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Abstract. The Global Positioning System (GPS) is a satellite based navigation system. GPS
satellites transmit signals that allow one to determine the location of GPS receivers. In GPS, a typical
technique for kinematic position estimation is differential positioning where two receivers are used:
one receiver is stationary and its exact position is known, and the other is roving and its position
is to be estimated. We describe the physical situation and derive the mathematical model based
on the difference of the so-called carrier phase measurements at the stationary and roving receivers.
We then present a recursive least squares approach for position estimation. We take full account
of the structure of the problem to make our algorithm efficient, and use orthogonal transformations
to ensure numerical reliability of the algorithm. Simulation results are presented to demonstrate
the performance of the algorithm. A comparison with the van Graas and Lee positioning algorithm
[Navigation, Journal of the Institute of Navigation, 42 (1995), pp. 605–618] is given. Our algorithm
is seen to be both efficient and accurate, but an additional contribution of this approach is that some
of the drawbacks of double differencing are avoided, and yet the vector of double differenced integer
ambiguities is still available and can be used to fix the integer ambiguities and handle satellite rising
and setting.
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1. Introduction. The Global Positioning System (GPS) is a continuous cover-
age, all-weather, worldwide, satellite based navigation system. GPS consists of three
segments: (1) the space segment consisting of satellites which broadcast signals; (2)
the control segment steering the whole system; (3) the user segment including many
types of receivers. GPS signals allow one to determine, with great accuracy, the lo-
cation of GPS receivers (see, for example, [9], [12], [15], [17], [18], [19], and [20]). We
have found [15] to be a particularly readable and useful text.

Each GPS satellite continuously transmits two carrier radio waves L1 and L2
with precise frequencies 1575.42 MHz and 1227.60 MHZ, respectively. Superimposed
on the L1 carrier are the C/A code (coarse acquisition) and the P-code (precision),
while superimposed on the L2 carrier is only the P-code. The C/A code is for civilian
users, while the P-code is for U.S. military or authorized users. The C/A and P-
codes allow a receiver to measure the signal travel time from satellite to receiver
instantaneously. Many receivers are designed to receive only the L1 carrier, mainly
for economical reasons. Basically, there are two kinds of measurements which can be
used for positioning: code pseudorange (we will consider the C/A code) and carrier
phase (we will consider the L1 carrier). Both measurements are subject to ionospheric
refraction errors, tropospheric refraction errors, the receiver clock error, the satellite
clock error, multipath errors, and random measurement noise (referred to simply as
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“noise” below); see, for example, [15] for more details. But the multipath error and
noise are typically 100 times larger for the code pseudorange measurement than for
the carrier phase measurement, as can be seen from Table 1.1. Here the noise is
random and the multipath is regarded as pseudorandom.

Table 1.1
Typical noise standard deviations; see, for example, [15, p. 153].

Noise Noise and multipath
Code 0.25–0.5m 0.5–1.0m
Carrier 1–2mm 0.5–1.0cm

The code pseudorange measurement gives an approximation to the true range
between the receiver and the satellite and can easily be used for positioning. Using
the carrier phase measurement for position estimation is not nearly so easy, but it is
needed to get highly accurate position estimates (see Table 1.1).

In this paper we are interested in kinematic (also called dynamic) position estima-
tion, i.e., for (often rapidly) moving objects. A typical technique for obtaining highly
accurate position estimates is differential positioning where two receivers are used:
one is stationary and is set up at a surveyed site whose exact position is known, and
the other is roving and its position is to be estimated (see, for example, [15, sect. 4.8]).
One example would be that of an aircraft (containing the roving receiver) approach-
ing an airport (with a nearby stationary receiver). In real-time applications there is
a radio link between the two receivers so that the information about the stationary
receiver and the signal measurements it receives can be sent to the roving receiver.
In this paper we assume the baseline (the position of the roving receiver relative to
the stationary receiver) is short, say, within 30 kilometers, so that a satellite signal
has almost the same ionospheric refraction error, and the same tropospheric refrac-
tion error, at the two receivers. Sometimes these errors are modeled, but even then
there are modeling errors. Whether we model these errors or not, we almost always
difference the two signal measurements from the same satellite at the two receivers
to essentially eliminate these errors. This also eliminates the satellite clock error,
which can also be modeled. This technique is called single differencing (see [5]). One
can choose a particular satellite to be the “reference satellite” and then difference the
single differenced measurements from the reference satellite with those from the other
satellites. This is called the double differencing technique (see [2]). Using double dif-
ferencing can eliminate the two receivers’ clock errors. Double differencing is widely
used in GPS computations, but it has some drawbacks. For example, it is numerically
slightly dubious, it makes the measurements correlated, and it gives an unnecessary
prominence to the reference satellite. Here we give a different approach which avoids
these first two drawbacks, while maintaining all the advantages of double differencing.

Many people have studied kinematic position estimation based on carrier phase
measurements alone (see, for example, [1], [4], [6], [10], [13], [21]). If the dynamics of
the roving receiver can be modeled sufficiently accurately for cases where the move-
ments of the roving receiver are predicable, then these can be included as the state
equations of a Kalman Filter model (see, for example, [17, pp. 417–420] and [7, sect.
7.1]). But these are not always available, and even when they are, the GPS mea-
surements are so accurate that the uncertainties in the state equations can sometimes
degrade the results, compared with using the measurements alone. For example, partly
because of air turbulence, this is usually the case for aircraft circling to land at an
airport. To overcome this difficulty, van Graas and Lee [21] used what they called the
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“complementary Kalman filter” approach for obtaining estimates from carrier phase
measurements. In their approach, double differenced carrier phase measurements are
used to construct measurement equations, and triple differenced measurements (the
differences of double differenced measurements at two consecutive epochs) are used to
propagate the user position, which, according to [21] is the key to achieving submeter
accuracies with an initialization time of less than one minute. Essentially, the triple
differences implicitly provide the state equations which are needed in Kalman filter-
ing. However, these “state equations” do not provide any new information, since they
are constructed from the double differenced measurement equations. In our view, this
complementary Kalman filter is not necessary in this case. Artificially constructing
a Kalman filter may delay the convergence, and the additional computation in each
epoch is unnecessarily expensive. In this paper, which is based on single difference
carrier phase measurement equations, we use a more straightforward recursive least
squares (LS) approach to estimate the position when state equations are either not
available or not certain enough to improve the results. In designing the algorithm we
made full use of the structure to make the algorithm efficient, and used orthogonal
transformation techniques to ensure that the algorithm is numerically reliable. Our
simulations suggest our approach can usually converge slightly faster than the van
Graas and Lee approach [21]. Also, in each epoch the computational cost of the for-
mer is less than half that of the latter. In cases where the state equations improve
the estimates, they could be added to the equations here, and the general approach
and good numerical techniques we describe can easily be extended to include them.

It is now common to use both carrier phase and code pseudorange data to obtain
better results, but here we consider carrier phase data only. The purpose is to develop
the mathematics, statistics, and reliable numerical algorithms for this case as cleanly
as possible. Once this has been done and understood, it will be easier to develop an
effective combination with code pseudorange measurements (see, for example, [3]).
Also, we consider only the L1 carrier here, since many receivers can receive only the
L1 signal. But it is easy to extend our approach to the dual frequency case.

