on the carrier phase and code measurement
equations at epoch k = 1, we can recompute E1 and then recompute the estimate of x1.

3.2 Computing the error covariance matrices

In order to have some idea of the errors in the estimates of positions, we would like to know the
corresponding error covariance matrices cov{xj|k − xj}, j = 1, . . . , k. Since Ej depends on xj , the
matrices Rj (see (22)) depend on the unknowns. Here we will assume that the Rj do not depend on
the unknowns, and so we only approximate the true error covariance matrices. Combining the j-th
equation of (25) and the top part of (30) gives[

yj

bk

]
=

[
Rj cU jF
0 Sk

] [
xj

z

]
+

[
vj

wk

]
,

[
vj

wk

]
∼ N (0, σ2

φIm+3). (32)

Note that (32) determines the estimate xj|k of xj . In order to obtain cov{xj|k − xj}, following [3] we
decouple xj and z in (32) by applying an orthogonal ZT

j|k to the coefficient matrix from the left to zero
the cU jF block:

ZT
j|k

[
Rj cU jF
0 Sk

]
=

[
Rj|k 0
R̄j|k Sj|k

]
,

where Givens rotations (see for example [5, p. 215]) are used to take advantage of the triangular structure
of Rj and Sk and produce upper triangular Rj|k. Since cU jF is 3× (m− 1), 3(m− 1) rotations are
needed. We zero cU jF column by column, and for each column we go from the bottom to the top.
Only one element of c UjF and one corresponding diagonal element of Sk are used to construct one
rotation. This process can be described schematically in the case m = 5 as follows, where the symbolki indicates the element is eliminated in the i-th rotation, while the symbol i indicates this element
is generated by the i-th rotation:
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Then applying ZT
j|k to (32) we obtain

ZT
j|k

[
yj

bk

]
=

[
Rj|k 0
R̄j|k Sj|k

] [
xj

z

]
+ ZT

j|k

[
vj

wk

]
, ZT

j|k

[
vj

wk

]
∼ N (0, σ2

φIm+3),

or equivalently, with obvious notation,[
yj|k
bj|k

]
=

[
Rj|k 0
R̄j|k Sj|k

] [
xj

z

]
+

[
vj|k
wj|k

]
,

[
vj|k
wj|k

]
∼ N (0, σ2

φIm+3).

We see yj|k = Rj|kxj|k where xj|k also satisfies (27), and so

Rj|k(xj|k − xj) = vj|k, cov{xj|k − xj} = R−1
j|kcov{vj|k}R−T

j|k = σ2
φ(RT

j|kRj|k)
−1.

3.3 Fixing integer ambiguities

In order to obtain high precision for position estimates in as few epochs as possible, the integer nature
of the ambiguities should be used. Notice that in our algorithm in Section 3.1 we just regarded z
as a general real vector, and did not fix it as a vector of integers. For some applications this will be
sufficient, and it is not worth spending extra computation time to fix the integer ambiguities. Also if
an integer ambiguity is not correctly fixed, it might cause a larger error in the position estimate. But
if one wants, the results obtained here can be used to fix the integer ambiguities.

There are several approaches to fixing double difference integer ambiguities. One of the well-known
approaches is called the LAMBDA method, see [14, Chap. 8]. This is based on cov{zk|k − z}, and one
type of input for the LAMBDA method is the Cholesky factor of [cov{zk|k − z}]−1, which actually has
been obtained in Section 3.1. In fact, from the top part of (30) and (31),

cov{zk|k − z} = cov{S−1
k wk} = σ2

φS−1
k S−T

k = σ2
φ(ST

k Sk)−1. (33)

Thus Sk/σφ is the Cholesky factor of [cov{zk|k − z}]−1.
If at epoch k, zk|k is fixed as a vector of integers, then we can get the corresponding position

estimates from (27). Starting from epoch k + 1, we will not need to estimate z any more. We simply
move Fz to the left hand side of (18). So for any epoch l after k, we need only solve those upper
triangular systems that we are interested in among (cf. (27))

Rjxj|l = yj − cU j(Fzk|k), j = 1, . . . , l, l > k.

