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Abstract. We explain an interesting property of minimum residual iterative methods for the
solution of the linear least squares (LS) problem. Our analysis demonstrates that the stopping criteria
commonly used with these methods can in some situations be too conservative, causing any chosen
method to perform too many iterations or even fail to detect that an acceptable iterate has been
obtained. We propose a less conservative criterion to determine if a given iterate is an acceptable LS
solution. This is merely a sufficient condition, but it approaches a necessary condition in the limit
as the given iterate approaches the exact LS solution. We also propose a necessary and sufficient
condition to determine if a given approximate LS solution is an acceptable LS solution, based on
recent results on backward perturbation analysis of the LS problem. Although both of the above
new conditions use quantities that are too expensive to compute in practical situations, we suggest
potential approaches for estimating some of these quantities efficiently. We illustrate our results with
several numerical examples.
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1. Introduction. Given A ∈ R
m×n and b ∈ R

m, the linear least squares (LS)
problem is

min
x

‖b−Ax‖2. (1.1)

See for example [2] and [6] for useful background. We assume throughout that A has
full column rank. Under this assumption, x̂ is the unique solution of (1.1) if and only
if AT (b−Ax̂) = 0.

In this paper we discuss stopping criteria for the iterative solution of large sparse
LS problems. To make the exposition concrete we concentrate on the widely used
algorithm LSQR of Paige and Saunders [12, 13]. Note, however, that much of our
discussion, and our stopping criteria, are applicable to other iterative methods for
the solution of large sparse LS problems. (The practical implementations of these
stopping criteria will of course vary from method to method.)

In Section 2 we define what we mean by an acceptable LS solution and a backward
stable LS solution. In Section 3 we briefly summarize algorithm LSQR and state the
stopping criteria originally proposed for LSQR in [12, §5]. These are based on sufficient
(but not necessary) conditions for a given iterate to be an acceptable LS solution. Note
that LSQR’s stopping criteria are also frequently used with other iterative methods
for the solution of large sparse LS problems; see for example [4, §2.4 & §3.3].

In Section 4 we analyze these stopping criteria. We explain an interesting property
of minimum residual iterative methods and use this to show that LSQR’s stopping
criteria can in some situations be too conservative. The use of these criteria can cause
any chosen iterative method to perform too many iterations, or in the worst case, to
fail to detect that an acceptable iterate has been obtained.
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In Section 5 and Section 6 we propose two conditions to determine if a given
iterate xk ∈ R

n is an acceptable LS solution. The condition in Section 5 is merely
sufficient, but it approaches a necessary condition in the limit as xk approaches the
exact LS solution x̂. The condition in Section 6 is both necessary and sufficient. To
our knowledge, the latter new result is the only known such condition.

We give some numerical examples in Section 7 in which we compare these condi-
tions with LSQR’s stopping criteria. Section 8 contains our discussion and conclusions.

1.1. Notation. We generally use upper-case letters for matrices, lower-case Ro-
man letters for vectors and indices, and lower-case Greek letters for scalars. ej denotes
the j-th column of the unit matrix I. The true LS solution of (1.1) is denoted x̂ with
r̂ ≡ b−Ax̂, whereas xk is used for the k-th iterate of an algorithm (often LSQR here)
with rk ≡ b − Axk. For vectors, ‖ · ‖ denotes the 2-norm. For matrices we use ‖ · ‖2

and ‖ · ‖F for the 2- and Frobenius norm, respectively, while ‖ · ‖2,F denotes the use
of either (consistently within an expression). We use R(A) to denote the range of A,
and PA and P⊥

A for the orthogonal projectors onto R(A) and the orthogonal comple-
ment of R(A), respectively. Assuming that A has full column rank, its Moore-Penrose
generalized inverse is given by A† = (ATA)−1AT , and thus for a nonzero vector v,
v† = vT /‖v‖2. Finally κ2,F (A) ≡ ‖A‖2,F‖A†‖2,F .

For the reader’s convenience we give a reference table of the important quantities
used in the stopping criteria discussed in this paper, together with the first equation
number where each appears, and an indication of its use, or what it is:

ξ2,F (xk, α, β) (2.5) (used in testing) for acceptable LS solutions
η2,F (xk, α, β) (3.3) for acceptable nearly compatible system solutions
ψ2,F (xk, α, β) (5.1) an asymptotically tight upper bound on ξ2,F (xk, α, β)
ω(xk, θ) (6.1) the minimal backward error for a compatible system
µ(xk, θ) (6.3) the minimal backward error for a LS problem.

2. Acceptable and backward stable least squares solutions. Most prac-
tical LS problems contain uncertainties in the data, and instead of solving (1.1) with
ideal data A and b we can at best solve a nearby problem

min
x

‖(b+ f) − (A+ E)x‖, (2.1)

where E and f are small in some sense. Commonly E and f have small norms relative
to the norms of A and b, and we thus only consider the case

‖E‖2,F ≤ α‖A‖2,F and ‖f‖ ≤ β‖b‖ (2.2)

for some α and β satisfying 0 ≤ α, β ≪ 1 (where we hope that estimates of α and
β are known). In practical applications it is often the case that α ≪ β, because b
is often a vector of measurements that is subject to much larger measurement errors
than the matrix A.

We say that an iterate xk ∈ R
n is an acceptable LS solution when it is the exact

LS solution of a problem within the accepted range of relative errors in the data. In
other words for any given α and β, an iterate xk is an acceptable LS solution if and
only if there exist perturbations E and f satisfying

(A+ E)T [b+ f − (A+ E)xk] = 0, ‖E‖2,F ≤ α‖A‖2,F , ‖f‖ ≤ β‖b‖. (2.3)



STOPPING CRITERIA FOR LS PROBLEMS 3

Obviously this is the case if and only if

ξ2,F (xk, α, β) ≤ 1, (2.4)

where

ξ2,F (xk, α, β) ≡ min
E,f,ξ

{
ξ : (A+ E)T [b+ f − (A+ E)xk] = 0,

‖E‖2,F ≤ ξα‖A‖2,F , ‖f‖ ≤ ξβ‖b‖
}
.

(2.5)

To summarize, for any chosen α and β, an iterate xk is an acceptable LS solution if
and only if it satisfies (2.4).

Even if we have perfect data A and b, we cannot expect to solve (1.1) exactly in
floating-point arithmetic. The best we can generally hope to do is to solve a problem
of the form (2.1) with α = O(u) and β = O(u) in (2.2), u being the machine’s unit
roundoff. We say that an iterate xk is a backward stable LS solution when it satisfies
(2.4) with α = O(u) and β = O(u). A backward stable LS solution is thus simply an
acceptable LS solution with a specific choice of α and β.

Note that for any scalar τ > 0, we can verify that ξ2,F (xk, τ, τ) · τ = ξ2,F (xk, 1, 1)
by using (2.5) to define ξ2,F (xk, τ, τ) · τ , and then replacing each quantity ξτ in the

resulting right-hand side by the new variable ξ̃, giving ξ2,F (xk, 1, 1). Thus

ξ2,F (xk, 1, 1) ≤ τ ⇔ ξ2,F (xk, τ, τ) ≤ 1. (2.6)

A backward stable iterate xk therefore satisfies ξ2,F (xk, 1, 1) = O(u). Following the
nomenclature in [9, §7.1 & §20.7], we call the quantity ξ2,F (xk, 1, 1) the optimal norm-
wise relative backward error for LS problems.

If ξ2,F (xk, α, β) ≤ 1, many known upper bounds on the relative error ‖x̂−xk‖/‖x̂‖
exist as a function of α and β; see for example [9, §20.1] and [6, §5.3.7]. Therefore,
in most practical applications (but not necessarily ill-posed problems) we can be
satisfied with a given xk ∈ R

n as an approximate solution to (1.1) when it satisfies
ξ2,F (xk, α, β) ≤ 1 with an appropriate choice of α and β.

