Computing a Test Statistic

Chris Paige

Joint work with Xiao-Wen Chang
Computer Science, McGill University

Montreal, Quebec, Canada

ERCIM WG MATRIX COMPUTATIONS
AND STATISTICS WORKSHOP
Prague August 27-29, 2004.

Brief Summary

- Statistical testing can warn us of disturbances in measurements.
- The generalized likelihood ratio (GLR) test statistic $\delta_{\text {TS }}$ is a good indicator.
- Standard ways of computing

$$
\delta_{\mathrm{TS}}=\sigma^{-2}\left(r_{0}^{T} V^{-1} r_{0}-r_{a}^{T} V^{-1} r_{a}\right)
$$

are extremely numerically unstable.

- We give a numerically stable method for this statistic, \& the estimates of the parameter vectors.
- This method works when V is singular, \& has other uses.

Notation

- GLLS = "Generalized Linear Least Squares".
- GLR = "Generalized Likelihood Ratio".
- $\mathcal{E}\{\cdot\}$ the expected value, $\operatorname{cov}\{\cdot\}$ the covariance,

$$
\operatorname{cov}\{x\} \equiv \mathcal{E}\left\{(x-\mathcal{E}\{x\})(x-\mathcal{E}\{x\})^{T}\right\} .
$$

- $v \sim \mathcal{N}\left(\bar{v}, \sigma^{2} V\right): v$ is a random vector, normally distributed, with mean \bar{v} and covariance $\sigma^{2} V$.

Linear model under \mathbf{H}_{0}

Linear model under the null-hypothesis H_{0} :

$$
\mathrm{H}_{0}: \quad y=A x+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2} V\right),
$$

where

- $y \in \Re^{m}$ random measurement vector,
- $A \in \Re^{m \times n}, m \geq n$, known design matrix,
- $x \in \Re^{n}$ unknown parameter vector,
- $v \in \Re^{m}$ random noise vector,
- $V \in \Re^{m \times m}$ known symm. pos. def. matrix.

Possible outliers may invalidate estimation results.

Linear model under \mathbf{H}_{a}

Restrict misspecification to the mean of y, i.e. an error of additive nature.

The alternative hypothesis H_{a} then reads

$$
\mathrm{H}_{a}: \quad y=A x+C d+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2} V\right),
$$

where

- known matrix $C \in \Re^{m \times q}$ specifies the type of model error that can occur,
- $[A, C]$ has full column rank (fcr),
- $d \in \Re^{q}$ is an unknown constant vector.

Special Case

$$
y=A x+C d+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2} V\right) .
$$

- $V=I$, and a possible outlier in only one measurement (which one is unknown). The case leads to the "w-test statistic".
- Taking $C=e_{i}, \quad i=1, \ldots, m$, $e_{i} \equiv(0, \ldots, 0,1,0, \ldots, 0)^{T}$, gives m alternative hypotheses:

$$
\mathrm{H}_{i}: \quad y=A x+e_{i} \delta_{i}+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2} I\right) .
$$

MLE and BLUE

The Maximum Likelihood Estimates (MLE) (and Best Linear Unbiased Estimates (BLUE)) x_{0} of x under H_{0},
$\&\left\{x_{a}, d_{a}\right\}$ of $\{x, d\}$ under H_{a},
solve respectively:
$\mathrm{GLLS}_{0}: \min _{x}\left\{(y-A x)^{T} V^{-1}(y-A x)=r^{T} V^{-1} r\right\}$,
where $r \equiv y-A x$, and
$\mathrm{GLLS}_{a}: \min _{x, d}(y-A x-C d)^{T} V^{-1}(y-A x-C d)$.

Test Statistic

Write $\quad r_{0} \equiv y-A x_{0}, \quad r_{a} \equiv y-A x_{a}-C d_{a}$.
GLR test statistic, testing H_{0} against H_{a}, is:

$$
\delta_{\mathrm{TS}} \equiv \sigma^{-2}\left(r_{0}^{T} V^{-1} r_{0}-r_{a}^{T} V^{-1} r_{a}\right) \geq 0 .
$$

The extra term $C d$ in $y=A x+C d+v$ decreases $r_{0}^{T} V^{-1} r_{0}$ to become $r_{a}^{T} V^{-1} r_{a}$. A large change shows $C d$ is significant.
Given a threshold θ (determined by the requirements of the specific application).