10



3.4 Handling the change of ambiguities

In Section 3.1 we assumed that we had the same satellites during the whole observation period. But
if the observation span is long, there will be satellites setting and/or rising. Sometimes data for some
satellites at some epochs may be missing. This can also be regarded as satellite setting and rising. As a
result, the number of measurement equations may be different for different epochs, leading to different
dimensions of the DDIA vector z for different epochs. The values of z may also change due to cycle
slips. For methods for cycle slip detection and repair, see e.g. [7, Sec. 9.1.2]. But it is clear from this
that correct repair of cycle slips may not be easy. So we assume that a method for cycle slip detection,
but not repair, is incorporated in the positioning algorithm. When cycle slips are detected between
two epochs, we just assume there were satellites setting and rising between these two epochs, although
physically the setting and rising satellites are identical.

The major task is to update the estimate of the DDIA vector from epoch k−1 to epoch k, see
(29)–(31). When this has been done, the position estimates at epoch k can easily be obtained, see (27).
So the key to handling rising and setting satellites is to find the equivalents of (29)–(31) and (27). Since
the DDIA vector may be different for different epochs, we will use notation such as zk instead of z.
Because the number of visible satellites changes, we will write F k instead of F in (16).

Remember from (15) that a DDIA element has the form Nn−N i, where n is a non-reference satellite
and i is the reference satellite. We will say that this element “corresponds to” the non-reference satellite
n. It is important to be aware that we will use the same reference satellite for every element in every
DDIA vector at a given epoch j. This reference satellite must be visible at epoch j, so if it sets between
epochs k−1 and k, for some k > j, then (see Case 2 later) we will arrange to use a different reference
satellite at epoch k. For k = 1, 2, . . . , let z̃k be the DDIA vector for some reference satellite which is
visible at epoch k, where the elements of z̃k correspond to all the other satellites we have encountered
from epoch 1 to epoch k. If a satellite sets and rises again, it will be considered as a new satellite.
Thus when a satellite rises, the dimension of z̃ will increase by one, but a setting satellite leaves the
dimension unchanged. In our constant satellite case z̃k was just z in (15).

Assume at the end of epoch k−1 that we have obtained the equivalent of the top part of (30) for
epoch k−1:

b̃k−1 = S̃k−1z̃k−1 + w̃k−1, w̃k−1 ∼ N (0, σ2
φI), (34)

where S̃k−1 is nonsingular upper triangular. We can partition z̃k−1 as

z̃k−1 =
[
z̃d

k−1

zk−1

]
, (35)

where for k = 1, 2, . . ., the elements of z̃d
k correspond to the non-reference satellites which have gone

down from epochs 1 until k, and the elements of zk correspond to the non-reference satellites which
are visible at epoch k. Here and later, when we talk about a DDIA vector at epoch k, a non-reference
satellite means any satellite which is not the reference satellite at epoch k. Then with compatible
partitioning, we can rewrite (34) as[

b
(1)
k−1

bk−1

]
=

[
S̃

(1)
k−1 S̃

(2)
k−1

0 Sk−1

] [
z̃d

k−1

zk−1

]
+

[
w

(1)
k−1

wk−1

]
, (36)

where both S̃
(1)
k−1 and Sk−1 are nonsingular upper triangular. Notice that if no satellites rise or set

from epoch 1 to epoch k−1, then the top part of (36) will disappear and the bottom part is just the top
part of (30) with k replaced by k−1. In the following we will combine (36) with the relevant equations
at epoch k in order to obtain the position estimates. We consider two cases separately.
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Case 1: The reference satellite at epoch k−1 remains at epoch k. We still use it as the reference
satellite at epoch k. If a satellite sets between epochs k−1 and k, then we simply drop the corresponding
two measurement equations from (20). If a satellite rises between epochs k−1 and k, then we just append
the two equations at the obvious positions in (20), so the measurement equations obtained at epoch k
involve only the ambiguities in the DDIA vector zk. The transformed measurement equations (24) at
epoch k for the new situation can be written as

yk = Rkxk + cUkF kzk + vk, vk ∼ N (0, σ2
φI), (37)[

ȳk

gk

]
=

[
cV kF k

−sF k

]
zk +

[
v̄k

fk

]
,

[
v̄k

fk

]
∼ N (0, σ2

φI). (38)