Unfortunately, finding an analytical expression for ξ2,F (xk, α, β) in (2.5) remains
an open question. Some easily computable upper bounds on ξ2,F (xk, α, β) are known,
and these can be used to give sufficient conditions for ξ2,F (xk, α, β) ≤ 1. Such condi-
tions are commonly used as stopping criteria for the iterative solution of large sparse
LS problems; see for example [12, §5], [4, §2.4 & §3.3] and [2, p.309]. We outline some
of these in the next section.

3. Algorithm LSQR and its stopping criteria. In this section we give a brief
overview of algorithm LSQR [12, 13] and its stopping criteria. The bidiagonalization
“Bidiag 2” in [12, §3] is that given by Golub and Kahan in [5, (2.4)], but with the initial
vector q1 = AT b/‖AT b‖. For LS solutions it is preferable to use the variant “Bidiag 1”
in [12, §3], which in theory after k steps produces matrices Uk+1 ∈ R

m×(k+1) and
Vk ∈ R

n×k such that Uk+1(e1β1) = b where β1 ≡ ‖b‖, and

AVk = Uk+1Bk+1,k, ATUk+1 = VkB
T
k+1,k + vk+1αk+1e

T
k+1 = Vk+1B

T
k+1,

Bk+1,k ≡




α1

β2 α2

β3
. . .

. . . αk

βk+1



∈ R

(k+1)×k, Bk+1 ≡ [Bk+1,k|ek+1αk+1].
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In theory Uk+1 and Vk both have orthonormal columns, but in practice rounding
errors cause a loss of orthogonality.

In the k-th step we find the minimum residual approximate solution of the form
xk = Vkyk, where yk ∈ R

k solves

min
y

‖b−AVky‖ = min
y

‖Uk+1(e1β1 −Bk+1,ky)‖ = min
y

‖e1β1 −Bk+1,ky‖. (3.1)

Thus xk = Vkyk and rk ≡ b − Axk (for k = 1, 2, . . . ) are successive approximations
to the true solution x̂ and residual r̂. The bidiagonal LS problem in (3.1) can easily
be solved for yk using the QR factorization of Bk+1,k. A careful implementation [13]
of LSQR requires only two matrix-vector products per iteration and stores only the
latest columns of Uk+1 and Vk.

Listed below are the stopping criteria used in LSQR. Given an iterate xk with
corresponding residual rk ≡ b−Axk, the algorithm stops if one of the following three
conditions is satisfied:





1. ‖rk‖ ≤ α‖A‖2,F‖xk‖ + β‖b‖ (a test for compatible systems)

2. ‖AT rk‖/‖rk‖ ≤ α‖A‖2,F (a criterion for LS problems)

3. κ2,F (A) ≥ γ (a regularizing criterion).

(3.2)

The parameters α and β (distinct from the elements αk and βk of Bk+1,k) are set
according to the accuracy of the data; see (2.2). From now on we assume the sensible
case that 0 < α, β ≪ 1. If rough estimates of these relative errors are not known, α
and β could be set to a small multiple of the unit roundoff u. The parameter γ is
the maximum condition number we are willing to tolerate. (In LSQR, κF (Bk+1,k),
which is no greater than κF (A), is checked against γ.) Note that criterion 2 in (3.2)
assumes rk 6= 0. If the residual is zero then xk is clearly the exact solution x̂ of (1.1).

LSQR provides the user with cheap estimates of ‖rk‖ and ‖AT rk‖ at each iter-
ation; see for example [12, §5]. Cheap lower bounds on ‖A‖F and κF (A) are also
available, and lower bounds on ‖A‖2 and κ2(A) can be computed reasonably cheaply
at each iteration. These lower bounds are monotonically increasing with k and are
thus successively better approximations to ‖A‖2,F and κ2,F (A). Similar estimates
are also usually available in other iterative methods for the solution of LS problems,
such as CGLS (see for example [2, §7]). When using such estimates, one should
keep in mind that they are not always accurate and can give misleading results. We
demonstrate this with an example in Section 4.3.

We now show that LSQR’s stopping criteria 1 and 2 correspond to particular
upper bounds on ξ2,F (xk, α, β) in (2.5). LSQR’s stopping criteria 1 and 2 thus give
sufficient but not necessary conditions for xk to be an acceptable LS solution.

Criterion 1 in (3.2) can be obtained by tightening the normal equations constraint
for LS in (2.5) to an equality constraint for compatible systems. Since this cannot
decrease the resulting minimum value of ξ, it follows that

ξ2,F (xk, α, β) ≤ η2,F (xk, α, β)

≡ min
E,f,η

{
η : (A+ E)xk = b+ f, ‖E‖2,F ≤ ηα‖A‖2,F , ‖f‖ ≤ ηβ‖b‖

}
. (3.3)

Rigal and Gaches [14] showed that

η2,F (xk, α, β) =
‖rk‖

α‖A‖2,F ‖xk‖ + β‖b‖ . (3.4)
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They proposed the condition η2,F (xk, α, β) ≤ 1, in other words

‖rk‖ ≤ α‖A‖2,F ‖xk‖ + β‖b‖, (3.5)

as a stopping criterion for the iterative solution of compatible linear systems. Note
that for any scalar τ > 0,

η2,F (xk, τ, τ) ≤ 1 ⇔ η2,F (xk, 1, 1) ≤ τ. (3.6)

The quantity

η2,F (xk, 1, 1) ≡ ‖rk‖
‖A‖2,F‖xk‖ + ‖b‖

is known in the literature as the optimal normwise relative backward error for com-
patible systems; see [9, Theorem 7.1].

Since the LS method is often used for solving nearly compatible overdetermined
linear systems, the condition (3.5) can be used as a stopping criterion for the iterative
solution of LS problems, hence criterion 1 in (3.2). From (3.3) and (3.4), if (3.5) holds
then ξ2,F (xk, α, β) ≤ 1 and the iterate xk is an acceptable LS solution. Similarly
if η2,F (xk, 1, 1) = O(u) then ξ2,F (xk, 1, 1) = O(u) and xk is a backward stable LS
solution; see (2.6).

Criterion 2 in (3.2) can be obtained from the fact that any feasible perturbations
E and f in (2.5) must lead to an upper bound on the minimum ξ2,F (xk, α, β). Stewart

[16, §3] observed that the perturbations E0 = −rkr†kA and f0 = 0 satisfy the normal
equations constraint in (2.5). With E = E0 and f = f0, (2.5) gives

ξ2,F (xk, α, β) ≤ min
ξ

{
ξ : ‖E0‖2,F ≤ ξα‖A‖2,F

}
=

‖E0‖2,F

α‖A‖2,F
=

‖AT rk‖
α‖A‖2,F‖rk‖

. (3.7)

Therefore if criterion 2 in (3.2) is satisfied, then ξ2,F (xk, α, β) ≤ 1, and from (2.4)
xk is an acceptable LS solution. Furthermore if ‖AT rk‖/‖rk‖ = O(u)‖A‖2,F then
ξ2,F (xk, 1, 1) = O(u), and xk is a backward stable LS solution—see the line following
(2.6). Note that AT rk is the residual vector of the normal equations at xk, and the
quantity ‖AT rk‖/‖rk‖ is the norm of a backward perturbation matrix in A only.

Criterion 3 in (3.2) tells us to stop if our “reduced representation” (3.1) of the
problem becomes too ill-conditioned; it is an attempt to regularize ill-conditioned
problems. As the focus of this paper is not on regularization of ill-conditioned prob-
lems, we will not discuss criterion 3 further.

In the next section we give new insights into the behavior of the quantities ‖rk‖
and ‖AT rk‖/‖rk‖ that are used in LSQR’s stopping criteria 1 and 2 in (3.2).

4. Analysis of LSQR’s stopping criteria 1 and 2.

4.1. An interesting observation. On all problems we have tested we have
made the following observation:

LSQR first reduces the residual norm ‖rk‖ while ‖AT rk‖/‖rk‖ remains roughly con-
stant or tends to oscillate in ill-conditioned problems. The residual norm ‖rk‖ then
reaches a plateau (after which it remains almost constant) at which point the quantity
‖AT rk‖/‖rk‖ starts to decrease, and decreases until it too reaches a plateau.