- When $\delta_{\mathrm{TS}}>\theta$, reject H_{0} in favour of H_{a}.
- Otherwise accept H_{0}.

Well Known Fact:

A test statistic doesn't need high accuracy. So
"Any reasonable method can be used for

$$
\delta_{\mathrm{TS}}=\sigma^{-2}\left(r_{0}^{T} V^{-1} r_{0}-r_{a}^{T} V^{-1} r_{a}\right) \quad " ? ?
$$

Well Known Fact:

A test statistic doesn't need high accuracy. So
"Any reasonable method can be used for

$$
\delta_{\mathrm{TS}}=\sigma^{-2}\left(r_{0}^{T} V^{-1} r_{0}-r_{a}^{T} V^{-1} r_{a}\right) \quad \geqslant ? ?
$$

NOT SO.

Harmless Example

For $\epsilon \approx 2 * 10^{-16}$ the following example looks harmless, with $\kappa_{2}(A) \approx 4.44$ and $\kappa_{2}(V) \approx 33,000$:

$$
y=\left[\begin{array}{c}
5.48223618514353 \\
0.9087884796427 \\
25.949398528999 \\
5.91432884267696
\end{array}\right],
$$

$$
\sigma=1, \quad V=
$$

$\left[\begin{array}{cccc}9.140496886810 & -5.179920639550 & 22.018803142087 & -2.448166448348 \\ -5.179920639550 & 31.269615846900 & -38.726345506531 & 1.768700005165 \\ 22.018803142087 & -38.726345506531 & 244.102164709880 & 43.463631186108 \\ -2.448166448348 & 1.768700005165 & 43.463631186108 & 15.497722556410\end{array}\right]$

Harmless Example, ctd.

Exact solution and test statistic:

$$
x_{0}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \delta_{\mathrm{TS}}=\delta_{0}-\delta_{a}=2-1=1
$$

From $\quad x_{0}=\left(A^{T} V^{-1} A\right)^{-1} A^{T} V^{-1} y, \quad r_{0}=y-A x_{0}$, mathematically (after some cancellation):

$$
\delta_{0} \equiv r_{0}^{T} V^{-1} r_{0}=y^{T} V^{-1} y-y^{T} V^{-1} A\left(A^{T} V^{-1} A\right)^{-1} A^{T} V^{-1} y
$$

We computed this using the Matlab code:
$\mathrm{V} 1=\operatorname{inv}(\mathrm{V}) ; \quad \mathrm{G}=\mathrm{A}^{\prime} * \mathrm{~V} 1$; $\quad \mathrm{W}=\mathrm{G} * \mathrm{~A}$; $\mathrm{d}=\mathrm{y}^{\prime}$ * $(\mathrm{V} 1 * \mathrm{y})-\mathrm{y}^{\prime}$ * $\left(\mathrm{G}^{\prime}\right.$ * (inv (W) * ($\left.\left.\mathrm{G} * \mathrm{y}\right)\right)$);
We computed $\delta_{a} \equiv r_{a}^{T} V^{-1} r_{a}$ similarly.

Harmless Example, ctd

We saw in theory $\quad \delta_{\mathrm{TS}}=\delta_{0}-\delta_{a}=1 \geq 0$.
But the Matlab result with $\epsilon \approx 2 * 10^{-16}$ was

$$
\delta_{\mathrm{TS}}=\delta_{0}-\delta_{a} \approx-14,
$$

(instead of 1), an obviously nonsensical result.
A simple reminder:
combining a sequence of individually reliable computations does not necessarily lead to an overall numerically acceptable computation.

Harmless Example, ctd.