This paper is organized as follows. In section 2 we derive the mathematical model
we use for position estimation. In section 3 we present an efficient and numerically
reliable algorithm for computing the position estimates. In section 4 some simulation
results are given. Finally, a summary is given in section 5. To our knowledge, the
new material is as follows. In section 3.2 we give a new way of handling the rank
deficient problem of the single differenced measurement equations. Because of this,
double differencing is avoided, the noise covariance matrices remain diagonal, and
the integer nature of the ambiguities is not lost. Then we show how to effectively
use orthogonal transformations to make full use of the structure of the problem to
compute the LS estimates of the positions and the corresponding error covariance
matrices. In section 3.5 we indicate that the LAMBDA method for fixing ambiguities
can be used in the context of our computations, and in section 3.6 we show how
satellite rising and setting can be handled seamlessly.

Notation used. We work with reals only and use i, j, k, l,m, n, r, s to denote indices
and dimensions (superscript i will refer to the ith satellite, and subscript k to the kth
time step, which is called the kth “epoch” in the GPS literature), while lowercase
Greek letters will denote scalars. Other lowercase letters of the Roman alphabet
(a, b, etc.) will denote vectors, while uppercase A, B, etc. will denote matrices. R(A)
will denote the range space of A, and A† is the Moore–Penrose generalized inverse
of A. The unit matrix will be denoted by I and its ith column by ei, while e ≡
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(1, 1, . . . , 1)T (we use ≡ to mean “is defined to be”). In will denote the n × n unit

matrix. Throughout this paper we use the norm ‖x‖ = ‖x‖2 =
√
xTx for vectors.

We will use E{·} to denote the expected value and cov{·} to denote the covariance;
that is, cov{x} = E{(x − E{x})(x − E{x})T }. v ∼ N (v̄, V ) will indicate that v is a
normally distributed random vector with expected value v̄ and covariance V . We will
use notation used in the GPS literature, unless it conflicts with the above notation.
For example, we will use α to denote an individual integer ambiguity, and a to denote
the integer ambiguity vector, whereas N is often used in the GPS literature.
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Fig. 2.1. Geometry for two receivers and one satellite.

2. The mathematical model. Here we derive the mathematical model for
position estimation; however, we omit some minor subtleties in order to simplify
the presentation. Suppose we have a stationary receiver s of known position, a roving
receiver r whose position we wish to determine, and signals fromm satellites in known
positions. The positions of the GPS receivers and satellites can be expressed in the
so-called World Geodetic System 1984 which defines an earth-centered, earth-fixed
Cartesian coordinate system (see, for example, [15, Chap. 3]). Figure 2.1 gives the
picture for satellite i. We want to find the baseline vector x, i.e., the vector pointing
from receiver s to receiver r. By definition

his is the vector from receiver s to satellite i (hi from midbaseline to satellite i),

ei is the unit vector from the midpoint of the baseline to satellite i (ei = hi/‖hi‖),
ρis is the range in wavelengths from receiver s to satellite i,

λ is the wavelength (for the L1 carrier signal used here, λ ≈ 19 cm).

Note that superscripts indicate satellites and that subscripts indicate receivers. The
next results are obvious:

‖his‖ = λρis is the distance from receiver s to satellite i,

x = his − hir,(2.1)

ei =
his + hir

‖his + hir‖
,(2.2)



1714 XIAO-WEN CHANG AND CHRISTOPHER C. PAIGE

(ei)Tx =
(his + hir)

T (his − hir)

‖his + hir‖
=

(‖his‖+ ‖hir‖)(‖his‖ − ‖hir‖)
‖his + hir‖

=
1

µi
λ(ρis − ρir),(2.3)

µi ≡ ‖his + hir‖
‖his‖+ ‖hir‖

.(2.4)

It is straightforward to show, using 2hi = his + hir, that µ
i satisfies

1 ≤ 1

µi
=

‖his‖+ ‖hir‖
‖his + hir‖

=
‖hi + x/2‖+ ‖hi − x/2‖

‖his + hir‖
≤ 2‖hi‖+ ‖x‖

‖his + hir‖
= 1 +

‖x‖
‖his + hir‖

.

Since the altitude of a satellite is about 20,200 kilometers above sea level, we will
have ‖his + hir‖ > 40, 000 kilometers; thus if ‖x‖ ≤ 30 kilometers, 1/µi certainly
lies in [1, 1.00075] and approaches 1 as ‖x‖ → 0. In fact, it can be shown that the
largest 1/µi occurs when x is perpendicular to hi in the figure, and ‖hi‖ is as small
as possible, giving 1/µi =

√
1 + [‖x/2‖/‖hi‖]2, which is about 1 + 0.28 × 10−6 for

‖x‖ ≈ 30 kilometers (when the stationary receiver is at or near sea level).
Probably because of the above, µi is replaced by 1 in all the literature we have

seen. A relative error of 0.28×10−6 in 30 kilometers is about 8 millimeters. For most
applications this error is negligible, but there are practical situations such as plate
motion and crustal (earth surface) deformation where we actually want millimeter
accuracy, so we will use the more correct equations here. We will see the computational
cost of doing so is minimal, and the theory is essentially the same.

We now explain how the components of the model are evaluated. The position of
the stationary receiver s is known, as is the position of each satellite i, so that his is
known and used in the following. From (2.1), (2.2), and (2.4) we have

ei =
2his − x

‖2his − x‖ , µi =
‖2his − x‖

‖his‖+ ‖his − x‖ ,
(2.5)

µiei =
2his − x

‖his‖+ ‖his − x‖ .

The true vector x will not be known, but we will see that at each step we will have
an estimate of it, and this will be used to evaluate the above. We see that computing
eiµi is about twice the cost of computing ei alone, and since this extra cost is minimal
compared to later costs, we will use the more correct version (see (2.3)):

(µiei)Tx = λ(ρis − ρir).(2.6)

We do not know the ρis, etc. exactly, but we will have available the carrier phase
measurements. To progress further we must introduce time dependency. Suppose
the signal from satellite i arrives at receiver s at epoch k (that is, at time point tk)
and its travel time is tis. Briefly, the receiver generates a carrier signal to compare
with the one it receives. Ideally all clocks are synchronized and the generated sig-
nal is synchronized in time with the satellite signal as it is generated. At t1, when
tracking begins, the receiver measures the fractional phase difference (i.e., part of a
wavelength) between its signal and the received signal, and from then on tracks how
this phase difference changes. With the definitions below, it follows that at tk the
carrier phase measurement at receiver s for satellite i (ηis(tk), in wavelengths) ideally
satisfies ρis(tk) = ηis(tk) + αi

s, where α
i
s, called the integer ambiguity, is an unknown

number of full wavelengths. The errors alter this to give (see, for example, [7, p. 165])

ηis(tk) + αi
s = ρis(tk)− ιis(tk) + τ is(tk) + βi(tk − tis) + βs(tk) + νis(tk),(2.7)
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where the “units” of each of the following components is “number of wavelengths”:
• ηis(tk) denotes the measured carrier phase at time tk. It is the fractional phase
at tk augmented by the change in integer cycles since the initial time t1 (see, for
example, the explanation in [15, p. 127]).

• αi
s denotes the integer ambiguity. It is the initial number of full cycles between

satellite i and receiver s when receiver s starts tracking the satellite signal at
t1. It is an unknown integer but remains the same while tracking is continued
without loss of lock.

• ρis(tk) denotes the range between receiver s at arrival time tk and satellite i at
departure time tk − tis.

• ιis(tk) denote the ionospheric range error at tk.
• τ is(tk) denote the tropospheric range error at tk.
• βi(tk−tis) denotes the satellite clock range error at the transmission time tk−tis.
• βs(tk) denotes the receiver clock range error at tk.
• νis(tk) denotes the noise, including multipath error, at tk.