This surprising behavior, for which we propose an explanation below, is clearly
illustrated in Figure 4.1 (repeated in more detail as “Test Problem 3” in Figure 7.1).
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The oscillation of ‖AT rk‖ has often been observed in various iterative methods
for the solution of large sparse LS problems. For example it is stated in [12, §6.2]
that in practice in LSQR “‖AT rk‖/‖rk‖ can vary rather dramatically with k, but it
does tend to stabilize for large k”. Björck [2, p.289] states that in CGLS “‖AT rk‖
will often exhibit large oscillations when κ(A) is large”. In [4] Choi uses MINRES
(see [11, §6]) and a new variant thereof to solve singular symmetric linear systems.
Since these have either no solution or infinitely many solutions, they can be solved as
(possibly compatible, rank-deficient) LS problems. Like LSQR but unlike MINRES,
algorithm MINRES-QLP given in [4] converges to the minimum 2-norm LS solution.
It is remarked [4, p.27] that ‖AT rk‖ “is often observed to be oscillating”.
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Fig. 4.1. Behavior of ‖rk‖ (N) and ‖AT rk‖/‖rk‖ (H).

4.2. A possible explanation. Assume that m×n A has full column rank and
let the singular value decomposition (SVD) of A be

A = U

[
Σ
0

]
V T = U1ΣV

T =

n∑

i=1

uiσiv
T
i

where U ≡
[
U1 U2

]
≡ [u1, . . . , um] ∈ R

m×m and V ≡ [v1, . . . , vn] ∈ R
n×n (distinct

from Uk and Vk in Section 3) are orthogonal matrices and Σ = diag(σ1, . . . , σn) with
σ1 ≥ · · · ≥ σn > 0. With this notation, the orthogonal projectors onto the range of
A and onto the orthogonal complement of the range of A are, respectively,

PA = U1U
T
1 and P⊥

A = U2U
T
2 .

If x̂ is the true LS solution with corresponding residual r̂ ≡ b−Ax̂, then

P⊥
A rk = U2U

T
2 (b −Axk) = U2U

T
2 b = P⊥

A b = r̂ (4.1)

for all k, so that

‖rk‖2 = ‖PArk‖2 + ‖P⊥
A rk‖2 = ‖PArk‖2 + ‖r̂‖2. (4.2)

Note that in theory LSQR decreases ‖rk‖ every step (see [12, (5.2) & p.50]) so it also
decreases ‖PArk‖ every step. Furthermore, because Vn in Section 3 is theoretically



STOPPING CRITERIA FOR LS PROBLEMS 7

orthogonal, in theory ‖PArk‖ = 0 when k = n (and possibly even for some k < n).
Thus in LSQR ‖PArk‖ converges strictly monotonically to 0. We need the following
lemma.

Lemma 4.1. Given A ∈ R
m×n with the above-defined SVD, b ∈ R

m and xk ∈ R
n,

define rk ≡ b−Axk. Then

‖AT rk‖ = σ̄k‖PArk‖ (4.3)

for some σ̄k in the closed interval [σn, σ1].
Proof. Using the SVD of A,

‖AT rk‖2 = rT
k U1Σ

2UT
1 rk =

n∑

i=1

(uT
i rk)2σ2

i = σ̄2
k

n∑

i=1

(uT
i rk)2

for some σ̄k ∈ [σn, σ1]. Now because

‖PArk‖2 = rT
k U1U

T
1 rk =

n∑

i=1

(uT
i rk)2,

it immediately follows that ‖AT rk‖ = σ̄k‖PArk‖.
In well-conditioned problems the singular values ofA are all very roughly of similar

orders of magnitude. Therefore in well-conditioned problems the order of magnitude
of σ̄k is very roughly constant as a function of k. In ill-conditioned problems, σ̄k can
oscillate wildly but always lies between the extreme singular values of A. Note that
the behavior of σ̄k as a function of k depends on the size of the residual norms and
on how the residuals are aligned with respect to the left singular vectors u1 to un.

We can now describe what appears to be the main basis for the interesting obser-
vation. We do so by dividing the LSQR iteration process into three phases, illustrated
in Figure 4.1, any of which need not exist.

Phase 1. This phase is defined by those iterates for which in (4.2)

‖PArk‖ > ‖P⊥
A rk‖ = ‖r̂‖, (4.4)

and so from (4.2)

‖rk‖2 = ‖PArk‖2 + ‖r̂‖2 ≈ ‖PArk‖2. (4.5)

Thus ‖rk‖ ≈ ‖PArk‖ and LSQR decreases ‖rk‖, while from (4.5) and Lemma 4.1

‖AT rk‖
‖rk‖

=
σ̄k‖PArk‖

‖rk‖
≈ σ̄k, (4.6)

which must lie between the extreme singular values of A. Thus in this phase Stewart’s
‖AT rk‖/‖rk‖ is roughly constant in well-conditioned problems and can oscillate in ill-
conditioned problems.

The sum of squares in (4.5) makes (4.6) a particularly good approximation even
when ‖PArk‖ is not very much larger than ‖P⊥

A rk‖ = ‖r̂‖. For example if ‖PArk‖ =
2‖r̂‖ we get ‖rk‖ = (

√
5/2)‖PArk‖, leading to a relative error of only (‖rk‖ −

‖PArk‖)/‖PArk‖ ≈ 12%. If ‖PArk‖ = 10‖r̂‖, the relative error becomes approxi-
mately 0.5%.

Usually the iteration starts in phase 1, because usually ‖r0‖ ≫ ‖r̂‖ and thus
‖PAr0‖ ≫ ‖r̂‖; see (4.5) with k = 0. However it may happen that ‖PAr0‖ ≤ ‖r̂‖, for
example if x0 is a very good approximation to x̂. In this case there is no phase 1 and
the iteration starts in either phase 2 or phase 3 below.
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Phase 2. First suppose that the linear system is not compatible to machine pre-
cision. We consider the compatible case afterwards.

As LSQR decreases ‖PArk‖, there is a first k such that

‖PArk‖ ≤ ‖P⊥
A rk‖ = ‖r̂‖; (4.7)

see (4.1) and (4.2). This is the start of phase 2, in which the residuals are now
dominated by their projection onto the orthogonal complement of R(A). In this phase
‖PArk‖ continues to decrease but ‖rk‖ hardly decreases because it is dominated by
‖P⊥

A rk‖ = ‖r̂‖, which is constant.
Because ‖PArk‖ still decreases while ‖rk‖ remains roughly constant, from (4.3)

the quantity ‖AT rk‖/‖rk‖ = σ̄k‖PArk‖/‖rk‖ tends to decrease. Thus in phase 2 it is
‖rk‖ that remains nearly constant, while ‖AT rk‖/‖rk‖ tends to decrease.

As LSQR continues to decrease ‖PArk‖ (recall that ‖PArk‖ → 0 in theory) there
is a first k such that

‖PArk‖ = O(u)(‖A‖2,F ‖xk‖ + ‖b‖). (4.8)

This implies that xk is a backward stable LS solution; see Section 5 for a detailed
explanation.

Phase 3. This phase begins when LSQR has decreased ‖PArk‖ to the level in (4.8).
In all our numerical experiments we have found that ‖PArk‖ does not decrease below
this level, even though in theory ‖PArk‖ → 0. This is true even for compatible
systems where in theory ‖rk‖ → 0. The numerical examples in Section 7 illustrate
this behavior.