Another "obvious" approach:
Computing $\quad x_{0}=\left(A^{T} V^{-1} A\right)^{-1} A^{T} V^{-1} y$, then $\quad r_{0}=y-A x_{0}$, then $\delta_{0} \equiv r_{0}^{T} V^{-1} r_{0}$, (and similarly for δ_{a}), gave

$$
\delta_{\mathrm{TS}}=\delta_{0}-\delta_{a} \approx 0.44
$$

Our method (to be given later) gave (to 15 dec. dig.)

$$
\begin{aligned}
& \delta_{\mathrm{TS}}=1.00000000078345, \\
& x_{0}=[1.00000000000001,2.00000000000001]^{T} .
\end{aligned}
$$

What We Learnt:

- It is important to use a numerically stable algorithm for computing $\delta_{\text {TS }}$.
- All the more so in real time applications when IEEE standard double precision floating point arithmetic is not available.
- It is probably worthwhile making a numerically stable code available.

Paige's 1978 GLLS Formulation

Factor the symmetric positive definite V

$$
V=B B^{T}, \quad B \in \Re^{m \times m} .
$$

E.g. the Cholesky factorization of V gives a B.

Then for $\quad v \sim \mathcal{N}\left(0, \sigma^{2} V\right)$ we can write

$$
v \equiv B u, \quad u \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

The linear models can be replaced by

$$
\begin{array}{ll}
\mathrm{H}_{0}: y=A x+B u, & u \sim \mathcal{N}\left(0, \sigma^{2} I\right), \\
\mathrm{H}_{a}: y=A x+C d+B u, & u \sim \mathcal{N}\left(0, \sigma^{2} I\right) .
\end{array}
$$

GLLS Formulations, ctd.

With $V^{-1}=B^{-T} B^{-1}$, the previous GLLS $_{0}$ is:

$$
\min _{x}\{(y-A x)^{T} V^{-1}(y-A x)=\|\underbrace{B^{-1}(y-A x)}_{u}\|_{2}^{2}\},
$$

\& problems $\mathrm{GLLS}_{0}, \mathrm{GLLS}_{a}$ can be rewritten:
$\mathrm{GLLS}_{0}: \min _{u, x}\|u\|_{2}^{2}$ subject to $y=A x+B u$;
$\operatorname{GLLS}_{a}: \min _{u, x, d}\|u\|_{2}^{2} \quad$ s.t. $y=A x+C d+B u$.

GLLS version of δ_{TS}

$$
\operatorname{GLLS}_{0}: \min _{u, x}\|u\|_{2}^{2} \quad \text { s.t. } y=A x+B u \text {; }
$$

$$
\operatorname{GLLS}_{a}: \min _{u, x, d}\|u\|_{2}^{2} \quad \text { s.t. } y=A x+C d+B u \text {. }
$$

Let $u_{0} \& u_{a}$ be the optimal u for $\operatorname{GLLS}_{0} \& \operatorname{GLLS}_{a}$, so

$$
\begin{aligned}
& u_{0}=B^{-1}\left(y-A x_{0}\right)=B^{-1} r_{0}, \\
& u_{a}=B^{-1}\left(y-A x_{a}-C d_{a}\right)=B^{-1} r_{a} .
\end{aligned}
$$

These with $V^{-1}=B^{-T} B^{-1}$ show
$\delta_{\mathrm{TS}}=\sigma^{-2}\left(r_{0}^{T} V^{-1} r_{0}-r_{a}^{T} V^{-1} r_{a}\right)=\sigma^{-2}\left(\left\|u_{0}\right\|_{2}^{2}-\left\|u_{a}\right\|_{2}^{2}\right)$.
No inverse of B or V appears in the above GLLS $_{0}$, GLLS_{a}, or this last expression-1 key for stability.