The main task is to combine (38) with (36) to obtain the equivalent of (34) for z̃k at epoch k. The
resulting LS estimate of z̃k can then be used to give the position estimates based on (37) and the
corresponding equations for epochs j = 1, . . . , k − 1,

yj = Rjxj + cU jF jzj + vj , vj ∼ N (0, σ2
φI). (39)

The DDIA vector zk can be partitioned as follows:

zk =
[
zr

k

zu
k

]
, (40)

where the elements of zr
k correspond to the non-reference satellites which are visible at epoch k−1 and

remain at epoch k, and those of zu
k corresponds to the non-reference satellites which come up between

epochs k−1 and k. Let zd
k denote the DDIA vector whose elements correspond to the satellites which

go down between epochs k−1 and k. Then for k = 1, 2, . . . , we can summarize the DDIA vectors at
epoch k as follows, where every element of every DDIA vector at epoch k involves the same reference
satellite, which must be visible at epoch k:

• z̃k: (whose elements correspond to) all the non-reference satellites that were visible for at least
one epoch from epoch 1 to epoch k;

• z̃d
k: all the non-reference satellites that go down between epochs 1 and k;

• zk: all the non-reference satellites that are visible at epoch k;

• zr
k: all the non-reference satellites that are visible at epoch k−1 and remain at epoch k;

• zu
k : all the non-reference satellites that come up between epochs k−1 and k;

• zd
k: all the non-reference satellites that go down between epochs k−1 and k.

Obviously zk−1 is a rearrangement of the combined elements of zr
k and zd

k, so we can find a permu-
tation matrix Πk = [Π(1)

k ,Π
(2)
k ] such that

ΠT
k zk−1 =

[
(Π(1)

k )T zk−1

(Π(2)
k )T zk−1

]
=

[
zd

k

zr
k

]
. (41)

The following are the relationships between these DDIA vectors that we will use:

z̃d
k =

[
z̃d

k−1

zd
k

]
, z̃k =

[
z̃d

k

zk

]
=


z̃d

k−1

zd
k

zr
k

zu
k

 . (42)
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We are now ready to combine (36) and (38). Partition F k = [F (1)
k ,F

(2)
k ] compatibly with (40) so that

in (38) [
cV kF k

−sF k

]
zk =

[
cV kF

(1)
k

−sF
(1)
k

]
zr

k +

[
cV kF

(2)
k

−sF
(2)
k

]
zu

k .

In (36), use (41) to write

Sk−1zk−1 = Sk−1Πk ΠT
k zk−1 =

[
Sk−1Π

(1)
k Sk−1Π

(2)
k

] [
zd

k

zr
k

]
,

and similarly for S̃
(2)
k−1zk−1. Then stacking (36) on top of (38) gives (see (42) and (40))


b

(1)
k−1

bk−1

ȳk

gk

 =


S̃

(1)
k−1 S̃

(2)
k−1Π

(1)
k S̃

(2)
k−1Π

(2)
k 0

0 Sk−1Π
(1)
k Sk−1Π

(2)
k 0

0 0 cV kF
(1)
k cV kF

(2)
k

0 0 −sF
(1)
k −sF

(2)
k




z̃d
k−1

zd
k

zr
k

zu
k

 +


w

(1)
k−1

wk−1

v̄k

fk

 . (43)

To solve the LS problem, we compute the following orthogonal transformations by the Householder
transformations, which are the new versions of (29):

T̃
T
k


S̃

(1)
k−1 S̃

(2)
k−1Π

(1)
k S̃

(2)
k−1Π

(2)
k 0

0 Sk−1Π
(1)
k Sk−1Π

(2)
k 0

0 0 cV kF
(1)
k cV kF

(2)
k

0 0 −sF
(1)
k −sF

(2)
k

 =

S̃
(1)
k S̃

(2)
k

0 Sk

0 0

 ≡

[
S̃k

0

]
,

T̃
T
k


b

(1)
k−1

bk−1

ȳk

gk

=

b
(1)
k

bk

b̂k

≡[
b̃k

b̂k

]
, T̃

T
k


w

(1)
k−1

wk−1

v̄k

fk

=

w
(1)
k

wk

ŵk

≡[
w̃k

ŵk

]
∼ N (0, σ2

φI),

where both S̃
(1)
k and Sk are nonsingular upper triangular. This has completed the update and provided

the equivalents of (34) and its expanded form (36) for epoch k (note the use of (42)):

b̃k = S̃kz̃k + w̃k, w̃k ∼ N (0, σ2
φI), (44)[

b
(1)
k

bk

]
=

[
S̃

(1)
k S̃

(2)
k

0 Sk

] [
z̃d

k

zk

]
+

[
w

(1)
k

wk

]
. (45)