Now suppose that the linear system is compatible to the level of machine precision,
meaning that the true LS solution x̂ satisfies η2,F (x̂, 1, 1) = O(u); see (3.3) and (3.6).
In this case, in apparently all but the most extreme circumstances, LSQR converges
to an iterate xk that also solves Ax = b to the level of machine precision. In other
words, for these problems there is usually a k such that η2,F (xk, 1, 1) = O(u) and thus

‖rk‖ = O(u)(‖A‖2,F ‖xk‖ + ‖b‖); (4.9)

see (3.4) and (3.6). In this case there is effectively no phase 2 (and phase 3 starts
immediately after phase 1) because if (4.9) is satisfied then clearly so is (4.8).

In phase 3 neither ‖rk‖ nor ‖AT rk‖/‖rk‖ decreases further. If the system is not
compatible to machine precision, then as in phase 2 ‖rk‖ is dominated by ‖P⊥

A rk‖ =
‖r̂‖, which is constant. If the linear system is compatible to machine precision then
‖rk‖ satisfies (4.9) and is therefore roughly constant. Thus we have

‖rk‖ ≈ max
{
‖r̂‖,O(u)(‖A‖2,F‖xk‖ + ‖b‖)

}
, (4.10)

and from (4.3) and (4.8) we obtain

‖AT rk‖
‖rk‖

=
σ̄k‖PArk‖

‖rk‖
= σ̄k

O(u)(‖A‖2,F ‖xk‖ + ‖b‖)
‖rk‖

. (4.11)

In phase 3 the ratio σ̄k usually remains almost constant (even for ill-conditioned
problems; see the convergence plots in Figure 7.2). This is due to rk being nearly
constant in this phase, so from Lemma 4.1 σ̄k is also almost constant. Therefore
‖AT rk‖/‖rk‖ also remains nearly constant.
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Summary. Initially ‖AT rk‖/‖rk‖ ≈ σ̄k ∈ [σn, σ1] is roughly constant in well-
conditioned problems and oscillates between the extreme singular values of A in ill-
conditioned problems. This quantity only starts to decrease once ‖rk‖ is no longer
dominated by ‖PArk‖, which happens when ‖rk‖ reaches the plateau in (4.10). Even-
tually ‖AT rk‖/‖rk‖ also reaches the plateau in (4.11) where it too remains almost
constant.

4.3. Relation to the stopping criteria 1 and 2. We can relate the above
observations to the stopping criteria 1 and 2 in (3.2), which give sufficient but not
necessary conditions for xk to be an acceptable LS solution. Since the theoretically
strictly monotonically decreasing ‖rk‖ no longer decreases significantly after phase 1
and plateaus at the level given in (4.10), LSQR’s criterion 1 may never be triggered in
significant-residual problems (for which the maximum in (4.10) is given by ‖r̂‖). On
the other hand, because ‖AT rk‖/‖rk‖ reaches a plateau (4.11) at the start of phase 3,
LSQR’s criterion 2 may never be triggered in nearly compatible systems (for which
(4.9) holds in phase 3 and (4.11) is thus roughly of the order of σ̄k). So both stopping
criteria are needed—but even then there can be difficulties.

We illustrate this with an example in Figure 4.2 (repeated with different detail as
“Test Problem 3” in Figure 7.1). Suppose we would like to obtain a backward stable
LS solution, so we set α = β = u in (2.5) and (3.2). It is easy to see from the plotted
tolerances in Figure 4.2 that neither stopping criterion in (3.2) is ever triggered,
regardless of the number of iterations performed. This demonstrates that LSQR’s
stopping criteria can be much too conservative, and can lead a user to incorrect
conclusions about whether or not LSQR (or any other algorithm) has converged to a
required tolerance.

In the next section we give a new tighter estimate of ξ2,F (xk, α, β). This result
indicates that in the above example in fact ξ2(xk, 1, 1) = O(u) (see (2.6)) when k = 63.
In other words a backward stable iterate (in the 2-norm) is obtained at the end of
phase 2.

We note that although the quantity ‖AT rk‖/‖rk‖ plateaus in what we have called
phase 3, in practice LSQR’s approximation to ‖AT rk‖/‖rk‖ generally does not, as
shown in Figure 4.2. Therefore stopping criterion 2 in (3.2) may be triggered if we use
LSQR’s approximation in our computation, even though the actual ‖AT rk‖/‖rk‖ ≫
α‖A‖2,F . In the above example this leads to stopping criterion 2 (in the 2-norm
with α = u) being triggered at the iteration k = 83, late in phase 3 and well after a
backward stable iterate has actually been obtained.

5. A new upper bound on ξ2,F (xk, α, β). We now give a new upper bound
on ξ2,F (xk, α, β) defined in (2.5), and show that it becomes asymptotically tight in
the limit as xk approaches the true LS solution x̂ of (1.1). This bound could be used
to improve LSQR’s stopping criteria significantly.

Theorem 5.1. Given A ∈ R
m×n, b ∈ R

m and xk ∈ R
n, define rk ≡ b−Axk and

use the definition of ξ2,F (xk, α, β) in (2.5). Then

ξ2,F (xk, α, β) ≤ ψ2,F (xk, α, β) ≡ ‖PArk‖
α‖A‖2,F‖xk‖ + β‖b‖ . (5.1)
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Fig. 4.2. Behavior of ‖rk‖ and ‖AT rk‖/‖rk‖.

Proof. Consider the perturbations

E∗ ≡ α‖A‖2,F‖xk‖
α‖A‖2,F‖xk‖ + β‖b‖PArkx

†
k,

f∗ ≡ − β‖b‖
α‖A‖2,F‖xk‖ + β‖b‖PArk,

so that

‖E∗‖2,F

α‖A‖2,F
=

‖f∗‖
β‖b‖ =

‖PArk‖
α‖A‖2,F ‖xk‖ + β‖b‖ = ψ2,F (xk, α, β). (5.2)

Also notice that b + f∗ − (A + E∗)xk = rk − PArk = P⊥
A rk. From this we see that

E∗ and f∗ satisfy the normal equations constraint in (2.5). It then follows from (2.5)
and (5.2) that

ξ2,F (xk, α, β) ≤ min
ξ

{
ξ : ‖E∗‖2,F ≤ ξα‖A‖2,F , ‖f∗‖ ≤ ξβ‖b‖

}
= ψ2,F (xk, α, β),

so that (5.1) holds.

Recall that an iterate xk is an acceptable LS solution if and only if it satisfies
ξ2,F (xk, α, β) ≤ 1 (see (2.5)). As a result of Theorem 5.1, if

LStest1: ψ2,F (xk, α, β) ≤ 1 (5.3)

or equivalently

‖PArk‖ ≤ α‖A‖2,F ‖xk‖ + β‖b‖, (5.4)
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then ξ2,F (xk, α, β) ≤ 1 and xk is an acceptable LS solution. Comparing the above
to LSQR’s stopping criterion 1 in (3.2), we immediately see that (5.4) gives a less
pessimistic criterion. In fact the upper bound ψ2,F in (5.1) can be much tighter than
η2,F in (3.3) (see also (3.4)) especially during what we have called phases 2 and 3
when ‖PArk‖ is no longer the main component of ‖rk‖.

We can use Theorem 5.1 to explain why ‖PArk‖ levels off at the end of phase 2,
as illustrated in Figure 7.1 and noted after (4.8). If (4.8) holds, then from (5.1) we
have ξ2,F (xk, 1, 1) = O(u) and thus from (2.6) xk is a backward stable LS solution.
As discussed in Section 2, this is the best we can generally hope to achieve in floating-
point arithmetic. Therefore, we cannot generally expect that ‖PArk‖ will decrease
below the level given in (4.8).

We now show that our new upper bound ψ2,F (xk, α, β) in (5.1) becomes asymp-
totically tight with ξ2,F (xk, α, β) in (2.5) in the limit as xk approaches the true LS so-
lution x̂. Note that in theory as xk → x̂, ψ2,F (xk, α, β) → 0 and so ξ2,F (xk, α, β) → 0;
see (5.1). The following theorem shows that both converge at the same rate.