Solution Derivation

Use the Generalized QR (GQR) of $[A, C] \& B$: The QR factorization of fcr $m \times\left(n_{+} q\right)[A, C]$:

$$
P_{n}^{T}[A, C]=\left[\begin{array}{cc}
U_{A} & U_{A C} \\
0 & U_{C} \\
0 & 0
\end{array}\right]_{m-n-q}^{n} \quad, \quad P^{n}=P^{T} ;
$$

and the RQ factorization of $m \times m P^{T} B$:

$$
\begin{aligned}
& P^{T} B Q= {\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right] \begin{array}{l}
n \\
m-n-q
\end{array}, \quad Q^{-1}=Q^{T} . } \\
& n \quad \begin{array}{ll}
m-n-q
\end{array}
\end{aligned}
$$

Solution Derivation, ctd.

GQR transforms GLLS_{a} (and GLLS_{0} as well):

$$
\min \|u\|_{2}^{2} \quad \text { s.t. } y=A x+C d+B u .
$$

Solution Derivation, ctd.

 GQR transforms GLLS_{a} (and GLLS ${ }_{0}$ as well):$$
\min \|u\|_{2}^{2} \quad \text { s.t. } \underset{\Downarrow}{y=} A x+C d+B u \text {. }
$$

$\min \|u\|_{2}^{2}$ s.t. $\underbrace{P^{T} y}_{z}=P^{T} A x+P^{T} C d+P^{T} B Q \underbrace{Q^{T} u}_{w}$

Solution Derivation, etd.

 GQR transforms GLLS_{a} (and GLLS ${ }_{0}$ as well):$$
\begin{gathered}
\min \|u\|_{2}^{2} \quad \text { s.t. } y=A x+C d+B u . \\
\min \|u\|_{2}^{2} \text { s.t. } \underbrace{P^{T} y}_{z}=P^{T} A x+P^{T} C d+P^{T} B Q \underbrace{Q^{T} u}_{w} \\
\min \left\{\|u\|_{2}^{2}=\left\|Q^{T} u\right\|_{2}^{2} \equiv\|w\|_{2}^{2}\right\} \text { s.t. } \\
{\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{A} \\
0 \\
0
\end{array}\right] x+\underbrace{\left[\begin{array}{c}
U_{A C} \\
U_{C} \\
0
\end{array}\right]}_{\text {omit for } \mathrm{H}_{0}} d+\underbrace{\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
w_{A} \\
w_{C} \\
w_{3}
\end{array}\right]}_{w_{3} \text { fully determined }} .}
\end{gathered}
$$

Solution Derivation, under \mathbf{H}_{a}

$$
\begin{aligned}
& u_{a}^{T} u_{a}=r_{a}^{T} V^{-1} r_{a}=\min \left(\left\|w_{A}\right\|_{2}^{2}+\left\|w_{C}\right\|_{2}^{2}+\left\|w_{3}\right\|_{2}^{2}\right) \text { s.t. } \\
& {\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{A} \\
0 \\
0
\end{array}\right] x+\left[\begin{array}{c}
U_{A C} \\
U_{C} \\
0
\end{array}\right] d+\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A B} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
w_{A} \\
w_{C} \\
w_{3}
\end{array}\right] .}
\end{aligned}
$$

Under H_{a} : the optimal solution satisfies:

$$
\begin{gathered}
w_{A}^{a}=0, \quad w_{C}^{a}=0, \quad\left[\begin{array}{ccc}
U_{A} & U_{A C} & R_{A 3} \\
0 & U_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
x_{a} \\
r_{a} \\
r_{a}^{T} V^{-1} r_{a}=\left\|w_{3}^{a}\right\|_{2}^{2},
\end{array}\right]=\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right] .
\end{gathered}
$$

w_{3}^{a} the generalization of Styan's LUSH residuals.

Solution Derivation, under \mathbf{H}_{0}

$$
\begin{gathered}
u_{0}^{T} u_{0}=r_{0}^{T} V^{-1} r_{0}=\min \left(\left\|w_{A}\right\|_{2}^{2}+\left\|w_{C}\right\|_{2}^{2}+\left\|w_{3}\right\|_{2}^{2}\right) \\
{\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{A} \\
0 \\
0
\end{array}\right] \underbrace{x+\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
w_{A} \\
w_{C} \\
w_{3}
\end{array}\right]}_{w_{C} \text { determined exactly }} .}
\end{gathered}
$$

Under H_{0} : the optimal solution satisfies:

$$
w_{A}^{0}=0, \quad\left[\begin{array}{ccc}
U_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
w_{C}^{0} \\
w_{3}^{0}
\end{array}\right]=\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right] .
$$

Solution Derivation, Final.

