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Brief Summary

Statistical testing can warn us of
disturbances 1n measurements.

The generalized likelihood ratio (GLR)
test statistic 0,¢ 1S a good indicator.

Standard ways of computing
Ors =0 (r,Virg—1r,Vir,)

are extremely numerically unstable.

We give a numerically stable method for this
statistic, & the estimates of the parameter vectors.

This method works when V' 1s singular,
& has other uses.
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Notation
 GLLS =*“Generalized Linear Least Squares”.

e GLR =*“Generalized Likelihood Ratio”.

« £{-} the expected value, cov{-} the covariance,

coviz} = E{(x — E{z})(x — E{x})"}.

« v ~ N(0,0%V): v is arandom vector,
normally distributed,
with mean v and covariance o*V/ .
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Linear model under H,

Linear model under the null-hypothesis H,:
Hy: y=Ax+o, UNN(()aO-ZV)?

where
e y € R random measurement vector,
« A e R™" m > n, known design matrix,
e x € R" unknown parameter vector,
* v € R™ random noise vector,

o V € R™™ known symm. pos. def. matrix.

Possible outliers may invalidate estimation results.
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Linear model under H,

Restrict misspecification to the mean of v,
i.e. an error of additive nature.

The alternative hypothesis H, then reads
H,: y=Ax+Cd+v, v~N(0,05V),

where

» known matrix C' € "9 specifies
the type of model error that can occur,

* |A, C] has full column rank (fcr),

e € R?1is an unknown constant vector.
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Special Case

y=Ax+ Cd+v, v~N(0,0V).

 VV = 1, and a possible outlier in only one
measurement (which one 1s unknown).
The case leads to the “w-test statistic™.

e Taking (' =¢;, 1=1,...,m,
e; =(0,...,0,1,0,...,0)%,
gives m alternative hypotheses:

H;: y=Ax+¢0,+v, v~N(0,0I).
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MLE and BLUE
The Maximum Likelihood Estimates (MLE)
(and Best Linear Unbiased Estimates (BLUE))

x, of x under H, ,

& {x,,d,} of {x,d} under H, ,

solve respectively:

GLLS, : min {(y — Az)'V ! (y — Az) = r'V 1},
where r = y — Az, and

GLLS, : miclla (y— Az —Cd)*V 1 (y— Az —Cd).
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Test Statistic

Write r,=vy— Az,, r,=y— Az, — Cd,.

GLR test statistic, testing H, against H,, 1s:
Ors = 0 2(rTV e, — 77V 7r,) >0.

The extraterm C'diny = Ax + Cd + v

decreases rV7'r, tobecome rlV lr,.
A large change shows C'd is significant.

Given a threshold 6 (determined by the
requirements of the specific application).

 When 0,5 > 0, reject H, in favour of H,,.

* Otherwise accept H,.
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Well Known Fact:

A test statistic doesn’t need high accuracy. So

“Any reasonable method can be used for

Org = 0 (rg Vg —riVoie,) 722

~p9n3



Well Known Fact:

A test statistic doesn’t need high accuracy. So

“Any reasonable method can be used for

Org = 0 (rg Vg —riVoie,) 722

NOT SO.
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Harmless Example

For € ~ 2 * 1079 the following example looks
harmless, with x9(A) = 4.44 and xo(V') ~ 33, 000:

0.90878847962427
25.94493985828999

0.48223618514353
Y= :
5.91432884267696

.01599725305719 1.85723508466859
15632753551635 2.35754116764473
65858764131884 0.21189908130823

.
o=1, V =

|:9.140496886810 —5.179920639550 22.018803142087 2.448166448348:|

1.87323437713309
2.51387627488834
0.87049065185808

SOOO

73591311187945 1.98690117078759 :| 2.72281454895206
C
) )

—5.179920639550 31.269615846900 —38.726345506531 1.768700005165
22.018803142087 —38.726345506531 244.102164709880 43.463631186108
—2.448166448348 1.768700005165  43.463631186108 15.497722556410
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Harmless Example, ctd.

Exact solution and test statistic:
1
e = { }, Opg = 0,—0, = 2—1 = 1.

From x,=(A"V'A)'A"V 'y, r,=y— Az,
mathematically (after some cancellation):
Go=rVir,=y Viy—y VAA'VA) A"V y.