Theorem 5.2. Using the notation of Theorem 5.1 and letting x̂ denote the true
LS solution of (1.1),

lim
xk→x̂

ξ2,F (xk, α, β)

ψ2,F (xk, α, β)
= 1. (5.5)

Proof. We have shown in Theorem 5.1 that ξ2,F (xk, α, β) ≤ ψ2,F (xk, α, β) for all
xk ∈ R

n. Therefore

lim
xk→x̂

ξ2,F (xk, α, β)

ψ2,F (xk, α, β)
≤ 1.

On the other hand notice that the optimal perturbations Êk and f̂k in (2.5) must
satisfy

(A+ Êk)T (rk + f̂k − Êkxk) = 0,

so that PA+Êk
(rk + f̂k − Êkxk) = 0 and thus PA+Êk

rk = PA+Êk
(Êkxk − f̂k). Using

the fact that ‖PA+Êk
‖ ≤ 1 along with the other constraints in (2.5), it follows that

the optimal ξ2,F (xk, α, β) in (2.5) must satisfy

‖PA+Êk
rk‖ ≤ ‖Êk‖2,F‖xk‖ + ‖f̂k‖ ≤ ξ2,F (xk, α, β) · (α‖A‖2,F ‖xk‖ + β‖b‖),

so that with (5.1)

ξ2,F (xk, α, β) ≥
‖PA+Êk

rk‖
α‖A‖2,F ‖xk‖ + β‖b‖ = ψ2,F (xk, α, β)

‖PA+Êk
rk‖

‖PArk‖
.

In the limit as xk → x̂ we have ‖Êk‖2,F → 0 and thus PA+Êk
rk → PArk; see for

example [15, §3 & 4]. Therefore

lim
xk→x̂

ξ2,F (xk, α, β)

ψ2,F (xk, α, β)
≥ 1.
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Remark 5.1. From the above proof we can easily observe that if we impose the
constraint R(A+E) = R(A) on E in (2.5), then ξ2,F (xk, α, β) = ψ2,F (xk, α, β). This
constraint may make sense in some situations.

Stewart [15, §5] proved a result similar to but weaker than Theorem 5.1. Using
r̂ ≡ b− Ax̂ to denote the true LS residual, he observed that the perturbations E1 =
(rk − r̂)x†k and f1 = 0 satisfy the normal equations constraint in (2.5), so that

ξ2,F (xk, α, β) ≤ min
ξ

{
ξ : ‖E1‖2,F ≤ ξα‖A‖2,F

}
=

‖E1‖2,F

α‖A‖2,F
=

‖rk − r̂‖
α‖A‖2,F ‖xk‖

. (5.6)

Since rk = PArk + P⊥
A rk = PArk + r̂, the bound in (5.6) is equivalent to

ξ2,F (xk, α, β) ≤ ‖PArk‖
α‖A‖2,F ‖xk‖

.

By also considering perturbations in b, we obtain the new and tighter upper bound
ψ2,F (xk, α, β) in (5.1), which is asymptotically tight with ξ2,F (xk, α, β) for all values
of α and β.

Stewart noted [16, §3] that his bound in (5.6) could only be computed if the LS
problem were contrived so that r̂ was known a priori. Since this is generally not the
case in practical applications, the bound in (5.6) cannot generally be used in practice.
Of course in practical applications ‖PArk‖ is also not available a priori and is too
expensive to compute directly. However by thinking of our new bound ψ2,F (xk, α, β)
in (5.1) in terms of the projection ‖PArk‖ instead of the quantity ‖rk − r̂‖, we can
try to find new ways to estimate ξ2,F (xk, α, β) by estimating ‖PArk‖. The following
bounds, for example, follow immediately from Lemma 4.1:

‖AT rk‖
σ1

≤ ‖PArk‖ ≤ ‖AT rk‖
σn

, (5.7)

where σ1 and σn are the largest and smallest singular value of A, respectively. Note
that ‖AT rk‖ is generally easily computable and estimates of the extreme singular
values of A are available in LSQR.

For very well-conditioned problems, corresponding to σ1 ≈ σn, the bounds in (5.7)
are fairly tight. In our numerical tests we found that even for ill-conditioned problems
the lower bound in (5.7) is usually much tighter than the upper bound. In other words
σ̄k in Lemma 4.1 usually lies close to the largest singular value of A, especially late
in phase 2 and in phase 3 of the iteration process. A better understanding of the
behavior of σ̄k with k could lead to an efficiently computable estimate of ‖PArk‖ in
(5.4). We leave this for a future investigation.

Here we suggest another potential approach to estimating the projection ‖PArk‖
efficiently in LSQR. Using the fact that PA = AA† and PAA = A, and letting x̂ = A†b
denote the true LS solution of (1.1), we obtain

‖PArk‖ = ‖AA†(b−Axk)‖ = ‖A(x̂− xk)‖ ≡ ‖x̂− xk‖AT A.

The quantity ‖PArk‖ is therefore the so-called energy norm of the error at step k.
Several estimates of the energy norm of the error have been proposed for the method
of conjugate gradients; see for example the discussion in [17] and an extension to
CGLS in [1]. We expect that it will be possible to use these ideas to estimate ‖PArk‖
efficiently in LSQR. We leave the details for future work.
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6. A necessary and sufficient condition for ξ2,F (xk, α, β) ≤ 1. We now show
how the groundbreaking theoretical results of Waldén, Karlson and Sun, namely [18,
Theorem 2.2] and [18, Corollary 2.1], can be used to give a necessary and sufficient
condition to determine if an iterate xk is an acceptable LS solution.

The minimization problems in Lemma 6.1 are commonly called normwise back-
ward error or minimal backward error problems; see [9, §7] and [18].

Lemma 6.1. Given A ∈ R
m×n, b ∈ R

m, 0 6= xk ∈ R
n and θ > 0, define rk ≡

b−Axk. Then for compatible systems we have ([9, p. 134, Exercise 7.8])

ω(xk, θ) ≡ min
∆A,∆b

{‖[∆A, θ∆b]‖F : (A+ ∆A)xk = b+ ∆b} =
θ‖rk‖√

1 + θ2‖xk‖2
, (6.1)

ω(xk,∞) ≡ lim
θ→∞

ω(xk, θ) = min
∆A

{‖∆A‖F : (A+ ∆A)xk = b} =
‖rk‖
‖xk‖

. (6.2)

If we replace the above equality constraints by the LS normal equations, then with the
above-defined ω(xk, θ) and ω(xk,∞) we have ([18]; see also [9, §20.7])

µ(xk, θ)

≡ min
∆A,∆b

{
‖[∆A, θ∆b]‖F : (A+ ∆A)T [(b+ ∆b) − (A+ ∆A)xk] = 0

}
(6.3)

= min
{
ω(xk, θ), σmin

([
A,ω(xk, θ) · (I − rkr

†
k)

])}
,

µ(xk,∞) ≡ lim
θ→∞

µ(xk, θ)

= min
∆A

{
‖∆A‖F : (A+ ∆A)T [b− (A+ ∆A)xk] = 0

}
(6.4)

= min
{
ω(xk,∞), σmin

([
A,ω(xk,∞) · (I − rkr

†
k)

])}
,

where σmin(·) denotes the smallest singular value.
The question is how to use µ(xk, θ) or µ(xk,∞) to determine if xk is an acceptable

LS solution as defined in (2.4) and (2.5). Let ∆̂A be the optimal perturbation in

(6.4). If µ(xk,∞) ≡ ‖∆̂A‖F ≤ α‖A‖F , then clearly E = ∆̂A and f = 0 satisfy the
constraints in (2.3) in the Frobenius norm and give ξF (xk, α, β) ≤ 1 in (2.4). On the
other hand Gu [8, Theorem 3.1] showed that for any E, f , α and β such that

(A+ E)T [b+ f − (A+ E)xk] = 0, ‖E‖2,F ≤ α‖A‖2,F , ‖f‖ ≤ β‖b‖,

so that ξF (xk, α, β) ≤ 1 (see (2.5)), there exists a ∆A satisfying the constraint in
(6.4) with

‖∆A‖2,F

‖A‖2,F
≤ α+ 2β

1 + α

1 − 2β
, (6.5)

ensuring that µ(xk,∞) <
∼ (α + 2β)‖A‖F in (6.4) when α, β ≪ 1. So for any α and β

satisfying 0 ≤ α, β ≪ 1 we have

µ(xk,∞) ≤ α‖A‖F ⇒ ξF (xk, α, β) ≤ 1;

ξF (xk, α, β) ≤ 1 ⇒ µ(xk,∞) <
∼ (α+ 2β)‖A‖F .