For the GLR test statistic, we know

$$
\begin{gathered}
\delta_{\mathrm{TS}}=\sigma^{-2}\left(r_{0}^{T} V^{-1} r_{0}-r_{a}^{T} V^{-1} r_{a}\right) \\
r_{0}^{T} V^{-1} r_{0}=\left\|w_{C}^{0}\right\|_{2}^{2}+\left\|w_{3}^{0}\right\|_{2}^{2} \\
r_{a}^{T} V^{-1} r_{a}=
\end{gathered}\left\|w_{3}^{a}\right\|_{2}^{2}, ~ l
$$

but

$$
\begin{array}{r}
R_{3} w_{3}^{0}=R_{3} w_{3}^{a}=z_{3}, \quad \text { so } \\
\delta_{\mathrm{TS}}=\sigma^{-2}\left\|w_{C}^{0}\right\|_{2}^{2} .
\end{array}
$$

A simple, directly computable result.

Summary: Computer Solution of:

$$
\operatorname{GLLS}_{0}: \min _{u, x}\|u\|_{2}^{2} \quad \text { s.t. } y=A x+B u ;
$$

$\operatorname{GLLS}_{a}: \min _{u, x, d}\|u\|_{2}^{2} \quad$ s.t. $y=A x+C d+B u$.
GQR of $[A, C]$ and B gives:

$$
\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{A} \\
0 \\
0
\end{array}\right] x+\underbrace{\left[\begin{array}{c}
U_{A C} \\
U_{C} \\
0
\end{array}\right]}_{\text {omit for } \mathrm{H}_{0}} d+\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{l}
w_{A} \\
w_{C} \\
w_{3}
\end{array}\right] .
$$

Computer Solution, ctd.

Under H_{a} : we obtain $\left\{x_{a}, d_{a}\right\}$ by solving:

$$
\left[\begin{array}{ccc}
U_{A} & U_{A C} & R_{A 3} \\
0 & U_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
x_{a} \\
d_{a} \\
w_{3}^{a}
\end{array}\right]=\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right] .
$$

Under H_{0} : we obtain x_{0} by solving:

$$
\left[\begin{array}{ccc}
U_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
w_{C}^{0} \\
w_{3}^{0}
\end{array}\right]=\left[\begin{array}{c}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right] .
$$

GLR test statistic : $\delta_{\mathrm{TS}}=\sigma^{-2}\left\|w_{C}^{0}\right\|_{2}^{2}$

Numerical Stability of Algorithm

Computed $\hat{\delta}_{\text {TS }} \& \hat{x}_{0}$ are the exact test statistic $\&$ MLE under H_{0} for data:

$$
\begin{array}{ll}
\tilde{y} \equiv y+\Delta y, & \|\Delta y\|_{2}=O(\epsilon)\|y\|_{2}, \\
\tilde{A} \equiv A+\Delta A, & \|\Delta A\|_{F}=O(\epsilon)\|A\|_{F}, \\
\tilde{B} \equiv B+\Delta B, & \|\Delta B\|_{F}=O(\epsilon)\|B\|_{F}, \\
\tilde{C} \equiv C+\Delta C, & \|\Delta C\|_{F}=O(\epsilon)\|C\|_{F}, \\
\tilde{\sigma} \equiv \sigma+\Delta \sigma, & |\Delta \sigma|=O(\epsilon)|\sigma| .
\end{array}
$$

The computations of $\delta_{\mathrm{TS}} \& x_{0}$ are numerically stable! Similarly the computation of the MLE $\left\{x_{a}, d_{a}\right\}$ under H_{a} are numerically stable.

