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Abstract

Given an m × n matrix A, n Euclidean distances, those from each column to the space spanned by the remaining columns of A,
are considered. An elegant relationship between A, these Euclidean distances, and the solutions of n simple linear least squares
problems arising from A is derived. When A has full column rank, from this a useful expression for these Euclidean distances is
immediately obtained. The theory is then used to greatly improve the efficiency of an algorithm used in communications.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Given n real m-vectors, n simple linear least squares (LS) problems can be formed, each using one of these
n vectors as the right-hand side of a LS problem, while the remaining n − 1 vectors form the coefficient matrix of the
problem. The 2-norm of each least squares residual vector is the Euclidean distance from the chosen right-hand side
vector to the space spanned by the other n − 1 vectors.

This paper shows an elegant relationship between these Euclidean distances (2-norms of the LS residuals) and
the LS solutions, and gives a general formula for each Euclidean distance. Then an application in communications is
considered, in which the QR factorization of a certain column permutation of an m × n matrix is needed. Based on
the formulae for the Euclidean distances, a greatly improved algorithm is proposed for finding the permutations and
obtaining the QR factorization.

In the paper bold upper case letters and bold lower case letters are used to denote matrices and vectors respectively.
The identity matrix is denoted by I and its ith column by ei . Sometimes MATLAB notation is used to denote a sub-
matrix. Specifically, if A is a matrix, then A(:, j) is the j th column of A, A(:, j1 : j2) denotes the submatrix formed
by columns j1 to j2, and A(i1 : i2, j1 : j2) the submatrix formed by rows i1 to i2 and columns j1 to j2.
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2. The main result

The following theorem gives some interesting and useful general results.

Theorem 2.1. Given an m × n real matrix A = [a1, . . . ,an], let D(A) ≡ diag(δ1(A), . . . , δn(A)) where for i =
1, . . . , n, δi(A) is the Euclidean distance from ai to the space spanned by all other columns of A, i.e.,

δi(A) = min
xi

∥∥ai − [a1, . . . ,ai−1,ai+1, . . . ,an]xi

∥∥
2 = ‖Ax̄i‖2.

Here if x̂i ≡ [x̂1,i , . . . , x̂i−1,i , x̂i+1,i , . . . , x̂n,i]T is any vector solving the above LS problem (x̂i might not be unique),
we define

x̄i ≡ [x̂1,i , . . . , x̂i−1,i ,−1, x̂i+1,i , . . . , x̂n,i]T , X̄ ≡ [x̄1, x̄2, . . . , x̄n]. (1)

Then there is a relationship between A, the “solution” vectors x̄i , and the Euclidean distances δi(A):

AT AX̄ = −D2. (2)

When A has full column rank, the diagonal elements of the symmetric matrix X̄D−2 = −(AT A)−1 show that

δi(A)2 = 1

eT
i (AT A)−1ei

, i = 1,2, . . . , n, (3)

while for i, j = 1,2, . . . , n, with i �= j , the off-diagonal elements give

x̂j,i

δi(A)2
= x̂i,j

δj (A)2
= −eT

i

(
AT A

)−1
ej . (4)

This relates the least squares residual norms (or Euclidean distances) δi(A) and δj (A), to the least squares solutions
x̂i and x̂j . Combining (3) and (4) relates the least squares solutions x̂i and x̂j to the elements of (AT A)−1:

x̂j,ie
T
i

(
AT A

)−1
ei = x̂i,je

T
j

(
AT A

)−1
ej = −eT

i

(
AT A

)−1
ej . (5)

Proof. With the definitions in (1), for i = 1, . . . , n denote

Ai ≡ [a1, . . . ,ai−1,ai+1, . . . ,an], d i ≡ ai − Ai x̂i = −Ax̄i . (6)

The normal equations for the LS problem minxi
‖ai − Aixi‖2 give

AT
i d i = 0. (7)

Thus from (6) and (7) it follows that

aT
i d i = (d i + Ai x̂i )

T d i = dT
i d i = δi(A)2. (8)

Combining (7) and (8), we obtain

AT d i = eiδi(A)2,

which, by the expression for d i in (6), is equivalent to

AT Ax̄i = −eiδi(A)2.

But this gives (2); and then (3), (4) and (5) follow for full column rank A. �
Corollary 2.1. Let full column rank A have the QR factorization

A = Q

[
R

0

]
, (9)

where Q is an m × m orthogonal matrix and R is an n × n nonsingular upper triangular matrix with elements rij .
Then

r2
kk = δk

(
A(:,1 : k)

)2 = 1

eT
k (A(:,1 : k)T A(:,1 : k))−1ek

, k = 1, . . . , n. (10)
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Proof. From the upper triangular structure of R it can be seen that |rkk| is the Euclidean distance from R(:, k) to the
space spanned by the columns of R(:,1 : k − 1), or equivalently the Euclidean distance from ak to the space spanned
by a1, . . . ,ak−1. Thus the first equality in (10) holds. The second equality in (10) follows from (3) in Theorem 2.1. �
Remark 2.1. The formula (3) in Theorem 2.1 can be proved in a slightly more straightforward way. Suppose we
interchange the ith column and the nth column of full column rank A and find the corresponding QR factorization:

AP = Q

[
R

0

]
, P ≡ [e1, . . . , ei−1, en, ei+1, . . . , en−1, ei].