(6.6)

From this we see that if β <
∼ α then checking the condition µ(xk,∞) ≤ α‖A‖F is a

reliable way to determine if xk is an acceptable solution in the Frobenius norm, and
in particular for checking if it is a backward stable LS solution.
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Unfortunately when α≪ β the condition µ(xk,∞) ≤ α‖A‖F is only sufficient for
xk to be an acceptable solution. In other words when α≪ β

ξF (xk, α, β) ≤ 1 6⇒ µ(xk,∞) <
∼ α‖A‖F

and in this case the criterion µ(xk,∞) ≤ α‖A‖F might not detect that an acceptable
iterate has been obtained until many unnecessary iterations have been performed, if
it detects it at all. Recall from Section 2 that the case α≪ β often occurs in practical
LS applications, because b is often a measurement vector that is subject to much
larger measurement errors than the matrix A.

We now consider how to use µ(xk, θ) with an appropriate finite θ in (6.3) to
determine if xk is an acceptable LS solution for any choice of α and β in (2.5). The
following lemma for compatible systems was proven in [3, §2].

Lemma 6.2. Using the notation of Lemma 6.1, if β‖b‖ > 0 then the choice

θ = θ̂2,F ≡
(
α‖A‖2,F

β‖b‖·‖xk‖

)1/2

makes the optimal ∆A and ∆b in (6.1) equal to the optimal E and f in (3.3).

Note that the relationship between ω(xk, θ) in (6.1) and η2,F (xk, α, β) in (3.3) for
compatible systems parallels that between µ(xk, θ) in (6.3) and ξ2,F (xk, α, β) in (2.5)
for LS problems. We have not found an exact equivalence to Lemma 6.2 for the LS
case, but we do have a very strong result, which we give in the following theorem.

Theorem 6.3. Given full column rank A ∈ R
m×n, b ∈ R

m and 0 6= xk ∈ R
n,

define rk ≡ b−Axk, ξF (xk, α, β) as in (2.5) and µ(xk, θ) as in (6.3). Let

θ = θ̂ ≡ α‖A‖F

β‖b‖ .

Then

ξF (xk, α, β) ≤ µ(xk, θ̂)

α‖A‖F
≤

√
2ξF (xk, α, β). (6.7)

Proof. Let ∆̂A and ∆̂b represent the optimal perturbations in (6.3) with θ = θ̂.

Clearly E = ∆̂A and f = ∆̂b cannot improve on the optimal ξF (xk, α, β) in (2.5), and

so either ‖∆̂A‖F ≥ ξF (xk, α, β)α‖A‖F or ‖∆̂b‖ ≥ ξF (xk, α, β)β‖b‖, or both, giving

max

{
‖∆̂A‖F

α‖A‖F
,
‖∆̂b‖
β‖b‖

}
≥ ξF (xk, α, β).

Thus we have

µ(xk, θ̂) = ‖[∆̂A, θ̂∆̂b]‖F =

√
‖∆̂A‖2

F +
α2‖A‖2

F

β2‖b‖2
‖∆̂b‖2

≥ max

{
‖∆̂A‖F ,

α‖A‖F

β‖b‖ ‖∆̂b‖
}

≥ ξF (xk, α, β)α‖A‖F ,
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proving the first inequality in (6.7).

On the other hand for the optimal Ê and f̂ in (2.5) we have

‖Ê‖F ≤ ξF (xk, α, β)α‖A‖F , ‖f̂‖ ≤ ξF (xk, α, β)β‖b‖,

where Ê and f̂ cannot improve on the optimal ∆̂A and ∆̂b in (6.3) with θ = θ̂.
Therefore

µ(xk, θ̂) = ‖[∆̂A, θ̂∆̂b]‖F ≤ ‖[Ê, θ̂f̂ ]‖F

≤
√
ξ2F (xk, α, β)α2‖A‖2

F +
α2‖A‖2

F

β2‖b‖2
ξ2F (xk, α, β)β2‖b‖2

=
√

2ξF (xk, α, β)α‖A‖F ,

leading to the second inequality in (6.7).

Theorem 6.3 dealt with ξF (xk, α, β) and µ(xk, θ̂) defined for the perturbed LS
normal equations (A+E)T [b+f−(A+E)xk] = 0. But the same analysis can be applied

to ηF (xk, α, β) in (3.3) and ω(xk, θ̂) in (6.1), which were defined for the perturbed
compatible system (A + E)xk = b + f . Carrying out the argument in Theorem 6.3

with ξF (xk, α, β) replaced by ηF (xk, α, β), and µ(xk, θ̂) replaced by ω(xk, θ̂), gives

ηF (xk, α, β) ≤ ω(xk, θ̂)

α‖A‖F
≤

√
2ηF (xk, α, β).

Recall from Section 2 that xk is an acceptable LS solution if and only if it satisfies
ξ2,F (xk, α, β) ≤ 1, but that at present no explicit formula is known for computing
ξ2,F (xk, α, β). Theorem 6.3 implies that

µ(xk, θ̂) ≤ α‖A‖F ⇒ ξF (xk, α, β) ≤ 1;

ξF (xk, α, β) ≤ 1 ⇒ µ(xk, θ̂) ≤
√

2α‖A‖F .
(6.8)

(Compare this to (6.6) in which β is present in the second expression—a subtle but
very important difference when α ≪ β.) The following is therefore a nearly optimal
test for an acceptable Frobenius-norm LS solution for any choice of α and β:

LStest2: µ(xk, θ̂) ≤ α‖A‖F , where θ̂ =
α‖A‖F

β‖b‖ . (6.9)

As a consequence of Theorem 6.3 we can now determine almost exactly when an
iterate xk is an acceptable LS solution by using the result of Waldén, Karlson and
Sun in Lemma 6.1. Unfortunately Lemma 6.1 gives an expression for µ(xk, θ) that
costs O(m3) flops to compute, and is thus too expensive to be useful in large sparse
applications. Nevertheless we can still use (6.9) to test the effectiveness of LSQR’s
stopping criteria 1 and 2 as well as our new condition LStest1 in (5.3). We can also
try to develop more effective stopping criteria for the iterative solution of large sparse
LS problems by finding bounds on or estimates for µ(xk, θ̂) instead of ξ2,F (xk, α, β).

A few estimates of µ(xk,∞) exist in the literature; see for example [7, §4] and the
references therein. We point out that some of these can be generalized to estimate
µ(xk, θ̂), but to our knowledge none of these estimates is both provably reliable and

computable in O(mn) flops, so at present no estimate of µ(xk, θ̂) is truly suitable
for use in large sparse applications. We leave the efficient and reliable estimation of
µ(xk, θ̂) for a future investigation.
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7. Illustrations. To illustrate our results we run LSQR on various test problems
and plot at each iteration:

(i) the residual norm ‖rk‖;
(ii) Stewart’s ‖AT rk‖/‖rk‖;
(iii) the norm of the projections ‖PArk‖ and ‖P⊥

A rk‖;
(iv) the ratio σ̄k = ‖AT rk‖/‖PArk‖ from (4.3).