We computed this using the Matlab code:

Vi=inv (V),; G=A"*V1,; W=G*A;

d=y’ * (V1*y)-y" *(G" * (1nv (W) * (G*y) ) ) ;
We computed 0, = .V ~'r, similarly.
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Harmless Example, ctd

We saw in theory 0. =0, —9,=12>0.

But the Matlab result with € ~ 2 x 1071% was
Opg = 0p — 04 = — 14,

(instead of 1), an obviously nonsensical result.

A simple reminder:

combining a sequence of individually reliable
computations does not necessarily lead to an
overall numerically acceptable computation.
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Harmless Example, ctd.

Another “obvious” approach:

Computing z, = (A"V1A) ATV Yy,
then 7r,=y— Az,, then 0,=7V~'r,
(and similarly for ¢,), gave

Ops = 0, — 04 ~ 0.44.
Our method (to be given later) gave (to 15 dec. dig.)

0rs = 1.00000000078345,
r, = |1.00000000000001, 2.00000000000001".
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What We Learnt:

e It 1s important to use a numerically stable
algorithm for computing 0.

 All the more so in real time applications when
IEEE standard double precision floating point
arithmetic 1s not available.

* It 1s probably worthwhile making a
numerically stable code available.
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Paige’s 1978 GLLS Formulation

Factor the symmetric positive definite V'
V = BB", B e ™™,
E.g. the Cholesky factorization of V' gives a B.

Then for v ~ N(0,0%V) we can write
v = Bu, u ~ N(0,0%1).
The linear models can be replaced by

H,: v = Az + Bu, u ~ N(0,0°1),
H,: y=Ax+Cd+ Bu, u~N(0,0°1).
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GLLS Formulations, ctd.
With V' = B~" B!, the previous GLLS, is:

min {(y—Az)'V(y—Az) = | B (y—Az) |13}

u

& problems GLLS,, GLLS, can be rewritten:
GLLS, : min ||u||; subjectto y = Ax + Bu;
GLLS, : milg |ul|2 st y= Az + Cd+ Bu.
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GLLS version of 0
GLLS, : min ||ul|; s.t. y = Ax + Bu;

GLLS, : min ||u||; s.t. y= Ax + Cd+ Bu.

w,x,d

Let u, & u, be the optimal u for GLLS, & GLLS,, so

u, = B ' (y — Ax,) = B™'r,,
u, = B~ (y — Az, — Cd,) = B™'r,.

These with V' = B~' B! show
brs = 02TV, = TV 1) = 0 (]2 — a2

No inverse of B or V' appears in the above GLLS,,
GLLS,, or this last expression—1 key for stability.
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Solution Derivation

Use the Generalized QR (GQR) of [A, C] & B:
The QR factorization of fcr m x (n+q) [A, C]:

_UA UAC_ e
PACl=10 U.|q - pt=pL
n o q 0 0 | m—n—gq
n q

and the RQ factorization of m x m P! B:

_RA RAC RAS_ n

P'BQ= |0 R. Rul| q Q=0

0 0 f% m—n—q

n q m—n—q
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Solution Derivation, ctd.
GQR transforms GLLS, (and GLLSy as well):

min ||u||; s.t. y = Ax + Cd + Bu.
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Solution Derivation, ctd.
GQR transforms GLLS, (and GLLSy as well):

min ||u||; s.t. y = Ax + Cd + Bu.

min ||ul]?> s.t. Ply = P Az + P'Cd+ P'BQ Q' u
—~ X~

Z w
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Solution Derivation, ctd.
GQR transforms GLLS, (and GLLSy as well):

min [|ul],

s.t. y = Ax + Cd+ Bu.

min ||ul]?> s.t. Ply = P Az + P'Cd+ P'BQ Q' u
—~ X~

min{

< w
Y
ull; = [|Q"ull; = |lw[l;} st
_UAC_ _RA RAC RAB_ _wA_
r+ U, |d+1|0 R. R.||w:
0 0 0 Ry||lw,s
—_ — —,—
omit for Hg w, fully determined
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Solution Derivation, under H,,

Ugtq =7, V1 = min(|lw, |3+ [we |3+ wsl3) st
_ZA_ U A_ U AC_ _RA R RA3_ _wA_
20l=10lxz+|U;|d+| 0 R, Rol|w:].
25| [ O] 0 0 0 Ry||w,]
Under H,: the optimal solution satisfies:

wi — O, wg — O, UA UAC RAS Lq Z A
0 U, Rglld,|=1z].
Ty —1 _ all2 a
reVorg=|lwiz, [0 0 R, ||w!] | %

w: the generalization of Styan’s LUSH residuals.
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Solution Derivation, under H,