The ionospheric range error ιis, the tropospheric range error τ
i
s, and the satellite clock

range error βi can be modeled (see, for example, [15, sect. 4.4 and 5.3]). If they
have been, we simply assume that (2.7) is the model after the corrections have been
applied, and the error terms in (2.7) are now the corresponding modeling errors.
A more complete carrier phase measurement equation which includes phase offsets of
the satellite-generated signal and the receiver-generated signal, as well as satellite and
receiver hardware delays, can be found in [20, sect. 5.2]. We can assume that these
errors are included in our two clock error terms, and note that these will be eliminated
in our later computation. Subtracting the equation corresponding to receiver r from
(2.7) and noticing that −[ιis(tk)− ιir(tk)]+ [τ is(tk)− τ ir(tk)]+ [βi(tk − tis)−βi(tk − tir)]
will be negligible since the baseline is short, we obtain the single difference equation

ηis(tk)−ηir(tk) = ρis(tk)−ρir(tk)− (αi
s−αi

r)+βs(tk)−βr(tk)+νis(tk)−νir(tk).(2.8)

Receivers s and r occur in every equation, so we can drop these indices and then
indicate the time epoch k by subscript k if we define

ηik ≡ ηis(tk)− ηir(tk), αi ≡ αi
s − αi

r, βk ≡ βs(tk)− βr(tk), νik ≡ νis(tk)− νir(tk).

This with (2.6) gives for (2.8)

ηik = λ−1(µi
ke

i
k)

Txk − αi + βk + νik.

In the usual model, the νik for different satellites and different epochs are assumed
to be unbiased independently distributed noises with the same normal distribution.
Thus writing

yk ≡

 η1

k

·
ηmk


 , Ek ≡ λ−1


 (µ1

ke
1
k)

T

·
(µm

k e
m
k )

T


 , a ≡


 α1

·
αm


 , vk ≡


 ν1

k

·
νmk


 ,(2.9)

we have for m satellites

yk = Ekxk − a+ eβk + vk, vk ∼ N (0, σ2Im).(2.10)

This is the desired single differences of measurements equation for the carrier phase
problem given the physical situation of m satellites with a known fixed receiver and



1716 XIAO-WEN CHANG AND CHRISTOPHER C. PAIGE

a roving receiver whose position is to be estimated. The almost identical equation
appears in van Graas and Lee [21, eq. (1)].

We can rewrite (2.10) as

yk =
[
e Ek −Im

]  βk
xk
a


+ vk(2.11)

and combine these for the epochs k = 1, 2, . . . to get




y1

y2

·
yk


 =




e E1 −Im
e E2 −Im

· · ·
e Ek −Im







β1

x1

β2

x2

·
·
βk
xk
a



+




v1

v2

·
vk


 ,(2.12)

where the noise vector follows the distribution N (0, σ2Ikm). This is the mathematical
model for which our positioning algorithm will be developed. Here for simplicity we
have assumed that the number of visible satellites does not change from one epoch to
the next. But during a long observation span, GPS satellites may rise and set. We
will deal with this case in section 3.6. Notice that in Ek, µ

i
ke

i
k depends on the baseline

xk (see (2.5) and (2.9)). So we may write

Ek ≡ E(xk).

This Ek is known once xk is known. Given an approximation to xk (because E(x) is
not very sensitive to changes in x, our estimate of xk−1 is usually sufficient), we can
compute our approximation to Ek. Then given the measurements yk, we can obtain
a better estimate of xk, and of Ek if necessary.

3. A recursive LS method for position estimation. In this section we use
orthogonal transformation techniques to develop an efficient and numerically reliable
method to recursively estimate the receiver positions and the error covariance matrices
based on the model (2.12). We discuss the requirements for the number of satellites
needed to give meaningful position estimates. We also give some remarks on the
integer ambiguity issue and provide a method to handle the fact that satellites rise
and set.

3.1. Some background for the LS solution. Suppose we have a linear model

y = Gz + v, v ∼ N (0, σ2I),(3.1)

where the matrix G is of full column rank. Then the best linear unbiased estimate
(BLUE) of z is the solution of the LS problem

min
z

‖Gz − y‖2.

In order to find the LS solution we can compute the QR factorization of G,

QTG ≡
[

U
W

]
G =

[
R
0

]
,
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where Q = [UT ,WT ] is orthogonal and usually is the product of Householder trans-
formations or Givens rotation matrices, R is nonsingular upper triangular, and U has
the same number of rows as R (see, for example, [8, Chap. 5]). Since the 2-norm is
unaffected by orthogonal transformations, the LS solution ẑ satisfies

ẑ = argmin
z

∥∥∥ [ R
0

]
z −

[
Uy
Wy

] ∥∥∥2

= argmin
z
(‖Rz − Uy‖2 + ‖Wy‖2)

so that

Rẑ = Uy.

This upper triangular system can be solved by back substitution. Thus

ẑ = G†y = R−1Uy = R−1U(Gz + v) = z +R−1Uv,

E{ẑ − z} = 0, cov{ẑ − z} = σ2(RTR)−1.(3.2)

The error in the estimate ẑ and its covariance matrix have the following relationship:

E{‖ẑ − z‖2} = E{trace((ẑ − z)(ẑ − z)T )} = trace(cov{ẑ − z}).(3.3)

3.2. The orthogonal transformation approach. For the time being we as-
sume that the Ej (j = 1, . . . , k) in (2.12) are known. Later we will discuss how to
compute them. The condition for (2.12) to have a unique LS solution is that the
coefficient matrix has full column rank. Unfortunately it does not—the dependency
comes from the first column and last m columns of the matrix in (2.11) being linearly
dependent. The most common approach to getting around this difficulty is to use the
double differencing technique (see, for example, [2] and [14])—choose one satellite as
the reference satellite and then subtract the single difference measurement equations
corresponding to other satellites from the single difference measurement equation cor-
responding to the reference satellite. But as we mentioned in section 1, this has some
drawbacks. Here we use a numerically reliable approach which avoids some of these
drawbacks—orthogonal transformations of single differences.

Let P ∈ Rm×m be an orthogonal transformation (PTP = PPT = I) such that
PT e = e1

√
m. We could use a product of rotations to form P , but to be precise here

we will use a Householder transformation (see, for example, [8, p. 209]), which here
has the form

P ≡ I − u
( 2

uTu

)
uT , u ≡ e1 − e/

√
m.

By simple algebraic operations, we obtain for this matrix

P =

[
1√
m

eT√
m

e√
m

Im−1 − eeT

m−√
m

]
=




1√
m

1√
m

1√
m

·
1√
m

1− 1
m−√

m
− 1

m−√
m

·
1√
m

− 1
m−√

m
1− 1

m−√
m

·
· · · ·


 ,(3.4)

where the symmetric matrix P is made of only three distinct values.
Writing

[p1, p2, . . . , pm] ≡ [p1, P2] ≡ P(3.5)
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and applying PT to (2.10), we obtain the initial orthogonal transformation of (2.10):[
pT1 yk
PT

2 yk

]
=

[
pT1 Ek

PT
2 Ek

]
xk −

[
pT1 a
PT

2 a

]
+ e1

√
mβk +

[
pT1 vk
PT

2 vk

]
.(3.6)

Define the δi, d, and γk (where d will depend on our choice of P ) by

[
δ1

d

]
≡




δ1

δ2

·
δm


 ≡

[ −pT1 a
−PT

2 a

]
, γk ≡ δ1 +

√
mβk.(3.7)