The projections are computed by obtaining the QR factorization of A using Matlab’s
built-in function qr, and the quantities ‖rk‖, ‖AT rk‖, ‖A‖2 and ‖A‖F are computed
explicitly. (In other words we do not use LSQR’s approximation to the above quanti-
ties, because our goal here is to illustrate the actual convergence behavior, described
in Section 4.1, of the true ‖rk‖ and ‖AT rk‖/‖rk‖.) We also show at which itera-
tion phases 1 and 2 end with vertical lines indicating the first k for which (4.7) and
(4.8) hold, respectively. Admittedly the O(u) term in (4.8) is somewhat vague; for
our illustrations we plot the vertical line at the first k for which ‖PArk‖ settles near
u(‖A‖2‖xk‖ + ‖b‖). Also note that only one vertical line is plotted in test problems
1 and 4 because there is effectively no phase 2 or 1, respectively, in these problems.

We use test problems 1 to 4 to illustrate how the effectiveness of LSQR’s stopping
criteria 1 and 2 in (3.2) depends on the size of the true residual norm ‖r̂‖. For
these simple test problems each element of the matrix A ∈ R

300×120 is randomly
chosen from a normal distribution with mean 0 and standard deviation 1, so that A is
almost certainly well-conditioned. This exhibits the interesting observation discussed
in Section 4.1, and supports our explanation beautifully. Let sn represent an n-vector
containing all ones and let each element of an m-vector tm be randomly chosen from
a normal distribution with mean 0 and standard deviation 1.

(i) In test problem 1, b = As120 + 10−15t300 and ‖r̂‖ ≈ 10−14.
(ii) In test problem 2, b = As120 + 10−10t300 and ‖r̂‖ ≈ 10−9.
(iii) In test problem 3, b = As120 + 10−5t300 and ‖r̂‖ ≈ 10−4.
(iv) In test problem 4, b = As120 + 100t300 and ‖r̂‖ ≈ 101.

Results for these test problems are illustrated in Figure 7.1.
We use test problems 5 to 8 to illustrate how increasing the condition number

κ2(A) affects the behavior of ‖rk‖ and ‖AT rk‖/‖rk‖ in (3.2) and σ̄k in (4.3). These
problems are set up so that they all have roughly the same true LS residual ‖r̂‖ ≈ 10−7,
and are presented by increasing condition number, with κ2(A) ≈ 7.1, 4.5 × 103,
1.5 × 108 and 3.8 × 1012, respectively. Although the focus of this paper is not on
regularization of ill-conditioned problems, we include these examples to illustrate
the numerical behavior of LSQR, and our observation from Section 4.1, on these
increasingly ill-conditioned problems.

For these test problems 5 to 8 we create A and b as in [12, §8]. These problems
are called P (m,n, d, p). The matrix A ∈ R

m×n has singular values

σi ≡
(
⌊(i− 1 + d)/d⌋ · d/n

)p

,

where integer division by d is used to obtain repeated singular values. The true
solution x̂ and residual r̂ are fixed, after which b is set to b = Ax̂ + r̂. For all the
details see [12, p.63]. Test problems 5 to 8 are P (500, 200, 4, 1/2), P (800, 200, 3, 2),
P (750, 300, 7, 5) and P (400, 150, 6, 9), respectively. Results for these problems are
illustrated in Figure 7.2.

For test problems 9 to 12 we use the large sparse sample problems Well1033,
Well1850, Illc1033 and Illc1850 from the Matrix Market [10], respectively. The prob-
lems starting with “Well” denote well-conditioned problems, whereas those starting
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Test Problem 2: Random A
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Test Problem 3: Random A
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Test Problem 4: Random A
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tolerance u(‖A‖2‖xk‖ + ‖b‖)

Fig. 7.1. Test problems 1 to 4: well-conditioned examples with increasing true ‖r̂‖.

with “Illc” denote ill-conditioned problems. The problems ending with the number
1033 involve a matrix A ∈ R

1033×320, whereas those ending with 1850 involve a ma-
trix A ∈ R

1850×712. In all these test problems we create the vector b as follows:
b = A[1, 1, . . . , 1]T +10−8[m,m−1, . . . , 1]T . Results for these problems are illustrated
in Figure 7.3.

Each convergence plot in Figures 7.1 to 7.3 corresponds to one instance of a LS
problem. Tables 7.1 and 7.2 below give the number of iterations required to trigger

(i) LSQR’s stopping criteria 1 and 2 from (3.2), in the Frobenius norm;
(ii) the new condition LStest1 (5.3);
(iii) the new condition LStest2 (6.9);

for various values of α and β. The iteration counts in (i) above are given when the
relevant norms in (3.2) are computed explicitly (True) and using LSQR’s approxi-
mation (App.). Each row corresponds to an average number of iterations required,
rounded to the nearest integer, for the same matrix A with 100 different noisy vectors
b = Asn +10−ptm (where sn and tm are defined above). The symbol ∞ is used when a
particular condition is never satisfied in any of the 100 tests, regardless of the number
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Test Problem 5: P(500,200,4,1/2)
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Test Problem 6: P(800,200,3,2)
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Test Problem 7: P(750,300,7,5)
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Test Problem 8: P(400,150,6,9)
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Fig. 7.2. Test problems 5 to 8: increasingly ill-conditioned examples with ‖r̂‖ ≈ 10−7.

of LSQR iterations performed. We compute the quantity µ(xk, θ̂) in (6.3), with θ̂ in
Theorem 6.3, using Matlab’s built-in command svd.

We use test problems 1 to 4 in Table 7.1 (with p = 15, 10, 5 and 0, respectively)
to demonstrate the impact of the size of the true residual norm on the effectiveness
of the stopping criteria. We use test problems 9 and 11 in Table 7.2 (with p =
7) to test LSQR’s stopping criteria on matrices from the Matrix Market. Ideally
methods such as LSQR are applied to systems which (possibly after preconditioning)
are well-conditioned, but this is not always possible, and an understanding of the
behavior of these methods on ill-conditioned problems can be helpful in some practical
cases, as well as giving us greater insight into the general numerical behavior of these
algorithms. For this reason, we give numerical results for both a well-conditioned and
an ill-conditioned test problem in Table 7.2.

8. Discussion and conclusions. As a general trend, in the well-conditioned
test problems 1 to 5 the ratio σ̄k = ‖AT rk‖/‖PArk‖ remains relatively constant. As
the problems become more and more ill-conditioned, here in test problems 6 to 8, σ̄k

has a much more oscillatory behavior, as expected.
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Test Problem 9: Well1033
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Test Problem 10: Well1850
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Test Problem 11: Illc1033
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Test Problem 12: Illc1850
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Fig. 7.3. Test problems 9 to 12: sparse examples from the Matrix Market with ‖r̂‖ ≈ 10−6.

In most of the test problems there is a very clear visual distinction in the con-
vergence plots between phases 1 and 2, and also between phases 2 and 3. In phase 1
we clearly observe that ‖rk‖ ≈ ‖PArk‖ decreases while Stewart’s ‖AT rk‖/‖rk‖ ≈ σ̄k

oscillates between the extreme singular values of A (which means it remains roughly
constant for the well-conditioned problems and can vary wildly for the ill-conditioned
problems). In phase 2 on the other hand, we see that ‖rk‖ ≈ ‖P⊥

A rk‖ remains nearly
constant while ‖AT rk‖/‖rk‖ starts to decrease. Note that in phase 2 ‖AT rk‖/‖rk‖
decreases at almost exactly the same rate as ‖PArk‖, as suggested by Lemma 4.1 and
the fact that ‖rk‖ ≈ ‖r̂‖ is nearly constant in phase 2. Also note that there is no
phase 2 in test problem 1 because ‖rk‖ satisfies (4.9) when k ≈ 63, and no phase 1 in
test problem 4 because ‖r0‖ ≈ ‖r̂‖; see the comments after (4.6). Finally in phase 3,
both ‖rk‖ and ‖AT rk‖/‖rk‖ remain nearly constant.

The above patterns are most obvious in the well-conditioned problems and less
so in the very ill-conditioned problems. For example in test problems 7 and 8, σ̄k

oscillates a great deal and ‖PArk‖ decreases very slowly and in a staircase pattern,
making the boundaries between successive phases less clear.
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Table 7.1

The effectiveness of LSQR’s stopping criteria depends on the size of ‖r̂‖.