Covariance Matrix representation

What is $\operatorname{cov}\left\{x_{0}\right\}$ under H_{0} ?
Under H_{0} we have the model \& estimate :

$$
\begin{aligned}
& {\left[\begin{array}{l}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{A} \\
0 \\
0
\end{array}\right] x+\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A B} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
w_{A} \\
w_{C} \\
w_{3}
\end{array}\right]} \\
& {\left[\begin{array}{l}
z_{A} \\
z_{C} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
U_{A} \\
0 \\
0
\end{array}\right] x_{0}+\left[\begin{array}{ccc}
R_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C B} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
0 \\
w_{C}^{0} \\
w_{3}^{0}
\end{array}\right]}
\end{aligned}
$$

Subtracting the 1st equation from the 2 nd leads to

$$
\left[\begin{array}{ccc}
U_{A} & R_{A C} & R_{A 3} \\
0 & R_{C} & R_{C 3} \\
0 & 0 & R_{3}
\end{array}\right]\left[\begin{array}{c}
x_{0}-x \\
w_{C}^{0}-w_{C} \\
w_{3}^{0}-w_{3}
\end{array}\right]=\left[\begin{array}{c}
R_{A} w_{A} \\
0 \\
0
\end{array}\right] .
$$

This shows that $w_{3}^{0}-w_{3}=0 \quad \& \quad w_{C}^{0}-w_{C}=0$, so

$$
U_{A}\left(x_{0}-x\right)=R_{A} w_{A} .
$$

Since $w=Q^{T} u \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, we have

$$
U_{A} \cdot \operatorname{cov}\left\{x_{0}\right\} \cdot U_{A}^{T}=\sigma^{2} R_{A} R_{A}^{T} .
$$

The most reliable \& useful representation of $\operatorname{cov}\left\{x_{0}\right\}$: it covers all cases,
\& can be updated in a numerically stable way.

An Example of Singular V.

New theory \& algorithm handle singular V. for example Linear Equality Constraints:
For the null-hypothesis H_{0} :

$$
\begin{aligned}
& y=A x+v, \quad v \sim \mathcal{N}\left(0, \sigma^{2} V\right), \\
& \text { subject to } \quad E x=f .
\end{aligned}
$$

If $V=B B^{T}$, with B fcr, so $v=B u, u \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, apply our algorithm directly to GLLS ${ }_{0}$ problem:
$\min \|u\|_{2}^{2} \quad$ subject to $\quad\left[\begin{array}{l}y \\ f\end{array}\right]=\left[\begin{array}{l}A \\ E\end{array}\right] x+\left[\begin{array}{c}B \\ 0\end{array}\right] u$.
Similarly for H_{a}. Gives both test statistic \& estimates.

Summary: Theory

- The standard formula for the GLR test statistic $\delta_{\text {TS }} \quad$ is not defined when V is singular.
- We gave a new formulation for $\delta_{\text {TS }}$ (by reformulating the two problems for estimating the parameter vectors $x \&\{x, d\}$).
- We gave a representation of the covariance matrices for the MLEs $x_{0} \& x_{a}$.
The new formulations are well defined even when V is singular.
The theory trivially handles the case where there are linear constraints $E x=f$.

Summary: Practice

- The standard formula for the GLR test statistic δ_{TS} is not good for computation if any of $A,[A, C]$, or V is ill-conditioned.
- A numerically stable algorithm based on the GLLS method was proposed for computing δ_{TS} and the MLEs $x_{0} \& x_{a}$.
- We showed how to compute the covariance matrix representations for the MLEs $x_{0} \& x_{a}$.
- The algorithm handles the singular case, \& where there are linear constraints $E x=f$.

Some References

- Chang, X-W., Paige, C. C. and Tiberius, C. C. J. M.. Computation of a Test Statistic in Data Quality Control. SIAM Journal on Scientific Computing (SISC), accepted June 2004.
- Kourouklis, S. and Paige, C. C. (1981). A constrained least squares approach to the general Gauss-Markov linear model. Journal of the American Statistical Association, 76, 620-625.
- Paige, C. C. (1978). Numerically stable computations for general univariate linear models. Communications in Statistics Series B, B7, 437-453.