This eliminates one variable in (3.6) to give

[
pT1 yk
PT

2 yk

]
=

[
1 pT1 Ek

PT
2 Ek Im−1

]γkxk
d


+

[
pT1 vk
PT

2 vk

]
,

[
pT1 vk
PT

2 vk

]
∼ N (0, σ2Im).(3.8)

Combining these for k = 1, 2, . . . and reordering gives




pT1 y1

pT1 y2

·
pT1 yk
PT

2 y1

PT
2 y2

·
PT

2 yk



=




1 pT1 E1

1 pT1 E2

· ·
1 pT1 Ek

PT
2 E1 Im−1

PT
2 E2 Im−1

· ·
PT

2 Ek Im−1







γ1

γ2

·
γk
x1

x2

·
xk
d



+




pT1 v1

pT1 v2

·
pT1 vk
PT

2 v1

PT
2 v2

·
PT

2 vk



.(3.9)

Notice that the transformed noise vector, the second term on the right side of (3.9),
still follows the same distributionN (0, σ2Ikm) after orthogonal transformations. From
the structure of the coefficient matrix in (3.9) we observe that in order to obtain LS
estimates of the position, we need only find LS estimates for the following submodel
formed by the last k(m− 1) equations of (3.9):



PT

2 y1

PT
2 y2

·
PT

2 yk


 =



PT

2 E1 Im−1

PT
2 E2 Im−1

· ·
PT

2 Ek Im−1






x1

x2

·
xk
d


+



PT

2 v1

PT
2 v2

·
PT

2 vk


 .(3.10)

Estimates of γ1, . . . , γk in (3.7) are not usually wanted but could easily be found from
the first k equations of (3.9) once the estimates of x1, . . . , xk are available.

Now look at the reduced model (3.10), and let Bk denote the coefficient matrix.
Notice that Bk is k(m−1)× (3k+m−1), so that we can obtain a unique LS solution
if Bk has full column rank, which certainly requires that k(m− 1) ≥ 3k+m− 1, i.e.,

m ≥ 4 +
3

k − 1
.(3.11)

This relationship between the number of epochs and the required minimum number
of satellites is displayed in Table 3.1. We see for position estimation that at least
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Table 3.1
Satellite requirements.

# of epochs (k) 2 3 4 5 ≥ 6
Minimum # of satellites 7 6 5 5 5

five satellites are required, so from now on we will assume that m ≥ 5, a condition
that is met for the vast majority of the time in practice. Let us now examine when
Bk has full column rank. Suppose Bk does not have full column, so that there exist
x1, . . . , xk and d which are not all zero such that

PT
2 Ejxj + d = 0, j = 1, . . . , k.

Notice that PT
2 Ej is (m− 1)× 3. The geometry of the satellite positions is such that

it is reasonable to assume that when m ≥ 4, PT
2 Ej has full column rank. In this case

d = 0 implies x1 = · · · = xk = 0, so d �= 0 and

d ∈ R(PT
2 Ej), j = 1, . . . , k.

This shows that if the column spaces of PT
2 E1, . . . , P

T
2 Ek do not intersect, then Bk

has full column rank. For m ≥ 5 this is extremely likely for small k, and even more
likely as k increases. In this paper we assume Bk has full column rank as long as k
and m satisfy (3.11).

Notice that the unknown vector d in (3.10) and the single difference integer am-
biguity vector a satisfy d = −PT

2 a, where P2 ∈ Rm×(m−1) is part of an orthogonal
matrix (see (3.4), (3.5), and (3.7)). Thus even though a is a vector of integers, d is
usually not. The integer nature is lost when d is used. For some applications, highly
accurate position estimates are demanded. Then fixing the integer ambiguities as
integers is crucial (see, for example, [20, Chap. 8]) for details. Even though in this
paper we will not discuss how to fix the integer ambiguities, we would still like to keep
the integer nature of the ambiguities so that they can be explored when we want. We
can do this by introducing a new unknown vector of integers with the same dimension
as d to replace d. It also appears to be easiest to use a vector of integers to handle the
situation that satellites rise or set, and in section 3.6 it is shown how to do this using
our new unknown vector of integers. Define the double difference integer ambiguity
vector aDD by

aDD ≡ [α1 − α2, α1 − α3, . . . , α1 − αm]T ,(3.12)

where without loss of generality we have chosen satellite 1 as the “reference” satellite.
Notice aDD is still a vector of integers. Define

F ≡ Im−1 − eeT

m−√
m
, J ≡ [e,−Im−1],(3.13)

where F is nonsingular. It is easy to verify from (3.4) and (3.5) that

PT
2 = −FJ, d = −PT

2 a = FJa = FaDD.(3.14)

Replacing d in (3.10) by FaDD, we obtain the reduced model we will now work with:




PT
2 y1

PT
2 y2

·
PT

2 yk


 =




PT
2 E1 F

PT
2 E2 F

· ·
PT

2 Ek F






x1

x2

·
xk
aDD


+




PT
2 v1

PT
2 v2

·
PT

2 vk


 .(3.15)
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Notice that we have not used double differencing, but the double differenced integer
ambiguity vector is an unknown in this model.

To approach the LS estimate for this, let the QR factorization of PT
2 Ej be

QT
j (P

T
2 Ej) ≡

[
Uj

Wj

]
PT

2 Ej =

[
Rj

0

]
, 3× (m−1) Uj , (m−4)× (m−1) Wj ,(3.16)

where Qj = [UT
j , W

T
j ] is an orthogonal (m − 1) × (m − 1) matrix and Rj is a 3 × 3

nonsingular upper triangular matrix. Let

QT
j (P

T
2 yj) =

[
Uj

Wj

]
PT

2 yj ≡
[
uj
wj

]
.(3.17)

Transforming (3.10) by diag(QT
1 , . . . , Q

T
k ) and reordering gives



u1

u2

·
uk
w1

w2

·
wk



=




R1 U1F
R2 U2F

· ·
Rk UkF

W1F
W2F
·

WkF







x1

x2

·
xk
aDD


+




U1P
T
2 v1

U2P
T
2 v2

·
UkP

T
2 vk

W1P
T
2 v1

W2P
T
2 v2

·
WkP

T
2 vk



,(3.18)

where forming UjF andWjF can be done efficiently by using the special form of F (see
(3.13)). The transformed noise vector still follows the distribution N (0, σ2Ik(m−1)).

If aDD

k denotes the LS estimate for aDD at epoch k, and x1|k, x2|k, . . . , xk|k are the
LS estimates of x1, x2, . . . , xk at epoch k, we see that aDD

k is the LS estimate for the
even smaller submodel:


w1

w2

·
wk


 =




W1F
W2F
·

WkF


 aDD +




W1P
T
2 v1

W2P
T
2 v2

·
WkP

T
2 vk


 ,(3.19)

and once aDD

k has been computed, we see from (3.18) that x1|k, x2|k, . . . , xk|k can be
computed by solving the upper triangular systems

Rjxj|k = uj − UjFa
DD

k , j = 1, . . . , k.(3.20)

Notice that the x1|k, x2|k, . . . , xk|k can be computed in any order once aDD

k is available.
So if aDD

k is updated, we could, for example, update xk|k without updating any of the
earlier position estimates. Since the coefficient matrix in (3.19) is k(m− 4)× (m− 1),
in order to get a unique LS solution for aDD we require k(m − 4) ≥ m − 1, which is
equivalent to (3.11).