Test Parameters LSQR 1 LSQR 2 LStest1 LStest2
Problem α β True App. True App. see (5.3) see (6.9)

10−4 10−4 13 13 ∞ 73 13 13
10−8 10−4 18 18 ∞ 85 18 18

1 10−8 10−8 30 30 ∞ 85 30 30
‖r̂‖ ≈ 10−14 10−12 10−8 34 34 ∞ 98 34 34

10−14 10−14 53 53 ∞ 103 53 53
10−4 10−4 13 13 58 58 13 13
10−8 10−4 18 18 ∞ 72 18 18

2 10−8 10−8 30 30 ∞ 72 30 30
‖r̂‖ ≈ 10−9 10−12 10−8 34 34 ∞ 84 34 34

10−14 10−14 ∞ ∞ ∞ 91 53 53
10−4 10−4 13 13 38 38 13 13
10−8 10−4 18 18 54 54 18 18

3 10−8 10−8 ∞ ∞ 54 54 30 30
‖r̂‖ ≈ 10−4 10−12 10−8 ∞ ∞ ∞ 69 34 34

10−14 10−14 ∞ ∞ ∞ 75 53 53
10−4 10−4 ∞ ∞ 13 13 14 13
10−8 10−4 ∞ ∞ 30 30 18 18

4 10−8 10−8 ∞ ∞ 30 30 31 30
‖r̂‖ ≈ 101 10−12 10−8 ∞ ∞ 46 46 35 35

10−14 10−14 ∞ ∞ 54 54 54 53

Table 7.2

Testing LSQR’s stopping criteria on problems from the Matrix Market.

Test Parameters LSQR 1 LSQR 2 LStest1 LStest2
Problem α β True App. True App. see (5.3) see (6.9)

10−4 10−4 69 69 172 172 69 69
9 10−8 10−4 111 111 207 207 111 111

Well1033 10−8 10−8 159 159 207 207 158 158
‖r̂‖ ≈ 10−6 10−12 10−8 ∞ ∞ ∞ 242 164 164

10−14 10−14 ∞ ∞ ∞ 267 206 206
10−4 10−4 43 43 1346 1346 43 43

11 10−8 10−4 110 110 3563 3562 110 110
Illc1033 10−8 10−8 3066 3066 3563 3562 3045 3049

‖r̂‖ ≈ 10−6 10−12 10−8 ∞ ∞ ∞ 4049 3154 3154
10−14 10−14 ∞ ∞ ∞ 4610 3610 3614

We notice that the amplitude of the phase 1 oscillations in σ̄k (and from (4.6)
also in ‖AT rk‖/‖rk‖) are sometimes very large when LSQR is near stalling; see for
example the plots for test problems 6 to 9. It would be interesting (but probably very
difficult) to try to understand this phenomenon more clearly.

It is important to notice that in every plot ‖PArk‖ decreases monotonically to
a level determined by the machine precision (see the comments following (4.2), (4.8)
and Theorem 5.1) after which it remains nearly constant. This is a property of the
minimum residual method, here LSQR. One contribution of this paper is to show
how this decrease is first exhibited in the decrease of ‖rk‖ until it reaches its com-
putational plateau, and then exhibited in the decrease of the previously fairly level
on average, but sometimes quite oscillatory, ‖AT rk‖/‖rk‖. Since ‖PArk‖ itself is not
in practice directly available (see the comments in Section 5) this might in itself be
useful information. Note from (4.2) and Lemma 4.1 that this is essentially a property
of ‖r̂‖ and the decreasing ‖rk‖, not a property reserved to LSQR.
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We note that these examples and this analysis shed light on the convergence of all
well-behaved minimum residual iterative methods for the LS problem. In particular
they give a good understanding of why Stewart’s ‖AT rk‖/‖rk‖ usually shows no
significant improvement at all during what we have described as phase 1. In fact
only when ‖rk‖ has effectively reached its plateau does Stewart’s ‖AT rk‖/‖rk‖ start
to decrease—which it tends to do throughout phase 2—until it too finally reaches
a plateau in phase 3. We have thus provided an explanation for this previously
puzzling result for minimum residual LS iterations. Thinking of the convergence of
LSQR in terms of projections of the residuals has also led to the potentially very
useful Theorems 5.1 and 5.2.

Theorem 6.3 allows us to determine almost exactly at which iteration xk is an
acceptable solution—although this comes at a very high computational cost. As
mentioned in section 7, Tables 7.1 and 7.2 give the number of iterations required
to trigger the various stopping criteria. By examining these two tables to find at
which iteration the condition LStest2 is first satisfied, we see that LSQR’s stopping
criteria 1 and 2 in (3.2) can be much too pessimistic. In the nearly compatible
test problem 1, LSQR’s stopping criterion 1 is triggered exactly when an acceptable
solution is obtained. This is not surprising considering that this criterion is ideal for
compatible systems; see (3.3) and (3.5). On the other hand in the very large-residual
test problem 4, it is criterion 2 that is more reliable because there is effectively no
phase 1 and ‖AT rk‖/‖rk‖ starts decreasing from the first few iterations. It is still
triggered a little late when we set α ≪ β (which is usually reasonable in practical
applications, as discussed in Section 6). This is to be expected because the quantity
‖AT rk‖/‖rk‖ is a backward error in A only (see the comments after (3.7)) and thus
LSQR’s stopping criterion 2 does not use β in any way.

Away from these two extremes, however, both of LSQR’s stopping criteria (with
norms computed explicitly) can be much too pessimistic. In fact in all problems we
have tested in which

u(‖A‖F‖x̂‖ + ‖b‖) ≪ ‖r̂‖ ≪ ‖r0‖,

neither the residual norm ‖rk‖ nor Stewart’s ‖AT rk‖/‖rk‖ reach their respective tol-
erances in (3.2) when α and β are chosen sufficiently small. (For example in all test
problems except problems 1 and 4, in Tables 7.1 and 7.2 there are cases where both
“True” LSQR stopping criteria fail to detect a backward stable iterate.) In contrast,
our two new conditions LStest1 (5.3) and LStest2 (6.9) detect acceptable iterates for
all choices of α and β satisfying α, β ≥ O(u).

We note that stopping criterion 2 in (3.2) is usually triggered if LSQR’s approx-
imation to ‖AT rk‖/‖rk‖ is used to test the criterion, because this approximation
does not usually plateau at the end of phase 2 (while ‖AT rk‖/‖rk‖ actually does);
see Figure 4.2. In this case, convergence is reported even though in fact the actual
‖AT rk‖/‖rk‖ ≫ α‖A‖2,F . Criterion 2 using LSQR’s approximation to ‖AT rk‖/‖rk‖
is usually triggered in practice in what we have called phase 3, some iterations after
LSQR has actually converged to a backward stable LS iterate.

Each iteration count in Tables 7.1 and 7.2 corresponds to an average using 100
different noisy vectors b. The iteration count for each individual test was almost always
within ≈ 5% of the average. In almost all our numerical tests, our new conditions
LStest1 from and LStest2 are triggered at almost exactly the same iteration. This
seems to indicate that the asymptotically optimal criterion LStest1 (ψF (xk, α, β) ≤ 1

from (5.3)) is just as reliable as the criterion LStest2 (µ(xk, θ̂) ≤ α‖A‖F from (6.9)),
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which we proved necessary and sufficient to within a factor of
√

2 in Section 6.
Finally we note that although the above new conditions are very reliable for

detecting when an acceptable LS solution has been obtained, neither can at present
be estimated both reliably and efficiently enough to be used in practical large sparse
applications. In the future we intend to examine whether reliable estimates of ‖PArk‖
and µ(xk, θ̂) can be computed efficiently. We are optimistic that this is the case for
‖PArk‖, as noted in the last three paragraphs of Section 5. Such estimates could be
used in LStest1 and LStest2 and would make ideal stopping criteria for the iterative
solution of large sparse LS problems.
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