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Brief Summary
• Statistical testing can warn us of

disturbances in measurements.
• The generalized likelihood ratio (GLR)

test statistic δTS is a good indicator.
• Standard ways of computing

δTS = σ−2(rT

0
V −1r0 − rT

aV
−1ra)

are extremely numerically unstable.
• We give a numerically stable method for this

statistic, & the estimates of the parameter vectors.
• This method works when V is singular,

& has other uses.
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Notation
• GLLS = “Generalized Linear Least Squares”.

• GLR = “Generalized Likelihood Ratio”.

• E{·} the expected value, cov{·} the covariance,

cov{x} ≡ E{(x − E{x})(x − E{x})T}.

• v ∼ N (v̄, σ2V ): v is a random vector,
normally distributed,
with mean v̄ and covariance σ2V .
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Linear model under H0

Linear model under the null-hypothesis H0:

H0 : y = Ax + v, v ∼ N (0, σ2V ),

where
• y ∈ <m random measurement vector,
• A ∈ <m×n, m ≥ n, known design matrix,
• x ∈ <n unknown parameter vector,
• v ∈ <m random noise vector,
• V ∈ <m×m known symm. pos. def. matrix.

Possible outliers may invalidate estimation results.
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Linear model under Ha

Restrict misspecification to the mean of y,
i.e. an error of additive nature.
The alternative hypothesis Ha then reads

Ha : y = Ax + Cd + v, v ∼ N (0, σ2V ),

where
• known matrix C ∈ <m×q specifies

the type of model error that can occur,
• [A,C] has full column rank (fcr),
• d ∈ <q is an unknown constant vector.
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Special Case

y = Ax + Cd + v, v ∼ N (0, σ2V ).

• V = I , and a possible outlier in only one
measurement (which one is unknown).
The case leads to the “w-test statistic”.

• Taking C = ei, i = 1, . . . ,m,
ei ≡ (0, . . . , 0, 1, 0, . . . , 0)T ,
gives m alternative hypotheses:

Hi : y = Ax + eiδi + v, v ∼ N (0, σ2I).
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MLE and BLUE
The Maximum Likelihood Estimates (MLE)
(and Best Linear Unbiased Estimates (BLUE))
x0 of x under H0 ,
& {xa, da} of {x, d} under Ha ,

solve respectively:

GLLS0 : min
x

{(y − Ax)TV −1(y − Ax) = rTV −1r},

where r ≡ y − Ax, and

GLLSa : min
x, d

(y−Ax−Cd)TV−1(y−Ax−Cd).
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Test Statistic
Write r0 ≡ y − Ax0 , ra ≡ y − Axa − Cda.
GLR test statistic, testing H0 against Ha, is:

δTS ≡ σ−2(rT

0
V −1r0 − rT

aV
−1ra) ≥0.

The extra term Cd in y = Ax + Cd + v

decreases rT

0
V−1r0 to become rT

a V −1ra.
A large change shows Cd is significant.
Given a threshold θ (determined by the
requirements of the specific application).

• When δTS > θ, reject H0 in favour of Ha.
• Otherwise accept H0.
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Well Known Fact:
A test statistic doesn’t need high accuracy. So

“Any reasonable method can be used for

δTS = σ−2(rT

0
V −1r0 − rT

aV
−1ra) ” ??

NOT SO.
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Harmless Example
For ε ≈ 2 ∗ 10−16 the following example looks
harmless, with κ2(A) ≈ 4.44 and κ2(V ) ≈ 33, 000:

y=

[
5.48223618514353
0.90878847962427
25.94493985828999
5.91432884267696

]

,

A=

[
0.73591311187945 1.98690117078759
0.01599725305719 1.85723508466859
0.15632753551635 2.35754116764473
0.65858764131884 0.21189908130823

]

, C =

[
2.72281454895206
1.87323437713309
2.51387627488834
0.87049065185808

]

,

σ = 1, V =
[

9.140496886810 −5.179920639550 22.018803142087 −2.448166448348
−5.179920639550 31.269615846900 −38.726345506531 1.768700005165
22.018803142087 −38.726345506531 244.102164709880 43.463631186108
−2.448166448348 1.768700005165 43.463631186108 15.497722556410

]
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Harmless Example, ctd.
Exact solution and test statistic:

x0 =

[
1

2

]

, δTS = δ0−δa = 2−1 = 1.

From x0 = (ATV −1A)−1ATV −1y, r0 = y − Ax0,
mathematically (after some cancellation):

δ0 ≡ rT

0
V−1r0 = yTV−1y−yTV−1A(ATV−1A)−1ATV−1y.

We computed this using the Matlab code:
V1=inv(V); G=A’*V1; W=G*A;
d=y’*(V1*y)-y’*(G’*(inv(W)*(G*y)));

We computed δa ≡ rT

aV
−1ra similarly.
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Harmless Example, ctd
We saw in theory δTS = δ0 − δa = 1 ≥ 0.