Now our problem is to obtain the estimate aDD

k of aDD from (3.19). We use a
recursive approach. Suppose at epoch k−1 that the corresponding coefficient matrix
in (3.19) has full column rank (in the initial stage the coefficient matrix does not have
full column rank and we will discuss this case later in section 3.3). We also assume
we have computed the following orthogonal transformations:

TT
k−1




W1F
W2F
·

Wk−1F


 =

[
Sk−1

0

]
, TT

k−1




w1

w2

·
wk−1


 =

[
ŵk−1

w̄k−1

]
,(3.21)
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where Tk−1 is orthogonal, and Sk−1 is nonsingular upper triangular with the same
number of rows m−1 as ŵk−1. Then at epoch k after obtaining Wk and wk (cf. (3.16)
and (3.17)), we perform the following orthogonal transformations:

T̃T
k

[
Sk−1

WkF

]
=

[
Sk

0

]
, T̃T

k

[
ŵk−1

wk

]
=

[
ŵk

¯̄wk

]
, w̄k ≡

[
w̄k−1

¯̄wk

]
,(3.22)

where T̃k is orthogonal, Sk is nonsingular upper triangular, and Sk and ŵk each have
m − 1 rows. The orthogonal transformations can be implemented by a sequence of
Householder transformations, which make use of the upper triangular structure of
Sk−1. But the matrices T̃k and Tk−1 are neither formed nor stored. By using similar
notation for the transformed noise vector, we get the transformed form of (3.19):[

ŵk

w̄k

]
=

[
Sk

0

]
aDD +

[
v̂k
v̄k

]
,

[
v̂k
v̄k

]
∼ N (0, σ2Ik(m−4)).(3.23)

Thus by solving the upper triangular system

Ska
DD

k = ŵk,(3.24)

we obtain aDD

k , the LS estimate of aDD at epoch k. After this, we can solve (3.20) to
obtain any xj|k, the estimate of xj at epoch k.

Remark 3.1. Since Ek = E(xk) (k = 1, 2, . . .), our problem of estimating the
positions is actually nonlinear. We have to use approximations to Ek during the
processing. Suppose we have obtained an estimate xk−1|k−1 of xk−1. Then we use
E(xk−1|k−1) as an approximation to Ek. This approximation is usually acceptable,
since usually xk−1 and xk are not far away from each other, and Ek−1 and Ek are
very close. Also, if necessary, after obtaining the estimate xk|k of xk, we can use
E(xk|k) to approximate Ek, and we could even do some further iterations to get an
improved estimate of xk. However, neither of these last two produced any significant
improvement for the situation in section 4. In fact, E varies so slowly as a function of
x that it can save computations to update Ek only every five or so steps, depending
on the application.

Remark 3.2. From (3.23) we observe ‖w̄k‖ is (the norm of) the LS residual of
(2.12). This information is useful for fault detection (see, for example, [11] and [20,
Chap. 7]).

3.3. Computing the initial points. This section deals with the initial stage,
which extends from epoch k = 1 until that epoch where the coefficient matrix in (3.19)
reaches full column rank. The standard estimate from the LS model is not unique
until the end of the initial stage, but because Ek depends on xk, we need to provide
some other estimates of these initial xk.

At the beginning (k = 1), we do not know x1 (since this is what we want). But in
many GPS applications we may know an approximate location of the roving receiver
(in fact, we can often use code pseudorange measurements to estimate the initial
position). Then we can use this to construct an approximation to E1. If we do not
have any information about the position of the roving receiver and do not bother to
use code pseudorange measurements, we may take each ei1 in E1 to be the direction
cosine from the stationary receiver to satellite i and take µi

1 = 1, for i = 1, . . . ,m (see
(2.9) and (2.5)); in other words, we may take x1|1 = 0.

Suppose we have already obtained xj−1|j−1, the estimate of xj−1 at epoch j−1.
We would like to get an estimate of xj when the measurements at epoch j are available.
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Here we use an idea of [21]. From (3.10) we obtain

PT
2 Ejxj = PT

2 Ej−1xj−1 + PT
2 (yj − yj−1)− PT

2 (vj − vj−1).

Notice that PT
2 (vj − vj−1) ∼ N (0, 2σ2Im−1). Finding the LS solution xj|j of the

nearby problem

PT
2 Ejxj|j ≈ PT

2 Ej−1xj−1|j−1 + PT
2 (yj − yj−1)

would give the following estimate for xj :

xj|j = (PT
2 Ej)

†[PT
2 Ej−1xj−1|j−1 + PT

2 (yj − yj−1)].(3.25)

But Ej is unknown, so we can approximate Ej by Ej−1, and with the QR factorization
of PT

2 Ej−1 in (3.16) (with j replaced by j−1), we get the preliminary estimate

x̄j|j = xj−1|j−1 +R−1
j−1Uj−1P

T
2 (yj − yj−1).

Then we can use this x̄j|j to construct (our new approximation to) Ej and compute
the QR factorization of PT

2 Ej . From (3.25), we have the new estimate

xj|j = R−1
j Uj [P

T
2 Ej−1xj−1|j−1 + PT

2 (yj − yj−1)].

Of course we do not compute R−1
j−1 and R−1

j in the above computations. Instead we
solve upper triangular systems. We could use this new estimate to update Ej again
and compute the QR factorization of PT

2 Ej , which could be used in the next epoch.
But our tests show that there is no significant advantage in doing so.

Remember that we are assuming we have m ≥ 5 satellites, and that Wj is (m−
4) × (m − 1) (see (3.16)), so that Wj might have only one row. The initial stages
of (3.21)–(3.22) will differ from the general stages as follows. The submatrix 0 and
subvector w̄k−1 will usually not appear in (3.21), while the submatrix 0 and subvector
¯̄wk will usually not appear in (3.22). The computations will now be designed to ensure
Sk−1 and Sk have full row rank and be in upper trapezoidal form. We continue this
initial process until Sk becomes nonsingular upper triangular in (3.22).

The number of epochs needed at the initial stage is usually the minimal k satis-
fying (3.11) for a fixed number of satellites m. For example, if there are six satellites
available, then after three epochs the coefficient matrix usually has full column rank.
With full column rank, the initial stage is complete.

3.4. Approximating the covariance matrices. In order to have some idea
of the errors in the estimates of positions and the estimates of double difference
integer ambiguities, we would like to know the corresponding covariance matrices (see
section 3.5 for yet another reason why the covariances for double difference integer
ambiguities are needed). Now if (3.1) was an exact linear model, then we could
obtain the exact covariance matrices (see section 3.1). But since Ek depends on xk,
the matrices Rj in (3.16), (3.18), etc. depend on the unknowns, so here we will only
approximate the true covariance matrices. To do so we will assume the Rj do not
depend on the unknowns, since this appears to give acceptable results (see section 4).
We can rewrite the top part of (3.23) as

ŵk = Ska
DD + v̂k, v̂k ∼ N (0, σ2Im−1),(3.26)
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which with (3.24) gives

Sk(a
DD

k − aDD) = v̂k, cov{aDD

k − aDD} = σ2S−1
k S−T

k = σ2(ST
k Sk)

−1.(3.27)

Thus Sk/σ is the Cholesky factor of [cov{aDD

k − aDD}]−1. This is very nice, since
the inverse of a covariance matrix is more useful than the covariance matrix itself in
many cases, and for numerical reliability it is better to work with the Cholesky factor
of a positive definite matrix rather than the matrix itself. For another advantage of
having the Cholesky factor, see section 3.5.

For j = 1, . . . , k the covariance matrices cov{xj|k−xj} can be obtained as follows.
From (3.18) and (3.26)

[
uj
ŵk

]
=

[
Rj UjF
0 Sk

] [
xj
aDD

]
+

[
UjP

T
2 vj
v̂k

]
,

[
UjP

T
2 vj
v̂k

]
∼ N (0, σ2Im+2).