Then

P T
(
AT A

)−1
P = R−1R−T .

Comparing the (n,n) elements of both sides, we obtain

eT
n P T

(
AT A

)−1
Pen = 1/r2

nn.

But from the upper triangular structure of R, we see that |rnn| is the Euclidean distance from the last column of AP

(which is ai ) to the space spanned by the other columns of AP , so |rnn| = δi(A). Thus

δi(A)2 = 1/eT
i

(
AT A

)−1
ei .

Remark 2.2. The relation between |rkk| and δk(A(:,1 : k)) given by the first equality in (10) is known, see [2, p. 104].

3. An application

The theory given in Section 2 might have several uses. Here we show one use for (3).
In solving integer linear least squares problems which may arise in decoding or detection in communications, one

often computes the QR factorization of A with column pivoting in order to make the later computation (a search
process) efficient (see, e.g., [1] and [3]). The permutation matrix P is usually determined such that the |rkk| are large
for large k and small for small k (note that |r11r22 · · · rnn| is fixed). In [3], the so-called vertical Bell Labs layered space-
time (V-BLAST) optical detection ordering given in [4] was proposed for the column permutations. This permutation
strategy determines the columns of the permuted matrix AP from the last to the first. Let Jk denote the set of column
indices for the not yet chosen columns when the kth column of the permuted matrix AP is to be determined (where
k = n,n − 1, . . . ,1). Then this strategy chooses the p(k)th column of the original matrix A to be the kth column of
the permuted matrix AP that we seek, as follows:

p(k) = arg max
j∈Jk

aT
j

[
I − Ak,j

(
AT

k,jAk,j

)−1
AT

k,j

]
aj , (11)

where Ak,j is the m × (k − 1) matrix formed by the columns ai with i ∈ Jk − {j}. We can easily show that aT
j [I −

Ak,j (A
T
k,jAk,j )

−1AT
k,j ]aj in (11) is the squared Euclidean distance from aj to the space spanned by the columns of

Ak,j . But Corollary 2.1 tells us that |rkk| is the Euclidean distance from the kth column of AP to the space spanned by
the first k − 1 columns of AP . Thus for k = n,n − 1, . . . ,1, ap(k) is the column which makes |rkk| maximum among
all the not yet chosen columns when we determine the kth column of the permuted matrix AP , i.e., the resulting |rkk|
is the largest which can be found at this step.

The following is an obvious way to find this permutation matrix P . We first compute the QR factorization of A

as in (9) and record |rnn|. In order to determine the last column of the permuted A, we interchange the last column
of R with its j th column for j = 1,2, . . . , n − 1. After each interchange, we compute the QR factorization of the
permuted R, which can be done in an efficient way (taking O(n2) flops) by using the structure of the permuted R, and
record the corresponding |rnn|. By comparing the n possible values of |rnn|, we determine the desired last column of
the permuted A, and keep the updated R-factor for use in the next step. We see that the cost of these computations
is O(n3) flops. Then in order to determine the desired second to last column of the permuted A, we apply a similar
process to the (n − 1) × (n − 1) submatrix R(1 : n − 1,1 : n − 1) of the updated R we have just obtained — to obtain
a new updated upper triangular R(1 : n − 1,1 : n − 1) having the largest |rn−1,n−1|. After repeating the above process
n − 1 times, all the permutations are determined.
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For the final R we hope that 0 < |r11| � · · · � |rnn|, but this is not necessarily true as the example A =
[

9 6
0 8

]
shows, since exchanging the columns leads to |r22| = 7.2, showing that A is already in the chosen final order.

The above algorithm is numerically stable, but it needs O(n4) flops. Later a faster algorithm is given. For motivation
consider the QR factorization of any permutation of the columns of A, and its first k columns,

AP = Q

[
R

0

]
, AP (:,1 : k) = Q(:,1 : k)R(1 : k,1 : k). (12)

From this and Corollary 2.1 we see that if P is the permutation matrix arising from V-BLAST, then for k = n,n − 1,

. . . ,1,

|rkk| = δk

(
AP (:,1 : k)

) = max
1�j�k

δj

(
AP (:,1 : k)

)
,

or equivalently, using (3), the aim of V-BLAST is to find P such that

eT
k

[
P (:,1 : k)T AT AP (:,1 : k)

]−1
ek = min

1�j�k
eT
j

[
P (:,1 : k)T AT AP (:,1 : k)