But the Matlab result with ε ≈ 2 ∗ 10−16 was

δTS = δ0 − δa ≈ −14,

(instead of 1), an obviously nonsensical result.
A simple reminder:
combining a sequence of individually reliable
computations does not necessarily lead to an
overall numerically acceptable computation.
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Harmless Example, ctd.
Another “obvious” approach:

Computing x0 = (ATV −1A)−1ATV −1y,
then r0 = y − Ax0, then δ0 ≡ rT

0
V −1r0,

(and similarly for δa), gave

δTS = δ0 − δa ≈ 0.44.

Our method (to be given later) gave (to 15 dec. dig.)

δTS = 1.00000000078345,

x0 = [1.00000000000001, 2.00000000000001]T .
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What We Learnt:
• It is important to use a numerically stable

algorithm for computing δTS.

• All the more so in real time applications when
IEEE standard double precision floating point
arithmetic is not available.

• It is probably worthwhile making a
numerically stable code available.
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Paige’s 1978 GLLS Formulation
Factor the symmetric positive definite V

V = BBT , B ∈ <m×m.

E.g. the Cholesky factorization of V gives a B.

Then for v ∼ N (0, σ2V ) we can write

v ≡ Bu, u ∼ N (0, σ2I).

The linear models can be replaced by

H0 : y = Ax + Bu, u ∼ N (0, σ2I),

Ha : y = Ax + Cd + Bu, u ∼ N (0, σ2I).
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GLLS Formulations, ctd.
With V −1 = B−TB−1, the previous GLLS0 is:

min
x

{(y−Ax)TV−1(y−Ax) = ‖B−1(y−Ax)
︸ ︷︷ ︸

u

‖2

2
},

& problems GLLS0, GLLSa can be rewritten:

GLLS0 : min
u,x

‖u‖2

2
subject to y = Ax + Bu;

GLLSa : min
u,x,d

‖u‖2

2
s.t. y = Ax + Cd + Bu.
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GLLS version of δTS

GLLS0 : min
u,x

‖u‖2

2
s.t. y = Ax + Bu;

GLLSa : min
u,x,d

‖u‖2

2
s.t. y = Ax + Cd + Bu.

Let u0 & ua be the optimal u for GLLS0 & GLLSa, so

u0 = B−1(y − Ax0) = B−1r0,

ua = B−1(y − Axa − Cda) = B−1ra.

These with V −1 = B−TB−1 show

δTS = σ−2(rT

0
V −1r0 − rT

aV
−1ra) = σ−2(‖u0‖

2

2
− ‖ua‖

2

2
).

No inverse of B or V appears in the above GLLS0,
GLLSa, or this last expression—1 key for stability.
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Solution Derivation
Use the Generalized QR (GQR) of [A,C] & B:
The QR factorization of fcr m × (n+q) [A,C]:

P T [A,C]

n q

=





UA UAC

0 UC

0 0





n q

n

q

m−n−q

, P−1 = P T ;

and the RQ factorization of m × m P TB:

P TBQ =





RA RAC RA3

0 RC RC3

0 0 R3





n q m−n−q

n

q

m−n−q

, Q−1 = QT .
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Solution Derivation, ctd.
GQR transforms GLLSa (and GLLS0 as well):

min ‖u‖2

2
s.t. y = Ax + Cd + Bu.

⇓

min ‖u‖2

2
s.t. P Ty

︸︷︷︸
z

= P TAx + P TCd + P TBQQTu
︸︷︷︸

w

⇓

min{‖u‖2

2
= ‖QTu‖2

2
≡ ‖w‖2

2
} s.t.





zA

zC

z3



=





UA

0

0



x +





UAC

UC

0



d

︸ ︷︷ ︸

omit for H0

+





RA RAC RA3

0 RC RC3

0 0 R3









wA

wC

w3





︸ ︷︷ ︸

w3 fully determined

.
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Solution Derivation, under Ha

uT
a ua = rT

a V −1ra = min(‖wA‖
2

2
+‖wC‖

2

2
+‖w3‖

2

2
) s.t.





zA

zC

z3



=





UA

0

0



x +





UAC

UC

0



d+





RA RAC RA3

0 RC RC3

0 0 R3









wA

wC

w3



.

Under Ha: the optimal solution satisfies:

wa
A

= 0, wa
C

= 0,

rT
a V −1ra =‖wa

3
‖2

2
,





UA UAC RA3

0 UC RC3

0 0 R3









xa

da

wa
3



=





zA

zC

z3



.

wa
3

the generalization of Styan’s LUSH residuals.
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Solution Derivation, under H0

uT
0
u0 = rT

0 V −1r0 = min( ‖wA‖
2

2
+‖wC‖

2

2
+‖w3‖

2

2
) s.t.





zA

zC

z3



=





UA

0

0



x+





RA RAC RA3

0 RC RC3

0 0 R3









wA

wC

w3





︸ ︷︷ ︸

wC determined exactly

.