We can now compute the LS estimates zk|k of zk and z̃d
k|k of z̃d

k by solving

Skzk|k = bk, S̃
(1)
k z̃d

k|k = b
(1)
k − S̃

(2)
k zk|k, z̃k|k ≡

[
z̃d

k|k
zk|k

]
.

Notice that if no satellites rise or set between epochs k−1 and k, zd
k and zu

k will have no elements, so
in (41) we take Πk = Π

(2)
k = I, giving zk−1 = zr

k = zk, so in (43) the 2nd and 4th blocks of columns
of the coefficient matrix disappear, F

(1)
k = F k, and the orthogonal transformations revert to those of

(29).
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After this, we can use (37) and (39) to get xk|k and xj|k for j = 1, . . . , k−1 by solving triangular
systems

Rkxk|k = yk − cUkF kzk|k, Rjxj|k = yj − cU jF jzj|k,

where zj|k is the LS estimate of zj at epoch k. This will be found by extracting the relevant elements
from z̃k|k. Keeping track of this is part of the book-keeping we must do.

Now we would like to discuss how to estimate the error covariance matrices cov{xj|k − xj} for
j = 1, . . . , k. For j = k, combining (37) and the bottom part of (45), we obtain the same form as (32):[

yk

bk

]
=

[
Rk cUkF k

0 Sk

] [
xk

zk

]
+

[
vk

wk

]
,

[
vk

wk

]
∼ N (0, σ2

φI).

So we can use the approach given in Section 3.2 to estimate the error covariance matrix cov{xk|k−xk}.
When 1 ≤ j ≤ k− 1, the situation is a little more complicated. Since the elements of zj are part of

z̃k, there exists a matrix P j|k, a permutation matrix with possible zero columns added, such that

zj = P j|kz̃k.

Then combining (39) and (44), we obtain the equivalent of (32) for this new situation:[
yj

b̃k

]
=

[
Rj cU jF jP j|k
0 S̃k

] [
xj

z̃k

]
+

[
vj

w̃k

]
,

[
vj

w̃k

]
∼ N (0, σ2

φI).

Again the above form is the same as (32), so we can use the method given in Section 3.2 to estimate
cov{xj|k − xj}.

Case 2: The reference satellite (satellite 1, say) at epoch k−1 goes down between epochs k−1 and
k. Without loss of generality we assume that satellite 2 is visible at epoch k−1, remains at epoch k,
and is used as the reference satellite at epoch k. Suppose at epoch k we obtain (cf. (38))[

ȳk

gk

]
=

[
cV kF k

−sF k

]
zk +

[
v̄k

fk

]
,

[
v̄k

fk

]
∼ N (0, σ2

φI), (46)

where zk is the DDIA vector of visible satellites with satellite 2 as the reference satellite. At the end of
epoch k−1 we have (34), where z̃k−1 ∈ Rm−1 say, uses satellite 1 as the reference satellite, and without
loss of generality we assume

z̃k−1 = [N2 −N1, N3 −N1, . . . , Nm −N1]T .

Define the corresponding vector z̄k−1 with satellite 2 as the reference satellite, along with the matrix
K,

z̄k−1 ≡ [N1 −N2, N3 −N2, . . . , Nm −N2]T , K ≡
[
−1 0
−e Im−2

]
.

Then it is easy to verify that
K2 = Im−1, z̄k−1 = Kz̃k−1. (47)

This indicates that we can easily transform a DDIA vector with one satellite as the reference satellite
to a DDIA vector with another satellite as the reference satellite. Define S̄k−1 ≡ S̃k−1K. Then from
(34) we have

b̃k−1 = S̃k−1z̃k−1 + w̃k−1 = S̃k−1KKz̃k−1 + w̃k−1 = S̄k−1z̄k−1 + w̃k−1.