]−1
ej . (13)

For the faster algorithm, first compute the QR factorization of A and denote this

A = Q̄

[
R̄

0

]
. (14)

Next compute L̄ ≡ R̄
−T

, which takes about n3/3 flops (cf. [2, p. 119]). Note for the diagonal elements, l̄ii r̄ii = 1, and
from (3)

δn(A)−2 = eT
n

(
AT A

)−1
en = eT

n R̄
−1

R̄
−T

en = eT
n L̄

T
L̄en = l̄ 2

nn = r̄−2
nn ,

so if L = R−T in (12), to maximize δn(AP ) over all permutations P we can either maximize r2
nn, or minimize l2

nn

(and so on for further steps). To do this, we compute a QL factorization of L̄ with a particular form of pivoting:

L̄P̄ = Q̃L̃. (15)

This is done using permutations and orthogonal rotations, and will cost no more than about n3 flops (note that this
does not count the cost of explicitly forming Q̃, since it is not necessary in the application). We just work on L̄ until
finally it becomes L̃. In the first step we move the column of L̄ with smallest 2-norm (suppose it is the pth column) to
become the last column of L̄P̄ (moving each of columns p + 1, . . . , n down one). We then apply n−p rotations from
the left of L̄P̄ to bring it back to lower triangular form (cf. [2, p. 134]), which we call ‘the updated L̄’. In general, for
k = n,n − 1, . . . ,2, in the (n − k + 1)th step of the reduction process we determine the index p such that column p

of the updated submatrix L̄(1 : k,1 : k) has the smallest 2-norm among all of its columns. Then we move column p to
be the kth column of the updated L̄. After that we apply k − p orthogonal rotations to zero L̄(1 : k − 1, k). This step
costs about 3(k − 2p + 2)k flops, from which it can be concluded that the total cost of the algorithm to obtain the QL
factorization (15) is at most about n3 flops (depending on the permutations required). Thus we have for the column
norms of L̃(1 : k,1 : k)

eT
k L̃(1 : k,1 : k)T L̃(1 : k,1 : k)ek = min

1�j�k
eT
j L̃(1 : k,1 : k)T L̃(1 : k,1 : k)ej . (16)

But since L̄ = R̄
−T

, from (15) and (14) it follows that

L̃
−1

L̃
−T = P̄

T
L̄

−1
L̄

−T
P̄ = P̄

T
R̄

T
R̄P̄ = P̄

T
AT AP̄ .

Comparing the k × k leading principal submatrices of both sides, we have

L̃(1 : k,1 : k)−1L̃(1 : k,1 : k)−T = P̄ (:,1 : k)T AT AP̄ (:,1 : k).

Therefore

L̃(1 : k,1 : k)T L̃(1 : k,1 : k) = [
P̄ (:,1 : k)T AT AP̄ (:,1 : k)

]−1
.

From this and (16) it follows that for k = n, . . . ,1

eT
k

[
P̄ (:,1 : k)T AT AP̄ (:,1 : k)

]−1
ek = min eT

j

[
P̄ (:,1 : k)T AT AP̄ (:,1 : k)

]−1
ej , (17)
1�j�k
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which with (13) shows that P̄ in (15) has the desired properties of P in V-BLAST, and so we have found the permu-
tations far more efficiently.

If A is close to rank deficient, then the numerical computation L̄ ≡ R̄
−T

might occasionally result in P̄ in (15)
being not quite correct. That is, it might not give (17) for every k. Such an occurrence (hopefully rare in practice)
could alter the number of steps in the later search process in solving the integer least squares problem, but would have
no other deleterious effects.

So far we have found P̄ , whereas our ultimate aim was to compute the QR factorization of AP̄ . There are two

obvious ways to do this. From (14), R̄ = L̄
−T

, and (15), we obtain

AP̄ = Q̄

[
L̄

−T
P̄

0

]
= Q̄

[
Q̃

I

][
L̃

−T

0

]
,

which, with R ≡ L̃
−T

, gives the QR factorization we have sought:

AP̄ = Q

[
R

0

]
, Q ≡ Q̄

[
Q̃

I

]
. (18)

Computing R ≡ L̃
−T

again takes about n3/3 flops. The problem is that R may lose accuracy unnecessarily since it is
obtained via the computation of the inverses of two triangular matrices. The other approach is to use the permutation
matrix P̄ obtained in (15) and compute the QR factorization R̄P̄ = Q̂R̂, so that from (14)

AP̄ = Q̄

[
R̄P̄

0

]
= Q̄

[
Q̂R̂

0

]
= Q

[
R

0

]
, Q ≡ Q̄

[
Q̂

I

]
, R ≡ R̂,

which is a continuation of the original QR factorization (14), and so is also numerically stable. This approach takes
at most about n3 flops (depending on the permutations), which at worst could be a little more costly than the first
approach, but it is more numerically reliable and so is more preferable in general.
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