Under H0: the optimal solution satisfies:

w0

A
= 0,





UA RAC RA3

0 RC RC3

0 0 R3









x0

w0

C

w0

3



=





zA

zC

z3



 .
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Solution Derivation, Final.
For the GLR test statistic, we know

δTS = σ−2(rT

0
V −1r0 − rT

aV
−1ra),

rT

0
V −1r0 = ‖w0

C
‖2

2
+ ‖w0

3
‖2

2
,

rT

aV
−1ra = ‖wa

3
‖2

2
,

but R3w
0

3
= R3w

a
3

= z3, so

δTS = σ−2‖w0

C
‖2

2
.

A simple, directly computable result.
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Summary: Computer Solution of:

GLLS0 : min
u,x

‖u‖2

2
s.t. y = Ax + Bu ;

GLLSa : min
u,x,d

‖u‖2

2
s.t. y = Ax + Cd + Bu .

GQR of [A,C] and B gives:





zA

zC

z3



=





UA

0

0



x+





UAC

UC

0



d

︸ ︷︷ ︸

omit for H0

+





RA RAC RA3

0 RC RC3

0 0 R3









wA

wC

w3



 .
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Computer Solution, ctd.
Under Ha: we obtain {xa, da} by solving:





UA UAC RA3

0 UC RC3

0 0 R3









xa

da

wa
3



 =





zA

zC

z3



 .

Under H0: we obtain x0 by solving:




UA RAC RA3

0 RC RC3

0 0 R3









x0

w0

C

w0

3



 =





zA

zC

z3



 .

GLR test statistic : δTS = σ−2‖w0

C
‖2

2
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Numerical Stability of Algorithm

Computed δ̂TS & x̂0 are the exact test statistic
& MLE under H0 for data:

ỹ ≡ y + ∆y, ‖∆y‖2 = O(ε)‖y‖2,

Ã ≡ A + ∆A, ‖∆A‖F = O(ε)‖A‖F ,

B̃ ≡ B + ∆B , ‖∆B‖F = O(ε)‖B‖F ,

C̃ ≡ C + ∆C , ‖∆C‖F = O(ε)‖C‖F ,

σ̃ ≡ σ + ∆σ, |∆σ| = O(ε)|σ|.

The computations of δTS & x0 are numerically stable!
Similarly the computation of the MLE
{xa, da} under Ha are numerically stable.
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Covariance Matrix representation
What is cov{x0} under H0?
Under H0 we have the model & estimate :





zA

zC

z3



=





UA

0

0



 x +





RA RAC RA3

0 RC RC3

0 0 R3









wA

wC

w3









zA

zC

z3



 =





UA

0

0



x0+





RA RAC RA3

0 RC RC3

0 0 R3









0

w0

C

w0

3





Subtracting the 1st equation from the 2nd leads to
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UA RAC RA3

0 RC RC3

0 0 R3









x0 − x

w0

C
− wC

w0

3
− w3



 =





RAwA

0

0



 .

This shows that w0

3
−w3 = 0 & w0

C
−wC = 0, so

UA(x0 − x) = RAwA.

Since w = QTu ∼ N (0, σ2I), we have

UA · cov{x0} · U
T

A
= σ2RAR

T

A
.

The most reliable & useful representation of cov{x0}:
it covers all cases,
& can be updated in a numerically stable way.
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An Example of Singular V .
New theory & algorithm handle singular V .
for example Linear Equality Constraints:
For the null-hypothesis H0:

y = Ax + v, v ∼ N (0, σ2V ),

subject to Ex = f.

If V = BBT , with B fcr, so v = Bu, u ∼ N (0, σ2I),
apply our algorithm directly to GLLS0 problem:

min ‖u‖2

2 subject to
[
y

f

]

=

[
A

E

]

x +

[
B

0

]

u.

Similarly for Ha. Gives both test statistic & estimates.
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Summary: Theory
• The standard formula for the GLR test statistic

δTS is not defined when V is singular.

• We gave a new formulation for δTS

(by reformulating the two problems for
estimating the parameter vectors x & {x, d}).

• We gave a representation of the
covariance matrices for the MLEs x0 & xa.
The new formulations are
well defined even when V is singular.
The theory trivially handles the case where there
are linear constraints Ex = f .
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Summary: Practice
• The standard formula for the GLR test statistic

δTS is not good for computation if any of
A, [A,C], or V is ill-conditioned.

• A numerically stable algorithm based on the
GLLS method was proposed for
computing δTS and the MLEs x0 & xa.

• We showed how to compute the covariance
matrix representations for the MLEs x0 & xa.

• The algorithm handles the singular case,
& where there are linear constraints Ex = f .
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