If we follow [16] and apply an orthogonal ZT
j|k from the left to zero the UjF block we

obtain, with obvious notation,

[
uj|k
ŵj|k

]
≡ ZT

j|k

[
uj
ŵk

]
=

[
Rj|k 0

R̃j|k Sj|k

] [
xj
aDD

]
+

[
vj|k
v̂j|k

]
,[

vj|k
v̂j|k

]
≡ ZT

j|k

[
UjP

T
2 vj
v̂k

]
∼ N (0, σ2Im+2).

We see uj|k = Rj|kxj|k, where xj|k also satisfies (3.20), and so

Rj|k(xj|k − xj) = vj|k, cov{xj|k − xj} = σ2R−1
j|kR

−T
j|k = σ2(RT

j|kRj|k)−1.

Thus Rj|k/σ is the Cholesky factor of [cov{xj|k − xj}]−1 if Rj|k is upper triangular.

The computation for Rj|k above uses Givens rotations to take advantage of the
triangular structure of Rj and Sk and produce upper triangular Rj|k. Since UjF is
3 × (m − 1), 3(m − 1) rotations are needed. We zero UjF column by column, and
for each column we go from the bottom to the top. Only one element of UjF and
one corresponding diagonal element of Sk are used to construct one rotation. This
process can be described schematically in the case m = 5 as follows, where the symbol
❦i indicates the element is eliminated in the ith rotation, while the symbol i indicates
this element is generated by the ith rotation:

× ×
×

×
×
×

3

2

1

×

×
×
4

×
×

×
×
×
×
×
×

×
×
×
×
×
×
×

❦

❄

❦

❦ ❦

❄
3 2 1

4

Similarly, but more simply, we can compute var{γj|k − γj} for j = 1, . . . , k, if
these are wanted.
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3.5. Fixing integer ambiguities. It is known in the GPS community that
while the use of code pseudorange measurements alone will only rarely give position
accuracies approaching one meter (and this also depends on the application), if we
use carrier phase measurements and treat the integer ambiguities as floating point
numbers we can regularly obtain one meter accuracy, and often eventually obtain
near centimeter accuracy. However, to obtain high accuracy for position estimates in
as few epochs as possible, the integer nature of the ambiguities should be used. Notice
that in our algorithm in section 3.2 we just regarded aDD as a general real vector and
did not fix it as a vector of integers. For some applications this will be sufficient, and
it is not worth spending extra computation time to fix the integer ambiguities. But if
one wants, the results obtained here can be used to fix the integer ambiguities. This
can sometimes lead to accurate estimates in far fewer epochs, especially when there
are only a small number of satellites available.

There are several approaches to fixing double difference integer ambiguities. One
of the well-known approaches is called the LAMBDA method (see [20, Chap. 8]).
This is based on cov{aDD

k − aDD}, and one type of input is the Cholesky factor of
[cov{aDD

k − aDD}]−1, which is provided by (3.27). If at epoch k, aDD

k is fixed as a
vector of integers, then we can get the corresponding position estimates from (3.20).
Starting from epoch k + 1, we will not need to estimate aDD anymore. We simply
move FaDD to the left-hand side of (3.15). So for any epoch l after k, we need only
solve those upper triangular systems that we are interested in among

Rjxj|l = uj − Uj(Fa
DD

k ), j = 1, . . . , l, l > k.

3.6. Handling satellite rising and setting. In the model (2.12) we assumed
that we had the same satellites during the whole observation period. But if the
observation span is long, there will often be satellite rising and/or setting, and we
will handle this now. It is reasonable to assume that this does not occur at the initial
stage (see section 3.3) because that stage is so short. Even if it does, we can use the
measurements from common satellites for each pair of consecutive epochs to estimate
the initial points (see (3.25)). So we just consider the regular stage.

From (3.22), (3.24), and (3.20), we see that the major task is to update the
estimate of the double difference integer ambiguity vector from epoch k−1 to epoch k.
When this has been done, the position estimates at epoch k can easily be obtained.
So the key to handling satellite rising and setting is to find the equivalents of (3.22),
(3.24), and (3.20). Due to satellite rising and/or setting, the double difference integer
ambiguity (DDIA) vectors may be different for different epochs, so we will use notation
such as aDD(k) instead of aDD. Because the number of visible satellites changes, we
will write P (k), F (k), and J(k) instead of P in (3.5) and F and J in (3.13), but for
simplicity we will still use e to denote a vector of ones, no matter what its dimension.

Remember from (3.12) that a DDIA element has the form αi − αn, and we will
say this element “corresponds to” the nonreference satellite n, and i is the reference
satellite. It is important to be aware that we will use the same reference satellite for
every element in every DDIA vector at a given epoch j. This reference satellite must
be visible at epoch j, so if it sets between epochs k−1 and k, for some k > j, then
(see Case 2 later) we will arrange to use a different reference satellite at epoch k.
For k = 1, 2, . . . , let ãDD(k) be the DDIA vector for some reference satellite which is
visible at epoch k, where the elements of ãDD(k) correspond to all the other satellites
we have encountered from epoch 1 to epoch k. If a satellite sets (perhaps behind a
mountain) and rises again, it will be considered a new satellite. Thus when a satellite
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rises, the dimension of ãDD will increase by one, but a setting satellite leaves the
dimension unchanged. In our constant satellite case ãDD(k) was just aDD in (3.12).

Assume at the end of epoch k−1 that we have obtained the equivalent of the top
part of (3.23) for epoch k−1:

w̃k−1 = S̃k−1ã
DD(k−1) + ṽk−1, ṽk−1 ∼ N (0, σ2I),(3.28)

where S̃k−1 is nonsingular upper triangular. We can partition ãDD(k−1) as

ãDD(k−1) =

[
ãDD

d (k−1)
aDD(k−1)

]
,(3.29)

where for k = 1, 2, . . . , the elements of ãDD

d (k) correspond to the nonreference satellites
which have gone down between epochs 1 and k, and the elements of aDD(k) correspond
to the nonreference satellites which are visible at epoch k. Then with compatible
partitioning, we can rewrite (3.28) as

[
w

(1)
k−1

ŵk−1

]
=

[
S̃

(1)
k−1 S̃

(2)
k−1

0 Sk−1

] [
ãDD

d (k−1)
aDD(k−1)

]
+

[
v
(1)
k−1

v̂k−1

]
,(3.30)

where both S̃
(1)
k−1 and Sk−1 are nonsingular upper triangular. Notice that if no satel-

lites rise or set from epoch 1 to epoch k−1, then the top part of (3.30) will disappear
and the bottom part is just the top part of (3.23) with k replaced by k−1. In the
following we will combine (3.30) with relevant equations at epoch k in order to obtain
the position estimates. It is helpful to consider two cases separately.

Case 1. The reference satellite at epoch k−1 remains at epoch k. We still use
it as the reference satellite at epoch k. When a satellite sets between epochs k−1
and k, we simply drop the corresponding measurement equation from (2.10). When
a satellite rises between epochs k−1 and k, we just append one equation to (2.10).
We rewrite the single difference measurement equation (2.10) at epoch k for the new
situation as

yk = Ekxk − a(k) + eβk + vk, vk ∼ N (0, σ2I),

where the first scalar equation corresponds to the reference satellite, and a(k) is the
single difference integer ambiguity vector at epoch k. Applying P2(k)

T (cf. (3.5)) to
the above equation and using the relationship d(k) = −P2(k)

Ta(k) = F (k)J(k)a(k) =
F (k)aDD(k) (cf. (3.14)) gives the new kth block equation of (3.15):

P2(k)
T yk = P2(k)

TEkxk + F (k)aDD(k) + P2(k)
T vk, P2(k)

T vk ∼ N (0, σ2I).