U,

T

uo—ro\/ =

<A U,
2ol =10
| Zg | 0

min( |jw, |, +||lwel; 4w

Ry Ric Rus

0 R Res
0 0 R,

w. determined exactly

Under H,: the optimal solution satisfies:

Us Ric Rus|| xo
0 R. Re||uw?
0 0 Rs||w

2
2

)

S.t.
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Solution Derivation, Final.
For the GLR test statistic, we know
Ors =0 (r,Virg—r, V'r,),

ro Ve = Jlwelf; + [Jwsl;

r.Voir, = lwd||2,
but Ryw, = Ryw! = z;, S0
Ors = 0 |lw 5.

A simple, directly computable result.
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Summary: Computer Solution of:

GLLS, : min ||u||. s.t. y = Ax + Bu ;
GLLS, : min ||u||; st y=Ax+ Cd+ Bu .

u,x,d

GQRof [A, C] and B gives:

_ZA_ U A_ U AC_ —RA Ry RA3_ —wA_
20l=10 |x+| U, |d+| 0 R, Rg| [we
zs| |0 0 0 0 R;| [ws]

N——
omit for Hy
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Computer Solution, ctd.

Under H,: we obtain {z,, d,} by solving:

Under H,: we obtain z, by solving:

Uy Ric R Lo
0 Re Rel| |[wl]| =
0 0 Rs| [w;]
GLR test statistic : |drs = o ||w? ]

Uy Usie Rus
0 Uc Res
0 0 R

Ta
dq

w

a
3
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Numerical Stability of Algorithm

Computed 5TS & z, are the exact test statistic
& MLE under H, for data:

J=y+ Ay, [Ayll, = O(e)|lyll»,
A=A+ AA, AAll» = O(e)|| Al r,
B=B+AB AB|lr = O(e)| Bl|r,
C=C+AC, |ACr = O()||C||
6 =0+ Ao, Ac| = O(e)|o|

The computations of 0,5 & x, are numerically stable!
Similarly the computation of the MLE

{x,,d,} under H, are numerically stable.
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Covariance Matrix representation

What is cov{x,} under H,?

Under H, we have the model & estimate :

Subtracting the 1st equation from the 2nd leads to

U,

0
0_
U,
0
O_

X =

Lo+

—RA RAC RAS_
0 Rc Re;
0 0 R,
R, Ric R
0 Re Res
0 0 R,
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_UA R, Ry Ly — X R,w,
0 Re Res| |w) —we| = 0
0 0 s | [w; —ws 0
This shows that w.—w; =0 & w.—w. =0, so

Usy(xy — ) = Ryw,.
Since w = Q"u ~ N(0,0°I), we have
U, cov{x,} -U, =0°R,R,.

The most reliable & useful representation of cov{x,}:

1t covers all cases,
& can be updated in a numerically stable way.
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An Example of Singular V.

New theory & algorithm handle singular V'.
for example Linear Equality Constraints:
For the null-hypothesis Hy:

y=Ax+v, v~ N(0,c°V),
subjectto Ex = f.

If V = BB, with B fcr, so v = Bu, u ~ N (0, 0*1),
apply our algorithm directly to GLLS problem:

min ||u||; subject to {f} = {E} T + {O} u.

Similarly for H,. Gives both test statistic & estimates.
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Summary: Theory

e The standard formula for the GLR test statistic
0rs 1s not defined when V' is singular.

 We gave a new formulation for  d.4
(by reformulating the two problems for

estimating the parameter vectors = & {x,d}).
* We gave a representation of the
covariance matrices for the MLEs x, & z,.

The new formulations are
well defined even when V' 1s singular.

The theory trivially handles the case where there
are linear constraints Fx = f.
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Summary: Practice

e The standard formula for the GLR test statistic
0rs 1S not good for computation if any of

A, |A,C], or V isill-conditioned.

* A numerically stable algorithm based on the
GLLS method was proposed for
computing o¢ and the MLEs z, & z,,.

* We showed how to compute the covariance
matrix representations for the MLEs x, & z,,.

e The algorithm handles the singular case,
& where there are linear constraints Fx = f.
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