We could apply an orthogonal transformation to the left of this to triangularize S̄k−1, giving essentially
the same situation as in Case 1, so we can now use that approach.
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4 Real data tests

In order to demonstrate the effectiveness of our algorithm, we give real data test results here. All
computations were performed in MATLAB 6.5 on an AMD Athlon running Windows XP. The two data
sets were provided by VIASAT Geo-Technology Inc, a company in Montreal, Canada. The receivers
which collected the data were made by Canadian Marconi Company. The sampling intervals for data
set 1 and data set 2 were one second and two seconds, respectively. In data set 1, the user who held
a receiver was walking in an open sky environment, and the baseline was about 200 m. In data set 2,
the user who held a receiver was riding a small four wheel trail bike in an open sky environment, and
the baseline was about 600m. We used the position estimates obtained by VIASAT Geo-Technology
software as the “true” positions. That software used a complex positioning algorithm which fixed the
integer ambiguities, and it is believed that the errors in its estimates were about a few centimeters. In
our test, we did not model the tropospheric and ionospheric errors, but we modeled the satellite clock
error by using the standard quadratic polynomial, see e.g. [7, p. 181]. The differencing technique (see
e.g. [7, Sec 9.1.2]) was used for cycle slip detection. In the test we took σ = σφ/σρ = 0.001, which is
smaller than the typical value (see [11, p. 153]), but appeared to be a good choice for our data. This
choice was recommended for this model of Marconi receiver by Jianjun Zhu [private communication],
who carried out experiments on data set 1 using a different positioning algorithm. When we used a
significantly different value for σ, the accuracy of our position estimates deteriorated.

The results of the errors in the position estimates (i.e., ‖xk|k − xk‖, where xk is the position
estimate at epoch k obtained by VIASAT Geo-Technology software and xk|k is the corresponding
position estimate obtained by our algorithm) and the errors in the smoothed position estimates at
epoch 1200 (i.e., ‖xj|1200 − xj‖, j = 1, . . . , 1199) for the two data sets are shown in Figures 2 and 3,
respectively. Here for simplicity, Figures 2 and 3 show only the 2-norm of the 3-dimensional error, rather
than the individual components (i.e., North, East, Up) of the error. For data set 1, over the test period
(1200 seconds) there were a total of 12 visible satellites; the maximum number of satellites appearing
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Figure 2: Estimated position errors and smoothed position errors for data set 1
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Figure 3: Estimated position errors and smoothed position errors for data set 2

at one epoch was 10; for most of the time in this period there were 6 satellites, and the reference
satellite changed twice in the computation. For data set 2, over the test period (2400 seconds) there
were a total of 11 visible satellites; the maximum number of satellites appearing at one epoch was 9;
there were 7 satellites for a little more than half of this period, and the reference satellite changed
once in the computation. From Figures 2 and 3, we observe that after 100-200 epochs, we can get
submeter accuracy. The two figures indicate that the accuracy of the smoothed position estimates
xj|1200 (j = 1, . . . , 1199) at epoch 1200 is similar to the accuracy of x1200|1200. We found in our test
that this was also true for other epochs. From the two figures, we see that satellite setting and rising
does not have any obvious effect on the precision of our position estimates.

It is not clear to us why the position estimates for data set 1 were eventually more accurate than for
data set 2. The computations did not indicate that the geometry in data set 2 was poorer, both baselines
are quite small, and we doubt that the different sampling rate would make that much difference to the
final accuracy. We are unable to rule out possible faults in the information used (note that the position
estimates obtained by VIASAT Geo-Technology software were regarded as the “true” positions). This
highlights an apparent difficulty in this area — as far as we know there are no reliably certified test
data sets on which to test and compare either models or algorithms.

5 Summary

A recursive LS approach was presented for combining carrier phase and code measurements for short
baseline GPS positioning. Unlike many publications in GPS, we gave full computational details for
computing position estimates (including smoothed position estimates) as well as the corresponding error
covariance matrices, and included the computation for possible satellite setting and rising. Hopefully
a reader can implement the algorithm without difficulty. Our algorithm is numerically reliable, since
we use numerically stable orthogonal transformations. It is also efficient, since it takes full advantage
of the structure of the problem. The computed results on the practical test data were positive.
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