Then using the QR factorization of P2(k)
TEk (cf. (3.16) and (3.17)) gives the new

kth and 2kth block equations of (3.18), respectively:

uk = Rkxk + UkF (k)a
DD(k) + UkP2(k)

T vk, UkP2(k)
T vk ∼ N (0, σ2I),(3.31)

wk = WkF (k)a
DD(k) +WkP2(k)

T vk, WkP2(k)
T vk ∼ N (0, σ2I).(3.32)

The main task is to combine (3.32) with (3.28) (i.e., (3.30)), which involves ãDD(k−1)
rather than aDD(k), to obtain the equivalent of (3.28) for ãDD(k) at epoch k. The
resulting LS estimate of ãDD(k) can then be used to give the position estimates based
on (3.31) and corresponding equations for epochs j = 1, 2, . . . , k−1,

uj = Rjxj + UjF (j)a
DD(j) + UjP2(j)

T vj , UjP2(j)
T vj ∼ N (0, σ2I).(3.33)
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The DDIA vector aDD(k) can be partitioned as follows:

aDD(k) =

[
aDD
r (k)
aDD
u (k)

]
,(3.34)

where the elements of aDD
r (k) correspond to the nonreference satellites which are

visible at epoch k−1 and remain at epoch k, and those of aDD
u (k) correspond to the

nonreference satellites which come up between epochs k−1 and k. Let aDD

d (k) denote
the DDIA vector whose elements correspond to the nonreference satellites which go
down between epochs k−1 and k. Then for k = 1, 2, . . . , we can summarize the DDIA
vectors at epoch k as follows, where every element of every DDIA vector at epoch k
involves the same reference satellite, which must be visible at epoch k:

ãDD(k): (whose elements correspond to) all the nonreference satellites that were
visible for at least one epoch from epoch 1 to epoch k;

ãDD

d (k): all the nonreference satellites that went down between epochs 1 and k;
aDD(k): all the nonreference satellites that are visible at epoch k;
aDD
r (k): all the nonreference satellites that were visible at epoch k−1 and remain

at epoch k;
aDD
u (k): all the nonreference satellites that come up between epochs k−1 and k;
aDD

d (k): all the nonreference satellites that go down between epochs k−1 and k.

Obviously aDD(k−1) is a rearrangement of the combined elements of aDD
r (k) and

aDD

d (k), so we can find a permutation Π = [Π1,Π2] such that

ΠTaDD(k−1) =

[
ΠT

1 a
DD(k−1)

ΠT
2 a

DD(k−1)

]
=

[
aDD

d (k)
aDD
r (k)

]
.(3.35)

The following are obvious relationships between these DDIA vectors that we will use:

ãDD

d (k) =

[
ãDD

d (k−1)
aDD

d (k)

]
, ãDD(k) =

[
ãDD

d (k)
aDD(k)

]
=



ãDD

d (k−1)
aDD

d (k)
aDD
r (k)
aDD
u (k)


 .(3.36)

We are now ready to combine (3.30) and (3.32). Partition F (k) =
[
F1(k) F2(k)

]
compatibly with (3.34) so that in (3.32)

F (k)aDD(k) = F1(k)a
DD

r (k) + F2(k)a
DD

u (k).

In (3.30), use (3.35) to write

Sk−1a
DD(k−1) = Sk−1ΠΠTaDD(k−1) =

[
Sk−1Π1 Sk−1Π2

] [ aDD

d (k)
aDD
r (k)

]
,

and similarly for S̃
(2)
k−1a

DD(k−1). Then stacking (3.30) on top of (3.32) gives (see
(3.36) and (3.34))


w(1)

k−1

ŵk−1

wk


 =


S̃(1)

k−1 S̃
(2)
k−1Π1 S̃

(2)
k−1Π2 0

0 Sk−1Π1 Sk−1Π2 0
0 0 WkF1(k) WkF2(k)





[
ãDD

d (k−1)
aDD

d (k)

]
= ãDD

d (k)[
aDD
r (k)
aDD
u (k)

]
= aDD(k)


(3.37)

+


 v

(1)
k−1

v̂k−1

WT
k P2(k)

T vk


.
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In order to have a unique LS estimate for ãDD(k) =
[
ãDD

d (k)
aDD(k)

]
at epoch k (see

(3.36)), the number of equations should be greater than or equal to the number
of (nonnoise) unknowns in (3.37). Suppose mk−1 satellites (including the reference
satellite) are visible at epoch k−1, md satellites go down between epochs k−1 and k,
and mu satellites come up between epochs k−1 and k. Then Ek has mk−1 −md+mu

rows, so Wk is (mk−1−md+mu−4)× (mk−1−md+mu−1) (cf. (3.16)). Notice that
in (3.30) (or the first two parts of (3.37)) there are the same number of equations as
unknowns, and (3.32) (or the bottom part of (3.37)) adds mk−1 −md +mu − 4 more
equations and mu more unknowns (aDD

u (k)). So we require

mk−1 −md +mu − 4 ≥ mu, which is just mk−1 ≥ md + 4.

This means that if more than mk−1 − 4 satellites go down between epochs k−1 and k
we will have a rank deficient system, and we will have to wait until it becomes a full
rank system at some later epoch before we can obtain unique estimates again. But
we nearly always have either md = 0 or md = 1, giving the requirements mk−1 ≥ 4
or mk−1 ≥ 5, and these are both met by our assumption that at least 5 satellites are
visible at any epoch. Under the condition mk−1 ≥ md+4, we can reasonably assume
that the coefficient matrix in (3.37) has full column rank. To solve the LS problem,
we compute the following orthogonal transformations, the new versions of (3.22):

T̃T
k


S̃(1)

k−1 S̃
(2)
k−1Π1 S̃

(2)
k−1Π2 0

0 Sk−1Π1 Sk−1Π2 0
0 0 WkF1(k) WkF2(k)


 =


S̃(1)

k S̃
(2)
k

0 Sk

0 0


 ≡

[
S̃k

0

]
,

T̃T
k


 w

(1)
k−1

ŵk−1

wk


 =


 w

(1)
k

ŵk

¯̄wk


 ≡

[
w̃k

¯̄wk

]
,

where both S̃
(1)
k and Sk are nonsingular upper triangular. This has completed the

update and provided the equivalents of (3.28) and (3.30) for epoch k. Since S̃
(1)
k−1

is already nonsingular upper triangular, we see that the above computation did not
touch the top part of (3.37), which corresponds to the satellites going down between
epochs 1 and k−1. We can now compute the LS estimates aDD

k (k) of aDD(k) and
ãDD

dk (k) of ã
DD

d (k) by solving

Ska
DD

k (k) = ŵk, S̃
(1)
k ãDD

dk (k) = w
(1)
k − S̃

(2)
k aDD

k (k).

Notice that if no satellites rise or set between epochs k−1 and k, aDD

d (k) and aDD
u (k)

will have no elements, so in (3.35) and (3.34) we take Π = Π2 = I, giving aDD(k−1) =
aDD
r (k) = aDD(k); thus, in (3.37) the second and fourth blocks of columns of the
coefficient matrix disappear and F1(k) = F (k), and the transformations revert to
(3.22).

After this, we can use (3.31) and (3.33) to get xk|k and xj|k for j = 1, . . . , k−1
by solving triangular systems

Rkxk|k = uk − UkF (k)a
DD

k (k), Rjxj|k = uj − UjF (j)a
DD

k (j),

where aDD

k (j) is the LS estimate of aDD(j) at epoch k. This will be found by trans-
forming ãDD

k (k) to obtain the corresponding vector whose reference satellite is the
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one used at epoch j (see (3.39) to see how this is done) and extracting the relevant
elements. Keeping track of this is part of the bookkeeping we must do.

Case 2. The reference satellite (satellite 1, say) at epoch k−1 goes down between
epochs k−1 and k. Without loss of generality we assume that satellite 2 is visible
at epoch k−1, remains at epoch k, and is used as the reference satellite at epoch k.
Suppose at epoch k we obtain (cf. (3.32))

wk =WkF (k)a
DD(k) +WkP2(k)

T vk, WkP2(k)
T vk ∼ N (0, σ2I),(3.38)

where aDD(k) is the DDIA vector of visible satellites with satellite 2 as the reference
satellite. At the end of epoch k−1 we have (3.28), where ãDD(k−1) ∈ Rm−1, say,
uses satellite 1 as the reference satellite, and without loss of generality we assume

ãDD(k−1) = [α1 − α2, α1 − α3, . . . , α1 − αm]T .

Define the corresponding vector āDD(k−1) with satellite 2 as the reference satellite,
along with the matrix K,

āDD(k−1) ≡ [α2 − α1, α2 − α3, . . . , α2 − αm]T , K ≡
[ −1 0

−e Im−2

]
.

Then it is easy to verify that

K2 = Im−1, āDD(k−1) = KãDD(k−1).(3.39)

This indicates that we can easily transform a DDIA vector with one satellite as the
reference satellite to a DDIA vector with another satellite as the reference satellite.
Define S̄k−1 ≡ S̃k−1K. Then from (3.28) we have

w̃k−1 = S̃k−1ã
DD(k−1)+ ṽk−1 = S̃k−1KKãDD(k−1)+ ṽk−1 = S̄k−1ā

DD(k−1)+ ṽk−1.

We could apply an orthogonal transformation to the left of this to triangularize S̄k−1,
giving essentially the same situation as in Case 1, so we can now use that approach.

Finally we would like to point out the computation of covariance matrices in
section 3.4 can also be extended to the case where there are satellites rising and/or
setting. But for brevity, we prefer not to do this here.

4. Simulations. To demonstrate the performance of our algorithm, we give some
computer simulation results. All our computations were performed in MATLAB 5.2
on a Pentium III running Windows 2000. The 24 GPS satellite constellation data
in YUMA ephemeris format for the week of June 30–July 6, 1998, is used in the
simulations. The roving receiver is assumed to be on board an aircraft circling hori-
zontally with center directly above the reference station (stationary receiver) at the
constant speed of 100m/s. The baseline is 1 km. Each single differenced carrier phase
measurement is corrupted by a random normally distributed noise with zero mean
and standard deviation σ = 0.2 cm, except for Figure 4.4, where σ =

√
2 cm. The

σ = 0.2 cm noises were chosen to roughly match what appear to be the noise levels
used in [21], while the higher noise level shows the effect of the maximum carrier phase
noise level suggested by Table 1.1. The receiver clock offset relative to GPS time is
modeled by white noise input to a second order Markov process based on [17, p. 417].
The time interval between two consecutive epochs is 1 second.

The typical results for 7 satellites with initial errors of 5 meters, 100 meters, 1
kilometer, and 1 kilometer with more noise, are shown in Figures 4.1–4.4, respectively.
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Notice how much longer convergence takes in Figure 4.4 than in the much less noisy
but otherwise equivalent simulation in Figure 4.3. The typical results for 6 and 5
satellites with an initial error of 100 meters are shown in Figures 4.5 and 4.6. From
these figures we see the new algorithm performed better than the van Graas and Lee
algorithm in terms of position accuracy at the beginning. But as time progressed the
two algorithms did not always have such significant differences, particularly when 7
satellites were simulated. However, in the 5 satellite example, at 2,000 seconds the new
algorithm still gave results that were about four times as accurate as those obtained
by the van Graas and Lee algorithm. The new algorithm is also more efficient than
the van Graas and Lee algorithm. Our MATLAB simulations show that for each
epoch the number of floating point operations of the former is less than half that of
the latter. Figure 4.5 shows that using 6 satellites takes more time to get submeter
accuracy than using 7 satellites. Figure 4.6 shows that with 5 satellites it takes much
longer still.

Position errors for 7 satellites with different initial errors (Figure 4.1–Figure 4.4)
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Fig. 4.1. 5 m initial error, noise σ = 0.002m.
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Fig. 4.2. 100 m initial error, noise σ = 0.002m.

0 20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

10
0

10
1

10
2

10
3

Run time in seconds

M
et

er
s

New Alg
VGL Alg

Fig. 4.3. 1 km initial error, noise σ = 0.002m.
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Fig. 4.4. 1 km initial error, noise σ = 0.014m.

Since the noise was randomly generated we obtained different results when we
repeated each run, so the figures here were chosen to be typical examples. But in
a few of our many runs the van Graas and Lee algorithm converged as well as and
occasionally better than ours, and when we increased the single-signal noise standard
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Position errors for 6 and 5 satellites with 100 m initial error (Figure 4.5–Figure 4.6)
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Fig. 4.5. 6 satellites, noise σ = 0.002m.
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Fig. 4.6. 5 satellites, noise σ = 0.002m.
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Fig. 4.7. Position errors and variances, 7 satellites, 1 km initial error, noise σ = 0.002m.

deviation to higher than 1 cm (see Table 1.1), the general superior convergence of
our algorithm was less marked. Also it can be seen that the van Graas and Lee
algorithm provides a nice smoothing effect. However, it would seem preferable to
have the general faster convergence and lower computation time of our algorithm for
these problems, so the computational performance described in this section nicely
complements the other advantages of the material presented here.

In order to test our covariance approximations from section 3.4, we use the fact
that for a linear system E{‖ẑ−z‖2} = trace(cov{ẑ−z}) (see (3.3)). Thus we can test
the trace of our approximate covariance matrix by plotting the position (or baseline)
errors ‖xk|k − xk‖ and (trace(cov{xk|k − xk})1/2 for our approximation. This is done
in Figure 4.7, where 7 satellites are used for positioning with 1 km initial error. From
this figure, we see our approximate variances (we are considering only the diagonal
of the covariance matrix) appear to give reasonable indicators of the position errors.
Note that this is a different run with different noise of the same standard deviation
as that in Figure 4.3.
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5. Summary and remarks. We have presented a recursive LS approach for
carrier phase based GPS positioning. From the simulation results we see that the
recursive LS approach is effective and that for the examples treated here it is not
necessary to use what van Graas and Lee [21] called the complementary Kalman
filter. However, in cases where we have additional precise information about the
dynamics of the roving receiver, the ideas here could also be used to handle the state
equations.

Our algorithm is numerically reliable since we use numerically stable orthogonal
transformations. It is also efficient, since it takes full advantage of the structure of
the problem. A nice contribution of our approach is that some of the drawbacks of
double differencing are avoided, and yet the double differenced integer ambiguities are
still available.

One remark we would like to make is that when we apply our algorithm to real
data, we need to incorporate an algorithm for cycle slip detection and correction.
Cycle slip is the change in integer ambiguities mainly caused by obstructions of the
satellite signal due to trees, buildings, bridges, mountains, etc. For details about cycle
slip detection and correction, see, for example, [9].
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